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Abstract

We develop a Fourier method to solve backward stochastic differential equations (BSDEs).
General theta-discretization of the time-integrands leads to an induction scheme with condi-
tional expectations. These are approximated by using Fourier-cosine series expansions, relying
on the availability of a characteristic function. The method is applied to BSDEs with jumps.
Numerical experiments demonstrate the applicability of BSDEs in financial and economic
problems and show fast convergence of our efficient probabilistic numerical method.
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1 Introduction

Whereas the theory and applications of classical forward stochastic differential equations (FSDE),
with a prescribed initial value, is traditional and became widely known, we are concerned with
backward stochastic differential equations (BSDEs). A BSDE is stochastic differential equation
for which a terminal condition, instead of an initial condition, has been specified and its solution
consists of a pair of processes. The linear type of equation was introduced by Bismut in [Bis73],
where linear BSDEs were used in stochastic optimal control problems as adjoint equations in the
stochastic version of the Pontryagin’s maximum principle. The general notion of BSDE has been
introduced by Pardoux and Peng [PP90]. They proved existence and uniqueness of solutions of
BSDEs under some Lipschitz conditions on the driver function. Many researchers have attempted
to relax these restrictions. For example, the authors in [LSM97] show existence of a minimal
solution under more general assumption for the driver function, which is assumed to be continuous
with linear growth in some of its arguments. Kobylanski [Kob00] provided uniqueness and existence
results for a driver with quadratic growth in one of its argument. For a general introduction to
BSDEs we refer to [Pha09, EKPQ97].

In recent years, BSDEs have received more attention in mathematical finance and economics. For
example, the Black-Scholes formula for pricing options can be represented by a system of decoupled
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forward-backward SDEs. Market imperfections can also be incorporated, such as different lending
and borrowing rates for money, the presence of transaction costs or short sales constraints. These
imperfections give rise to more involved nonlinear BSDEs. If the asset price follows a jump diffusion
process then the option can not perfectly be replicated by assets and cash, i.e., the market is not
complete. A way to value and hedge options in this setting is by utility indifference pricing, where
a certain utility value is assigned to the possible profits and losses of the hedging portfolio. The
pricing problem can be solved by means of a BSDE with jumps.

The well-known Feynman-Kac theorem gives a probabilistic representation for the solution of a
linear parabolic partial differential equation (PDE) by means of the corresponding FSDE and
a conditional expectation. The solution of a BSDE provides a probabilistic representation for
semilinear parabolic PDEs, see for example [PP92], which is a generalisation of the Feynman-Kac
theorem. Also the converse relation holds. This connection enables us to solve a semilinear PDE
by probabilistic numerical methods, like Monte Carlo simulation techniques.

Probabilistic numerical methods to solve BSDEs may, for example, rely on time discretization
of the stochastic process and approximations for the appearing conditional expectations. Least-
squares Monte Carlo regression to approximate the conditional expectations is used in, for example,
[LGW06, GLW05, BS12]. In this paper we employ a general theta-method for the time-integration
([Ise09]) and propose a new method to approximate the solution backwards in time. This approach
is based on the COS method, which was developed in [FO08] for pricing financial options. The
method is based on Fourier-cosine series expansions and relies on the characteristic function of
the transitional density, which enables us to approximate the conditional expectations is a very
efficient way. The characteristic function is in principle available for Lévy processes, or affine jump
diffusion processes. The applicability of the resulting method is therefore quite general. We call
the method the BCOS method, short for BSDE-COS method.

We start in Section 2 with notation, definitions, and a further introduction to BSDEs, where
also the link with semilinear partial differential equations is stated. A general time discretization
of the BSDE results in expressions with conditional expectations (Section 3). These conditional
expectations are computed by the BCOS method (Section 4) and the problem is then solved
backwards in time. We perform extensive numerical experiments in Section 5. Then, in Section
6, utility indifference pricing and the related maximization problems are discussed. We derive a
numerical scheme for the resulting BSDE with jumps in Section 6.3. Results in Section 7 show the
utility indifference ask and bid price.

2 Backward stochastic differential equations

We start with some notation and definitions, for which we follow the survey paper [EKPQ97]. Let
ω = (ωt)0≤t≤T be a standard one-dimensional Brownian motion on a filtered probability space
(Ω,F ,F,P), with F = (Ft)0≤t≤T the natural filtration of the Brownian motion ω, and T a fixed
finite time horizon. We denote by H

2
T (R) the set of predictable processes η : Ω× [0, T ] → R such

that E

[∫ T

0
|ηt|2dt

]
< ∞ and by L

2
T (R) the set of FT -measurable random variables X : Ω → R

that are square integrable.

We consider the BSDE
− dYt = f(t, Yt, Zt)dt− Ztdωt, YT = ξ, (2.1)

where function f : Ω× [0, T ]×R×R→ R is P⊗B⊗B-measurable. P is the set of Ft-progressively
measurable scalar processes on Ω × [0, T ]. f(.) is the generator or driver of the process and
the terminal condition ξ : Ω → R is an FT -measurable random variable. For simplicity we use
one-dimensional processes, but the BSDE theory can be extended to higher dimensions, with n-
dimensional processes ωt and Yt and an n× d-dimensional Zt process, as described in [EKPQ97].
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A solution to BSDE (2.1) is given by a pair of processes (Y, Z), with Y a continuous real-valued

adapted process and Z a real-valued predictable process satisfying
∫ T

0 |Zt|2dt < ∞,P a.s., satisfying

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

Zsdωs, 0 ≤ t ≤ T. (2.2)

Unlike an FSDE, the solution of a BSDE is thus a pair of adapted processes (Y, Z). Note that
BSDEs can not be considered as time-revered FSDEs, because at time t the pair (Yt, Zt) is Ft-
measurable and the process does not yet “know” the terminal condition.

Function f and terminal condition ξ are called standard parameters for the BSDE, if

• ξ ∈ L
2
T (R) ,

• f(., 0, 0) ∈ H
2
T (R),

• f is uniformly Lipschitz in y and z, i.e., there exists a constant LLipz > 0 such that

|f(t, y1, z1)− f(t, y2, z2)| ≤ LLipz (|y1 − y2|+ |z1 − z2|) , ∀(y1, z1), ∀(y2, z2), dt⊗ dP a.s..
(2.3)

A result from [EKPQ97, Pha09, PP90] is that, given a pair of standard parameters (f, ξ), there
exists a unique solution (Y, Z) ∈ H

2
T (R)×H

2
T (R) to BSDE (2.1).

Markovian case for the BSDE A linear parabolic PDE has a probabilistic representation by
means of the Feynman-Kac theorem. Here, we consider a semilinear PDE of the form

−∂v

∂t
(t, x)− Lv(t, x) − f(t, x, v(t, x), σ(t, x)Dxv(t, x)) = 0, (t, x) ∈ [0, T )× R, (2.4)

v(T, x) = g(x), x ∈ R, (2.5)

with the differential operator of second order

Lv(t, x) = μ(t, x)Dxv(t, x) +
1
2σ

2(t, x)D2
xv(t, x). (2.6)

This PDE also has a probabilistic representation, by means of the following FSDE,

Xt = x, dXs = μ(s,Xs)ds+ σ(s,Xs)dωs, t ≤ s ≤ T. (2.7)

and BSDE
− dYs = f(s,Xt,x

s , Ys, Zs)ds− Zsdωs, YT = g(Xt,x
T ), (2.8)

whose terminal condition is determined by the terminal value of FSDE (2.7). Xt,x
s denotes the

solution to (2.7) starting from x at time t, and (Y t,x
s , Zt,x

s ) is the corresponding solution to the
BSDE.

The coefficients σ : [0, T ]×R → R and μ : [0, T ]×R → R in (2.7) are assumed to be Lipschitz in x
and satisfy a linear growth condition in x. Functions f : [0, T ]×R×R×R → R and g : R → R are
assumed to be uniformly continuous with respect to x. Moreover, f satisfies a Lipschitz condition
in (y, z) and there exists a constant C such that |f(t, x, y, z) + |g(x)| ≤ C(1 + |x|p), p ≥ 1/2.

The conditions on f and ξ guarantee the existence of a unique solution (Y, Z) to the BSDE (2.8).
Together with the Markov property of the process X , we notice that there exists a deterministic
function v(t, x) such that the solution Y of the BSDE is Y t,x

s = v(s,Xt,x
s ), t ≤ s ≤ T . The solution

of the BSDE is said to be Markovian as it can be written as a function of time and the state process
Xt,x

s . The following results hold
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Result 2.1. ([PP92, Pha09]) Let v ∈ C1,2 be a classical solution to (2.4) and suppose there exists
a constant C ≥ 0 such that, for all (t, x), |v(t, x)| + |σ(t, x)Dxv(t, x)| ≤ C(1 + |x|). Then the pair
(Y, Z), defined by

Y t,x
s = v(s,Xt,x

s ), Zt,x
s = σ(s,Xt,x

s )Dxv(s,X
t,x
s ), t ≤ s ≤ T, (2.9)

is the solution to BSDE (2.8) (a so-called verification result).

The converse result states: Suppose (Y, Z) is the solution to the BSDE, then the function defined
by v(t, x) = Y t,x

t is a viscosity solution to the PDE.

The verification result follows from application of Itô’s lemma to v(t,Xt) ([Pha09]):

dv(t,Xt) = (vt(t,Xt) + Lv(t,Xt)) dt+ σ(t,Xt)Dxv(t,Xt)dωt

= −f(t,Xt, v(t,Xt), σ(t,Xt)Dxv(t,Xt))dt+ σ(t,Xt)Dxv(t,Xt)dωt. (2.10)

So, solving the semilinear PDE or the corresponding BSDE results in the same solution. A PDE can
be solved by applying numerical discretization techniques and for BSDEs probabilistic numerical
methods are available. For example, Picard methods for Y , see [BD07, GL10], give rise to a
sequence of ‘easy’ linear BSDEs. Another class of methods focuses on dynamic programming
equations, see [BT04, Zha04]. Our probabilistic solution method to the BSDE is in this class and
consists of two steps: First of all, the FSDE is simulated by an Euler scheme and the general
theta-time discretization of the BSDE then results in expressions with conditional expectations
(see Section 3). Secondly, the conditional expectations are computed by the BCOS method (see
Section 4) and the problem is solved backwards in time.

3 Discretization of the BSDE

We wish to discretize the forward stochastic process,

X0 = x0 given, Xt = X0 +

∫ t

0

μ(s,Xs)ds+

∫ t

0

σ(s,Xs)dωs, (3.1)

and the backward process1,

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

Zsdωs, ξ = g(XT ). (3.2)

For this, we define a partition Δ : 0 = t0 < t1 < t2 < . . . < tm < . . . < tM = T , with fixed time
steps Δt := tm+1 − tm. For notational convenience we write Xm = Xtm , Ym = Ytm , Zm = Ztm

and define Δωm := ωtm+1 − ωtm . With ωt a Wiener process, the increments Δωm ∼ N (0,
√
Δt)

are normally distributed. The classical Euler discretization XΔ of the FSDE reads, in this case,

XΔ
0 = x0, XΔ

m+1 = XΔ
m + μ(tm, XΔ

m)Δt+ σ(tm, XΔ
m)Δωm, m = 0, . . . ,M − 1. (3.3)

For the BSDE, we then start with

Ym = Ym+1 +

∫ tm+1

tm

f(s, Ys, Zs)ds−
∫ tm+1

tm

Zsdωs. (3.4)

1In our numerical experiments, the driver function does not depend on Xs and we omit this dependency here.
However, the numerical method can be easily be generalized including this dependency.
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By a basic Euler discretization, backwards in time, we would require the unknown value Ym+1

to approximate Ym. This scheme does hence not suffice, as it would not take into account the
adaptability constraints on Y and Z. To obtain a computationally viable backward induction
scheme we should take conditional expectations, which will result in a similar approximation scheme
to the BSDE as used in [ZWP09]. For the Ftm-measurable random variables Ym and Zm it holds
that Em[Ym] = Ym and Em[Zm] = Zm, where Em[.] represents the conditional expectation E[.|Ftm ].
Taking conditional expectations at both sides of equation (3.4) then results in

Ym = Em[Ym+1] +

∫ tm+1

tm

Em[f(s, Ys, Zs)]ds

≈ Em[Ym+1] + Δtθ1f(tm, Ym, Zm) + Δt(1 − θ1)Em[f(tm+1, Ym+1, Zm+1)], θ1 ∈ [0, 1]. (3.5)

The integrand in the above equation (3.5) is a deterministic continuous function of time s, so that
we can use the well-known theta-time discretization method to approximate the integral ([Ise09]).
Multiplying both sides of equation (3.4) by Δωm, taking the conditional expectation, and applying
the theta-method also gives us

0 = Em[Ym+1Δωm] +

∫ tm+1

tm

Em[f(s, Ys, Zs)(ωs − ωtm)]ds−
∫ tm+1

tm

Em[Zs]ds

≈ Em[Ym+1Δωm] + Δt(1− θ2)Em[f(tm+1, Ym+1, Zm+1)Δωm]

−Δtθ2Zm −Δt(1− θ2)Em[Zm+1], θ2 ∈ [0, 1]. (3.6)

Note that for equations (3.5) and (3.6) we use two different time discretization parameters θ1 and
θ2, respectively. The above equations lead to a discrete-time approximation (Y Δ, ZΔ) for (Y, Z):

Y Δ
M = g(XΔ

M ), ZΔ
M = σDxg(X

Δ
M ), (3.7a)

for m = M − 1, . . . , 0 :

ZΔ
m = −θ−1

2 (1− θ2)Em[ZΔ
m+1] +

1
Δtθ

−1
2 Em[Y Δ

m+1Δωm]

+ θ−1
2 (1− θ2)Em[f(tm+1, Y

Δ
m+1, Z

Δ
m+1)Δωm], (3.7b)

Y Δ
m = Em[Y Δ

m+1] + Δtθ1f(tm, Y Δ
m , ZΔ

m) + Δt(1− θ1)Em[f(tm+1, Y
Δ
m+1, Z

Δ
m+1)]. (3.7c)

The use of θ1 = 0 gives us an explicit scheme for Y Δ
m , whereas θ1 ∈ (0, 1] results in an implicit

scheme. To solve for ZΔ
m, we should have obviously θ2 �= 0 in equation (3.7b), which gives an

explicit scheme for ZΔ
m. For the terminal value ZΔ

M we use the relation from Result 2.1.

The terminal condition is a deterministic function of XΔ
M and XΔ is a Markov process. Then it

is easily seen, using an induction argument, that there are deterministic functions y(tm, x) and
z(tm, x), so that

Y Δ
m = y(tm, XΔ

m), ZΔ
m = z(tm, XΔ

m). (3.8)

So, the random variables Y Δ
m and ZΔ

m are functions of XΔ
m, for each m = 0, . . . ,M . The functions

y(tm, x) and z(tm, x) are obtained in a backward manner by means of the following time iteration

y(tM , x) = g(x), z(tM , x) = σDxg(x), (3.9a)

for m = M − 1, . . . , 0 :

z(tm, x) = −θ−1
2 (1− θ2)E

x
m[z(tm+1, X

Δ
m+1)] +

1
Δtθ

−1
2 E

x
m[y(tm+1, X

Δ
m+1)Δωm]

+ θ−1
2 (1 − θ2)E

x
m[f(tm+1, y(tm+1, X

Δ
m+1), z(tm+1, X

Δ
m+1))Δωm], (3.9b)

y(tm, x) = E
x
m[y(tm+1, X

Δ
m+1)] + Δtθ1f(tm, y(tm, x), z(tm, x))

5



+Δt(1− θ1)E
x
m[f(tm+1, y(tm+1, X

Δ
m+1), z(tm+1, X

Δ
m+1))], (3.9c)

where the conditional expectation E
x
m[.] represents E[.|XΔ

m = x]. Note that functions y and z
depend on the discretization partition Δ.

Equations (3.9) provide us with a scheme to solve the BSDE backwards in time, starting at terminal
time T . One could use least squares Monte Carlo methods, like the Longstaff-Schwartz method, to
approximate the conditional expectations, see for example [LGW06, GLW05, BS12]. The authors of
[BT04] apply a Malliavin based algorithm to solve them, whereas [MPSMT02] employs a binomial
tree method. In the next section, we introduce a Fourier method to solve the BSDE.

4 BCOS method

In this section we explain our method of choice to compute the conditional expectations in (3.9)
and solve the problem recursively, backwards in time. Our method is an extension of the COS
method, which is a Fourier method developed in [FO08] to compute European option prices. The
COS method for computing Bermudan options also consists of a backwards-in-time scheme to find
the conditional expectations of the continuation value, see [FO09]. The method for solving BSDEs
with a COS method is named the BCOS method here. First, in Section 4.1 we derive the COS
formulas and define the Fourier-cosine coefficients. Then, Sections 4.2 and 4.3 are devoted to the
approximation of functions z and y. Section 4.4 discusses the recursive recovery of the Fourier
coefficients and Section 4.5 the error components.

4.1 COS formulas and Fourier-cosine coefficients

Without loss of generality, we assume a constant drift μ and volatility σ here, and

XΔ
m+1 = XΔ

m + μΔt+ σΔωm. (4.1)

In Remark 4.1 we will comment on the use of more general functions μ(t, x) and σ(t, x). Suppose
we wish to approximate the expectation

I := E
x
m[v(tm+1, X

Δ
m+1)], (4.2)

where v represents a general functional. With the continuous transitional density function denoted
by p(ζ|x) = P(XΔ

m+1 = ζ|XΔ
m = x), we rewrite

I =

∫
R

v(tm+1, ζ)p(ζ|x)dζ. (4.3)

We assume that the integrand decays to zero as ζ → ±∞. Because of that, we can truncate the
infinite integration range to some finite interval [a, b] ⊂ R without loosing significant accuracy.
This gives us the approximation

I1 =

∫ b

a

v(tm+1, ζ)p(ζ|x)dζ. (4.4)

The notation Ii is used to denote the different approximations of I and keeps track of the numerical
errors that set in at each step. Next, we replace the density function and function v by their
Fourier-cosine series expansions on [a, b], that is

p(ζ|x) =
∞∑′

k=0

Pk(x) cos

(
kπ

ζ − a

b− a

)
, (4.5a)
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v(tm+1, ζ) =

∞∑′

k=0

Vk(tm+1) cos

(
kπ

ζ − a

b − a

)
, (4.5b)

with series coefficients {Pk}∞k=0 and {Vk}∞k=0 given by

Pk(x) :=
2

b− a

∫ b

a

p(ζ|x) cos
(
kπ

ζ − a

b − a

)
dζ and (4.6a)

Vk(tm+1) :=
2

b− a

∫ b

a

v(tm+1, ζ) cos

(
kπ

ζ − a

b− a

)
dζ, (4.6b)

respectively.
∑′ indicates that the first term in the summation is weighted by one-half. Parseval’s

theorem and truncation of the series summations gives us the approximation

I2 =
b− a

2

N−1∑′

k=0

Vk(tm+1)Pk(x). (4.7)

The Fourier-cosine coefficients of the transitional density function, Pk(x), can now be approximated
as follows ([FO08])

Pk(x) ≈ 2

b− a

∫
R

p(ζ|x) cos
(
kπ

ζ − a

b− a

)
dζ =

2

b− a
�
(
ϕ

(
kπ

b− a

∣∣∣x) eikπ
−a
b−a

)

=
2

b− a
�
(
φ

(
kπ

b− a

)
eikπ

x−a
b−a

)
:= Φk(x). (4.8)

�(.) denotes taking the real part of the input argument and ϕ(.|x) is the conditional characteristic
function of XΔ

m+1, given XΔ
m = x. The characteristic function encountered here can be written as

ϕ(u|x) = ϕ(u|0)eiux = φ(u)eiux, φ(u) := exp
(
iuμΔt− 1

2u
2σ2Δt

)
. (4.9)

Inserting the above equations in (4.7) gives us the COS formula for approximation of I:

Î := I3 =

N−1∑′

k=0

Vk(tm+1)�
(
φ

(
kπ

b− a

)
eikπ

x−a
b−a

)
. (4.10)

For solving the BSDE we need to deal with expectations of the form

E
x
m[v(tm+1, X

Δ
m+1)Δωm]. (4.11)

With the help of the equality (A.4) in Appendix A.1 (without jumps), they are computed by

E
x
m[v(tm+1, X

Δ
m+1)Δωm] ≈ E

x
m

⎡
⎣N−1∑′

k=0

Vk(tm+1) cos

(
kπ

XΔ
m+1 − a

b− a

)
Δωm

⎤
⎦

=

N−1∑′

k=0

Vk(tm+1)σΔt�
(
i
kπ

b− a
φ

(
kπ

b− a

)
eikπ

x−a
b−a

)
. (4.12)

Now we return to the BSDE problem (3.9), where we defined the deterministic functions
y(tm, XΔ

m) := Y Δ
m and z(tm, XΔ

m) := ZΔ
m. Let Yk(tm+1) be the Fourier-cosine coefficients of

y(tm+1, x) in (3.9c), i.e.,

Yk(tm+1) =
2

b− a

∫ b

a

y(tm+1, x) cos

(
kπ

x− a

b− a

)
dx, (4.13)
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Zk(tm+1) the Fourier-cosine coefficients of function z(tm+1, x) in (3.9b), i.e.,

Zk(tm+1) =
2

b− a

∫ b

a

z(tm+1, x) cos

(
kπ

x− a

b− a

)
dx, (4.14)

and Fk(tm+1) the Fourier-cosine coefficients of driver f(tm+1, y(tm+1, x), z(tm+1, x)), i.e.,

Fk(tm+1) =
2

b − a

∫ b

a

f(tm+1, y(tm+1, x), z(tm+1, x)) cos

(
kπ

x− a

b − a

)
dx. (4.15)

In Sections 4.2 and 4.3, we will assume that the above coefficients are given. In Section 4.4 the
algorithm to recover these coefficients recursively, backwards in time, will be discussed.

4.2 COS approximation of function z(tm, x)

For the computation of z(tm, x) in (3.9b), we need to compute three expectations, E
x
m[ZΔ

m+1],
E
x
m[Y Δ

m+1Δωm], and E
x
m[f(tm+1, Y

Δ
m+1, Z

Δ
m+1)Δωm]. With the help of COS formulas we can derive

the following approximations for these expectations:

E
x
m[ZΔ

m+1] ≈
N−1∑′

k=0

Zk(tm+1)�
(
φ

(
kπ

b− a

)
eikπ

x−a
b−a

)
, (4.16a)

E
x
m[Y Δ

m+1Δωm] ≈
N−1∑′

k=0

Yk(tm+1)σΔt�
(

ikπ

b− a
φ

(
kπ

b − a

)
eikπ

x−a
b−a

)
, (4.16b)

E
x
m[f(tm+1, Y

Δ
m+1, Z

Δ
m+1)Δωm] ≈

N−1∑′

k=0

Fk(tm+1)σΔt�
(

ikπ

b− a
φ

(
kπ

b − a

)
eikπ

x−a
b−a

)
. (4.16c)

We then find as COS approximation

z(tm, x) ≈ −1− θ2
θ2

b− a

2

N−1∑′

k=0

Zk(tm+1)Φk(x) +
1

Δtθ2

b− a

2

N−1∑′

k=0

Yk(tm+1)σΔt
dΦk(x)

dx

+
1− θ2
θ2

b− a

2

N−1∑′

k=0

Fk(tm+1)σΔt
dΦk(x)

dx
, (4.17)

with Φk as defined in (4.8).

4.3 COS approximation of function y(tm, x)

For the computation of function y(tm, x) in equation (3.9c) there are two explicit parts, Ex
m[Y Δ

m+1]
and E

x
m[f(tm+1, Y

Δ
m+1, Z

Δ
m+1)], that are approximated by the following COS formulas

E
x
m[Y Δ

m+1] ≈
N−1∑′

k=0

Yk(tm+1)�
(
φ

(
kπ

b− a

)
eikπ

x−a
b−a

)
, (4.18a)

E
x
m[f(tm+1, Y

Δ
m+1, Z

Δ
m+1)] ≈

N−1∑′

k=0

Fk(tm+1)�
(
φ

(
kπ

b− a

)
eikπ

x−a
b−a

)
. (4.18b)

Besides, when θ1 > 0, we also have an implicit part, for which we define

h(tm, x) := E
x
m[Y Δ

m+1] + Δt(1− θ1)E
x
m[f(tm+1, Y

Δ
m+1, Z

Δ
m+1)]. (4.19)
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The function h(tm, x) can be approximated by

h(tm, x) ≈ b− a

2

N−1∑′

k=0

Yk(tm+1)Φk(x) + Δt(1− θ1)
b − a

2

N−1∑′

k=0

Fk(tm+1)Φk(x), (4.20)

with Φk from (4.8). Now we can write

y(tm, x) = Δtθ1f(tm, y(tm, x), z(tm, x)) + h(tm, x). (4.21)

In order to determine function y(tm, x) in equation (4.21), we will perform P Picard iterations,
starting with an initial guess, y0(tm, x) := E

x
m[Y Δ

m+1] (see equation (4.18a)). The Picard method
can be written as

y1(tm, x) = Δtθ1f(tm, y0(tm, x), z(tm, x)) + h(tm, x),

y2(tm, x) = Δtθ1f(tm, y1(tm, x), z(tm, x)) + h(tm, x),

. . .

yP (tm, x) = Δtθ1f(tm, yP−1(tm, x), z(tm, x)) + h(tm, x).

The convergence properties of the Picard iterations to the “true” values y(tm, x) is discussed in
Section 4.5.

4.4 Recovery of coefficients and algorithm

The computation of functions z(tm, x) and y(tm, x) at time-point tm requires the Fourier-cosine
coefficients Zk(tm+1), Yk(tm+1), and Fk(tm+1) of time-point tm+1. In the next time step of the
BCOS method we wish to compute functions z(tm−1, x) and y(tm−1, x) at time-point tm−1, for
which we need the Fourier-cosine coefficients of time-point tm. The coefficients can be computed
recursively backwards in time, as we explain in this section.

Firstly, the computation of the coefficients

Zk(tm) =
2

b− a

∫ b

a

z(tm, x) cos

(
kπ

x− a

b− a

)
dx (4.23)

can be divided into three parts, similar as equation (4.16). We then use the following approxima-
tions

2

b− a

∫ b

a

E
x
m[ZΔ

m+1] cos

(
kπ

x− a

b− a

)
dx ≈ �

⎛
⎝N−1∑′

j=0

Zj(tm+1)φ

(
jπ

b− a

)
Mk,j

⎞
⎠ , (4.24a)

2

b− a

∫ b

a

E
x
m[Y Δ

m+1Δωm] cos

(
kπ

x− a

b− a

)
dx ≈ �

⎛
⎝N−1∑′

j=0

ijπ

b− a
σΔtYj(tm+1)φ

(
jπ

b− a

)
Mk,j

⎞
⎠ ,

(4.24b)

2

b− a

∫ b

a

E
x
m[f(tm+1, Y

Δ
m+1, Z

Δ
m+1)Δωm] cos

(
kπ

x− a

b− a

)
dx ≈ �

⎛
⎝N−1∑′

j=0

ijπ

b− a
σΔtFj(tm+1)φ

(
jπ

b− a

)
Mk,j

⎞
⎠ ,

(4.24c)

with matrix elements

Mk,j :=
2

b− a

∫ b

a

eijπ
x−a
b−a cos

(
kπ

x− a

b− a

)
dx. (4.25)
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These approximations can be found by inserting COS formulas (4.16) in (4.24). Note that the ap-
proximation signs “≈” are due to the errors of the COS formulas, i.e., truncation of the integration
range to a finite interval [a, b] and truncation of the infinite sums to a finite number of terms N .
The coefficients Zk(tm) are then computed as follows

Zk(tm) ≈ �
(N−1∑′

j=0

[
− 1− θ2

θ2
Zj(tm+1)φ

(
jπ

b− a

)
+

1

Δtθ2

ijπ

b− a
σΔtYj(tm+1)φ

(
jπ

b− a

)

+
1− θ2
θ2

ijπ

b− a
σΔtFj(tm+1)φ

(
jπ

b− a

)]
Mk,j

)
. (4.26)

Secondly, the coefficients Hk(tm) of function h(tm, x) in (4.20) are computed by

Hk(tm) =
2

b− a

∫ b

a

h(tm, x) cos

(
kπ

x− a

b− a

)
dx

≈ �
⎛
⎝N−1∑′

j=0

[
Yj(tm+1)φ

(
jπ

b− a

)
+Δt(1− θ1)Fj(tm+1)φ

(
jπ

b− a

)]
Mk,j

⎞
⎠ . (4.27)

The Fourier-cosine coefficients Zk(tm) in (4.26) and Hk(tm) in (4.27), for k = 0, 1, . . .N − 1, can
thus be computed by one matrix-vector multiplication. These matrix-vector multiplications Mu
can be done efficiently with the use of an FFT algorithm, see [FO09]. With this the computational
complexity is reduced from order O(N2) to O(N logN), with N the number of terms in the
summations.

Remark 4.1. For general drift μ(t, x) and volatility σ(t, x) in (4.1) we need to compute the fol-
lowing integrals to recover the Fourier-cosine coefficients

2

b− a

∫ b

a

ϕ

(
jπ

b− a

∣∣∣x) eijπ
−a
b−a cos

(
kπ

x− a

b− a

)
dx,

ϕ(u|x) = exp
(
x+ uμ(tm, x)Δt − 1

2u
2σ2(tm, x)Δt

)
. (4.28)

As the integration kernel is smooth, we can approximate the integrals efficiently by, for example, a
Clenshaw-Curtis quadrature rule ([Gen72]).

At last, the coefficients FP−1
k (tm) of function f(tm, yP−1(tm, x), z(tm, x)) are given by

FP−1
k (tm) :=

2

b− a

∫ b

a

f(tm, yP−1(tm, x), z(tm, x)) cos

(
kπ

x− a

b− a

)
dx. (4.29)

They are approximated by a discrete Fourier-cosine transform (DCT). For this we need to compute
the integrand f(tm, yP−1(tm, x), z(tm, x)) on an equidistant x-grid with Q ≥ N grid points, as
explained in Appendix B. With a converging Picard method, we have Fk(tm) ≈ FP−1

k (tm) for
sufficiently many iterations P . Then,

Yk(tm) ≈ Δtθ1FP−1
k (tm) +Hk(tm). (4.30)

With the aforementioned formulas we approximate the Fourier-cosine coefficients Zk(tm), Yk(tm),
and Fk(tm) by using the coefficients of time-point tm+1. Starting with the coefficients at the
terminal time we can solve them recursively, backwards in time. The evolution of the extra
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error introduced by approximation of the coefficients has been discussed in [FO09]. The final
approximations of the functions y(tm, x) and z(tm, x) by the BCOS method are denoted by ŷ(tm, x)
and ẑ(tm, x). The overall algorithm to solve the BSDE (3.9) backwards in time can be summarized
as:

BCOS method:
Initial step: Compute, or approximate, the terminal coefficients Yk(tM ), Zk(tM ), and Fk(tM ).
Loop: For m = M − 1 to m = 0: Compute the functions ẑ(tm, x), f(tm, ŷ(tm, x), ẑ(tm, x)), and
ŷ(tm, x) and determine the corresponding Fourier-cosine coefficients Zk(tm), Fk(tm), and Yk(tm),
as described in Sections 4.2, 4.3, and 4.4.
Terminal step: Compute ŷ(t0, x0).

4.5 Errors and computational complexity

In the BCOS method when solving BSDEs several approximation errors are encountered. In the
first place there are discretization errors, due to the discrete-time approximation of the stochastic
processes. Moreover, errors are introduced by the COS formulas and the Picard method. These
error components and the computational complexity are discussed in this section.

Discretization error of the FSDE If the functions σ(t, x) and μ(t, x) are Lipschitz continuous
w.r.t. x, satisfy a linear growth condition in x, and are 1/2-Hölder continuous with respect to t,
then the following standard estimate holds ([KP92]). There exists a constant C > 0, independent
of Δ, such that

max
0≤m≤M

E0

[|Xm −XΔ
m|] ≤ C

√
Δt. (4.31)

Discretization error of the BSDE We define the local theta-discretization errors in equations
(3.5) and (3.6) by

Ry
m :=

∫ tm+1

tm

Em[f(s, Ys, Zs)]ds−Δtθ1f(tm, Ym, Zm)−Δt(1 − θ1)Em[f(tm+1, Ym+1, Zm+1)],

(4.32a)

Rz
m :=

∫ tm+1

tm

Em[f(s, Ys, Zs)(ωs − ωtm)]ds−Δt(1− θ2)Em[f(tm+1, Ym+1, Zm+1)Δωm]

−
∫ tm+1

tm

Em[Zs]ds+Δtθ2Zm +Δt(1 − θ2)Em[Zm+1]. (4.32b)

The order of these errors depends on the smoothness of the integrands with respect to time s.
If functions f and g are sufficiently smooth and bounded, with bounded derivatives, then (see
[ZWP09])

Ry
m = O

(
(Δt)2

)
and Rz

m = O
(
(Δt)2

)
, for θi ∈ [0, 1], (4.33)

Ry
m = O

(
(Δt)3

)
, for θ1 = 1/2, and Rz

m = O
(
(Δt)3

)
, for θ2 = 1/2. (4.34)

The global errors due to the theta-time discretization in (3.7c) and (3.7b) are denoted by

εym := Ym − Y Δ
m , εzm := Zm − ZΔ

m, εfm := f(tm, Ym, Zm)− f(tm, Y Δ
m , ZΔ

m). (4.35)

For the y-component we have

εym = Em[εym+1] + Δtθ1ε
f
m +Δt(1 − θ1)Em[εfm+1] +Ry

m. (4.36)
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We can assume, without loss of generality, that f(t, y, z) is Lipschitz in y and z on our computa-
tional domain with Lipschitz constant LLipz. Then the global error can be bounded by

|εym| ≤ 1 + (1− θ1)ΔtLLipz

1− θ1ΔtLLipz
Em[|εym+1|] +

θ1ΔtLLipz

1− θ1ΔtLLipz
|εzm|+ 1

1− θ1ΔtLLipz
|Ry

m|. (4.37)

For the z-component we have

εzm = 1
Δtθ

−1
2 Em[εym+1Δωm] + θ−1

2 (1− θ2)Em[εfm+1Δωm]− θ−1
2 (1− θ2)Em[εzm+1] +

1
Δtθ

−1
2 Rz

m.
(4.38)

Hölders inequality gives

|Em[εym+1Δωm]| ≤ Em[|εym+1|2]1/2
√
Δt, (4.39a)

|Em[εfm+1Δωm]| ≤ Em[|εfm+1|2]1/2
√
Δt, (4.39b)

so that

|εzm| ≤ 1√
Δt

θ−1
2 Em[|εym+1|2]1/2 + θ−1

2 (1− θ2)Em[|εfm+1|2]1/2
√
Δt

− θ−1
2 (1 − θ2)Em[|εzm+1|] + 1

Δtθ
−1
2 |Rz

m|. (4.40)

The error depends on the choice of θ1 and θ2 and on the smoothness of driver function f and
terminal condition g. For example, for a sufficiently smooth function f(y), only depending on y,
and g(y) sufficiently smooth, we find by induction

E0[|εym|] =
{
O (Δt) , for θ1 �= 1/2,

O
(
(Δt)2

)
, for θ1 = 1/2.

(4.41)

The authors in [ZWP09] obtain the convergence rate E0[|εzm|] = O (Δt). In our numerical examples
we find second order convergence for θ1 = θ2 = 1

2 .

Convergence of (Y Δ, ZΔ) to (Y, Z) is discussed in [BT04, Zha04, LGW06, GLW05, BE08] for the
special case θ1 = θ2 = 1. Under certain conditions for functions f and g, error convergence of
order O

(
(Δt)1/2

)
in the L2-sense was found.

Error COS formulas In Section 3 we encountered deterministic functions y and z such that

y(tm, XΔ
m) = Y Δ

m , z(tm, XΔ
m) = ZΔ

m. (4.42)

These functions are approximated by COS formulas and the corresponding Fourier coefficients are
recovered backwards in time, resulting in the approximations ŷ(tm, x) and ẑ(tm, x). Fourier series
expansions and their convergence properties have been discussed in [Boy01]. The error of the COS
method was been discussed extensively in [FO08, FO09]. The error component I − Î (equations
(4.10)) converges exponentially in the number of terms in the series expansions for smooth density
functions and a sufficiently wide integration interval. A density function with a discontinuity in
one of its derivatives gives rise to an algebraic convergence in N .

Convergence of Picard iterations With P Picard iterations we find the fixed-point y of the
equation

y = Δtθ1f(tm, y, z(tm, x)) + h(tm, x). (4.43)

We can assume, without loss of generality, that the driver function f is bounded, as y and z are
bounded on our computational domain, and Lipschitz in y with Lipschitz constant LLipz. For Δt
small enough, i.e. LLipzΔtθ1 < 1, a unique fixed-point exists, and the Picard iterations converge
towards that point for any initial guess. The fixed-point technique converges to the true solution
at the geometric rate Δtθ1L

Lipz, which depends on the Lipschitz condition of the driver function.
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Computational complexity The computation time of the BCOS method is linear in the num-
ber of timesteps M . For each discrete time-point tm we perform the following operations:

• Computation of ẑ(tm, x) and ĥ(tm, x) on an x-grid, in O(NQ) operations.

• Initialization of the Picard method: Computation of ŷ0(tm, x) on an x-grid, in O(NQ) oper-
ations.

• Computation of ŷP (tm, x) on an x-grid by P Picard iterations, in O(PQ) operations.

• Computation of Zk(tm) and Hk(tm) by the FFT algorithm, in O(N logN) operations.

• Computation of Fk(tm) ≈ FP−1
k (tm) by DCT (see Appendix B), in O(Q logQ) operations.

• Computation of Yk(tm) ≈ YP
k (tm), in O(N) operations.

For the approximation of the coefficients FP−1
k (tm) with a DCT we first need to compute ẑ(tm, x),

ĥ(tm, x), and ŷ0(tm, x) on an x-grid with Q ≥ N equidistant points, which is of order O(NQ).
This is the most time-consuming part of the algorithm. However, solving these functions is un-
coupled and can be computed in parallel. In total, the complexity of the BCOS algorithm is
O (M (NQ+ PQ+N logN +Q logQ+N)).

5 Numerical experiments

In this section we discuss several numerical experiments. MATLAB 7.11.0 is used for the com-
putations, with an Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz and 7.7 GB RAM. To test the
general theta-method we distinguish between four discretization schemes:

Scheme A: θ1 = 0, θ2 = 1, Scheme C: θ1 = 1, θ2 = 1,
Scheme B: θ1 = 0.5, θ2 = 1, Scheme D: θ1 = 0.5, θ2 = 0.5.

For all four schemes, z(tm, x) can be solved explicitly and y(tm, x) is solved explicitly for scheme
A and implicitly with P = 5 Picard iterations for the other schemes.

Similar as in [FO08], we prescribe a computational domain [a, b]

[a, b] = [x0 + κ1 − L
√
κ2, x0 + κ1 + L

√
κ2] , (5.1)

with cumulants κ1 = μT and κ2 = σ2T , and L = 10. Furthermore we set the number of terms
in the Fourier-cosine series expansions equal to N = 29 and Q = N grid points for the DCT. For
these values the BCOS method has converged in N to machine precision.

5.1 Example 1

The first example is taken from [WLZ09]. The underlying process is the Wiener process, i.e.
Xt = ωt. The BSDE reads

dYt = −f(t, Yt, Zt)dt+ Ztdωt, (5.2a)

f(t, Yt, Zt) = −Yt(1− Yt)(γ − Yt), (5.2b)

YT = g(XT ) = 1/ (1 + exp(−XT − T/4)) . (5.2c)

The exact solution is given by

(Yt, Zt) =
(
1/ (1 + exp(−Xt − t/4)) , exp(−Xt − t/4)/ (1 + exp(−Xt − t/4))

2
)
, (5.3)
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which gives (Y0, Z0) = (1/2, 1/4). Note that driver f(.) is nonlinear in y and does not depend on
z. We take terminal time T = 1 and γ = 3/4. For the results of the BCOS method, we refer to
Figure 5.1. We observe that the approximated value ŷ(t0, x0) converges with O(Δt) for schemes A
and C and with O((Δt)2) for schemes B and D. The approximated value ẑ(t0, x0) converges with
O((Δt)2) for scheme D and with O(Δt) for the other three schemes.

10
0

10
1

10
2

10
3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

 

 

Scheme A
Scheme B
Scheme C
Scheme D

MM

er
ro
r
Y
0

er
ro
r
Z
0

Figure 5.1: Results example 1 (N = 29), left: error ŷ(t0, x0), right: error ẑ(t0, x0).

Table 5.1 shows the CPU times, for scheme D, for different values of M and N . Each test required
less than one second. Computation of the functions ẑ(tm, x), ĥ(tm, x), and ŷ0(tm, x) on an x-grid
is the most time consuming part of the algorithm. The computation time is linear in the number
of timesteps M and O(N logN) in the number of terms in the Fourier-cosine series expansions.

M 4 8 16 32 64 128 256 512

N = 29 0.0301 0.0304 0.0412 0.0639 0.1071 0.1966 0.3736 0.7292

N 26 27 28 29

M = 256 0.0940 0.1109 0.1552 0.3736

Table 5.1: CPU time (s).

5.2 Example 2, Black-Scholes call option

In this example we compute the price v(t, St) of a call option by a BSDE where the underlying
asset follows a geometric Brownian motion,

dSt = μStdt+ σStdωt. (5.4)

The exact solution is given by the Black-Scholes price, which can be found analytically by solving
the Black-Scholes equation, with the help of the Feynman-Kac theorem for linear PDEs ([Shr04]).
For the derivation of the Black-Scholes PDE we set up a self-financing portfolio Yt with at assets
and bonds with risk-free return rate r. Markets are assumed to be complete in this model, there
are no trading restrictions, and the option can be exactly replicated by the hedging portfolio, that
is YT = max(ST −K, 0). Then, the option value at initial time should be equal to the initial value
of the portfolio. The portfolio evolves according to the SDE

dYt = r(Yt − atSt)dt+ atdSt =

(
rYt +

μ− r

σ
σatSt

)
dt+ σatStdωt. (5.5)

If we set Zt = σatSt, then (Y, Z) solves the BSDE,

dYt = −f(t, Yt, Zt)dt+ Ztdωt, (5.6a)
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f(t, Yt, Zt) = −rYt − μ− r

σ
Zt, (5.6b)

YT = max(ST −K, 0). (5.6c)

Yt corresponds to the value of the portfolio and Zt is related to the hedging strategy. In this case,
the driver function f(.) is Lipschitz continuous and linear with respect to y and z. The option
value is given by v(t, St) = Yt and σStvS(t, St) = Zt. For the tests, we use the following parameter
values

S0 = 100, K = 100, r = 0.1, μ = 0.2, σ = 0.25, T = 0.1, (5.7)

with the exact solutions Y0 = v(t0, S0) = 3.65997 and Z0 = σS0vS(t0, S0) = 14.14823. For the
numerical approximation, we switch to log-asset domain Xt = logSt, with

dXt = (μ− 1
2σ

2)dt+ σdωt. (5.8)

Results of the BCOS method for all four schemes are presented in Figure 5.2. The approximated
values ŷ(t0, x0) and ẑ(t0, x0) both converge with O(Δt) for schemes A, B, and C and with O((Δt)2)
for scheme D, as expected.
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Figure 5.2: Results example 2 (N = 29), left: error ŷ(t0, x0), right: error ẑ(t0, x0).

We would like to emphasize that solving the BSDE is done under the historical, real-world P-
measure. However, the exact Black-Scholes solution does not depend on μ. In Figure 5.3 we see
results for different values of drift μ. The convergence rates in M are the same, but a higher value
of μ gives a larger error for the same number of timesteps M . This is due to the Lipschitz constant
LLipz = max(μ−r

σ , r), which is increasing in μ.

5.3 Example 3, bid-ask spread for interest rates

For the pricing problem in the previous section, the driver f(.) was linear and the initial option value
Y0 reduced to the expectation of the discounted option payoff under the risk-neutral measure, i.e.,
the Black-Scholes price. We now consider a model introduced by Bergman [Ber95] with different
interest rates for lending and borrowing a bond. This market imperfection results in a driver
function which is nonlinear.

Suppose that an agent can invest in bonds at risk-free rate r and borrow money at rate R > r. The
amount invested at time t is equal to max(Yt−atSt, 0) and the amount borrowed is min(Yt−atSt, 0).
Then, the replication portfolio follows the following dynamics

dYt = rmax(Yt − atSt, 0)dt+Rmin(Yt − atSt, 0) + atdSt

=

(
rYt +

μ− r

σ
σatSt + (R− r)min(Yt − atSt, 0)

)
+ σatStdωt. (5.9)
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Figure 5.3: Results example 2 for different values of μ (Scheme C).

Again, with Zt = σatSt, we obtain the BSDE

dYt = −f r,R(t, Yt, Zt)dt+ Ztdωt, (5.10a)

f r,R(t, Yt, Zt) := −rYt − μ− r

σ
Zt − (R− r)min(Yt − Zt/σ, 0), (5.10b)

YT = g(ST ). (5.10c)

The driver is now a non-linear Lipschitz function and the dependence on the different return
rates is emphasized by the superscripts. The Lipschitz constant of the driver function is given by
LLipz = (R− r)/σ. The corresponding semilinear PDE for v(t, St) = Yt reads

∂v

∂t
(t, S) + Lv(t, S) + f r,R(t, v(t, S), σSDSv(t, S)) = 0, (t, S) ∈ [0, T )× R,

v(T, S) = g(S), S ∈ R. (5.11)

This semilinear PDE is solved in [FL07] by using a PDE discretization method. According to
[Gob10] the following lower bound is valid

Y r,R
t ≥ max(Y r,r

t , Y R,R
t ), ∀t ∈ [0, T ], (5.12)

where Y r1,r1
t denotes the solution with driver f r1,r2 . In other words, the option price with different

interest rates is larger than the price with fixed interest rates. For a call option it follows that
Y r,R
t = Y R,R

t , in other words, the exact solution is given by the Black-Scholes call price with
interest rate R and the BSDE becomes linear, as in Section 5.2. The authors in [BS12] examine
a combination of a long call with strike K1 = 95 and two short calls with strike K2 = 105, with
payoff function

g(S) = (S −K1)
+ − 2(S −K2)

+, (5.13)

and parameter values

S0 = 100, r = 0.01, μ = 0.05, σ = 0.2, T = 0.25. (5.14)

An analytic solution is not available then. We perform tests for borrow ratesR = 0.06 and R = 3.01
with corresponding Lipschitz constants LLipz = 0.25 and LLipz = 15, respectively. The authors
in [BS12] note that an interest rate of 301% is not relevant for financial applications, but they
propose it in order to test their algorithm under an extreme situation, as we will do.

For R = 0.06, the reference value obtained in [BS12] is Y r,R
0 = 2.96. Error results of the BCOS

method are shown in Figure 5.4. For this we used reference values Y r,R
0 = 2.9584544 and Zr,R

0 =
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0.55319, obtained with M = 10000. The approximated value ŷ(t0, x0) converges with O(Δt) for
schemes A, B, and C and approximately with O((Δt)3/2) for scheme D. The approximated value
ẑ(t0, x0) converges with O(Δt) for schemes B and C and with a higher convergence rate for schemes
A and D.

For R = 3.01, the authors of [BS12] find Y r,R
0 = 6.4. For large M the BCOS method gives the

reference values Y r,R
0 = 6.3748 and Zr,R

0 = −4.690. The results of our numerical approximations
are shown in Figure 5.5. Convergence is slower and the errors are larger compared to R = 0.06,
because the driver function has a larger Lipschitz constant. The convergence rates are not clearly
readable, however for large M the orders seem to correspond to the case with R = 0.06.

10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

Scheme A
Scheme B
Scheme C
Scheme D

MM

er
ro
r
Y
0

er
ro
r
Z
0

Figure 5.4: Results example 3, R = 0.06 (N = 29), left: error ŷ(t0, x0), right: error ẑ(t0, x0).
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Figure 5.5: Results example 3, R = 3.01 (N = 29), left: error ŷ(t0, x0), right: error ẑ(t0, x0).

6 Exponential utility maximization and utility indifference price

In a financial market with jumps or with constrained hedging strategies it is usually not possible
to perform a perfect hedge which attains exactly the option payoff as the final value, there is a
so-called replication error. If markets are not complete there are different ways to value options
([EKPQ97]), for example by

• Super-strategies are strategies with a positive replication error. The super-replicating option
price is the minimal initial investment to find a strategy that always dominates the payoff of
the option. ([EKQ95])
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• Risk-minimizing strategies, where the problem is to find a strategy with minimal variance for
the replication error. They were first introduced by Föllmer and Sondermann in [FS86].

• Utility indifference pricing, where the utility of the replication error is maximized. The
corresponding price makes an agent indifferent in terms of expected utility between selling the
option or not selling it. Utility indifference pricing was introduced by Hodges and Neuberger
in [HN89].

We focus on utility indifference pricing, which basically consists of solving two utility maximization
problems, one with and one without an option liability. In the next section we consider a general
utility maximization problem. We employ the model of Morlais in [Mor10], making use of an
exponential utility function and jumps in the asset price. The problem can be defined by a BSDE
including jumps. We refer to [REK00, Sek06, HIM05, MS05, Pha09] for the setting where asset
prices follow only a diffusion process, this model is generalized with jumps in [Bec06, Mor10].

6.1 Exponential utility maximization under jump-diffusion with option payoff

Following the notation in [Mor10], the probability space (Ω,F,P) is now equipped with two inde-
pendent stochastic processes: the standard Brownian motion ω and a real-valued Poisson point
process defined on Ω× [0, T ]×E, with E := R/{0}. We denote by N(dJ, dt) the associated Poisson
random measure whose compensator is assumed to be of the form ν(dJ)dt, where ν(dJ) stands for
the Lévy measure, which is positive and satisfies

ν({0}) = 0 and

∫
E

(1 ∧ |J |)2ν(dJ) < ∞. (6.1)

N(B, t), B ∈ R, is the number of jumps with size in set B which occur before or at time t and
ν(B) counts the expected number of jumps is a unit time interval. F is the completed filtration
generated by both processes ω and N . The so-called compensated Poisson random measure, Ñ , is
given by

Ñ(dJ, dt) = N(dJ, dt)− ν(dJ)dt. (6.2)

The asset price is supposed to follow the following jump-diffusion process,

dSt/St− = b(t)dt+ σ(t)dωt +

∫
E

β(t, J)Ñ (dJ, dt), (6.3)

St− represents the value of the asset just before a possible jump occurs. The jumps may model
the occurrence of, for example, market crashes or default losses. A writer sells a bounded FT -
measurable option payoff ξ = g(ST ) at time t = 0. He is endowed with some initial capital w
and then invests αt, t ∈ [0, T ] of his portfolio Wα

t in assets, where the superscript emphasized
the dependence on α. The remaining part is invested in a risk-free opportunity with zero rate of
return, i.e., r = 0. The dynamics of his self-financing portfolio read

Wα
0 = w, dWα

t = αt
dSt

St−
= αtb(t)dt+ αtσ(t)dωt + αt

∫
E

β(t, J)Ñ(dJ, dt). (6.4)

At terminal time T there is an uncertain claim ξ and the agent is able to reduce the risk by his
trading strategy. The attitude of the agent towards possible profits and losses is measured by an
exponential utility,

U(x) = − exp(−ηx), η > 0. (6.5)

The utility function is monotonically increasing and concave; η is the coefficient of absolute risk
aversion and represents the degree of risk aversion. A higher value of η corresponds to a higher
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level of risk aversion. Figure 6.1 shows the utility function for different values of η. A negative
amount of final wealth has a higher weight than a positive amount, in other words, more weight
is given to unfavourable losses. η = 0 corresponds to risk neutrality and η = ∞ to absolute risk
aversion.

The agent wants to maximize his expected utility at time T and his objective function now reads

V (w) = max
α∈A

E [U(Wα
T − ξ)] = max

α∈A
E

[
U

(
w +

∫ T

0

αt
dSt

St−
− ξ

)]
, (6.6)

where we maximize over the investment opportunities α in the constraint set A with admissible
strategies. Possible trading strategies may be restricted, for example a writer may be forced not
to hold a negative amount of assets. For the tests in Section 7 we will take A = [αmin, αmax].
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Figure 6.1: Utility function U(x) = − exp(−ηx) for different values of η.

The objective function can also be characterized by a backward stochastic differential equation
with jumps (BSDEJ), as follows

V (w) = U(w − Y0) = −e−ηweηY0 , (6.7)

where (Y, Z, U) is the solution to a BSDEJ, given by ([Mor10])

dYt = −f(t, Zt, Ut)dt+ Ztdωt +

∫
E

Ut(J)Ñ(dJ, dt), YT = ξ, (6.8a)

f(t, z, u) = −z
b(t)

σ(t)
− 1

2η

∣∣∣ b(t)
σ(t)

∣∣∣2 + min
α∈A

[
η

2

(
ασ(t) −

(
z +

1

η

b(t)

σ(t)

))2

+ |u(.)− αβ(t, .)|η
]
,

(6.8b)

|u(.)|η =

∫
E

exp(ηu(J)) − ηu(J)− 1

η
ν(dJ), (6.8c)

The solution of the above BSDEJ consists of a triplet of processes (Y, Z, U) in S∞(R) × L2(ω) ×
L2(Ñ) 2. Existence and uniqueness results for this BSDEJ are provided in [Mor10]. For more
information about existence and uniqueness for BSDEJs, we refer to [TL94, BBP97, Roy06]. Fur-
thermore, there exists an optimal predictable strategy α∗

t ∈ A that attains the minimum in (6.8b)
for (t, z, u) = (t, Zt, Ut).

2Following [Mor10], S∞(R) is the set of all adapted processes Y with càdlàg paths such that

supΩ(supt∈[0,T ] |Yt|) < ∞. L2(ω) is the set of all predictable processes Z such that E[
∫ T
0 |Zs|2ds] < ∞ L2(Ñ)

is the set of all P ⊗B(E)-measurable processes U such that E[
∫ T
0

∫
E |Us(J)|2ν(dJ)ds] < ∞. P stands for the σ-field

of all predictable sets of [0, T ]× Ω and B(E) the Borel field of E.
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6.2 Utility indifference price

Now we start with the utility indifference price, where the idea is the following. The writer of an
option receives the option premium and hedges the option with an optimal strategy that maximizes
the utility of the portfolio value at the terminal time minus the payoff. We also determine the
expected utility without the option trade. The utility indifference price of the option is defined
as the additional initial wealth with which the writer can achieve the same utility as without the
option.

Let u0(w) denote the utility maximization value without the option payoff

u0(w) = max
αt∈A

E [U (Wα
T )] , (6.9)

and uξ(w) denotes the utility maximization value in presence of the option,

uξ(w) = max
αt∈A

E [U (Wα
T − ξ)] . (6.10)

The seller’s indifference price (ask price) va satisfies

u0(w) = uξ(w + va). (6.11)

In other words, it is the price at which a writer is indifferent, in the sense that the expected utility
under optimal trading remains the same, between selling the option for price va and not selling
any option. We need to solve for va and with the theory in Section 6.1 we find

U(w − Y 0
0 ) = U(w + va − Y ξ

0 ) =⇒ va = Y ξ
0 − Y 0

0 , (6.12)

where Y 0
t and Y ξ

t follow BSDEJ (6.8) with terminal conditions YT = 0 and YT = ξ, respec-
tively. With this we can value an option under jump-diffusion and when the trading strategies are
constraint, for example A = [αmin, αmax], with the help of BSDEJs.

The buyer’s indifference price (bid price) vb is defined in a similar way and satisfies

u0(w) = u−ξ(w − vb). (6.13)

Again with the BSDE approach we find

U(w − Y 0
0 ) = U(w − vb − Y −ξ

0 ) =⇒ vb = Y 0
0 − Y −ξ

0 . (6.14)

Below is a list of properties of utility indifference prices (see, for example, [HH09, REK00]). We
here denote by v(η, ξ) the option price with coefficient of absolute risk aversion η and option ξ.

• Prices vb and va are independent of initial wealth w.

• Bid and ask prices are related via vb(η, ξ) = −va(η,−ξ).

• The ask price is larger than the bid price: va ≥ vb.

• If the market is complete, i.e. there are no jumps and A = R, then the option is perfectly
replicable. The driver function reduces to f(t, y, z) = −z b

σ− 1
2η | bσ |2 and the utility indifference

prices reduce to the Black-Scholes price.

• Convexity: va(η, ρξ1 + (1− ρ)ξ2) ≤ ρva(η, ξ1) + (1− ρ)va(η, ξ2), ρ ∈ (0, 1).

• Concavity: vb(η, ρξ1 + (1− ρ)ξ2) ≥ ρvb(η, ξ1) + (1− ρ)vb(η, ξ2), ρ ∈ (0, 1).
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6.3 Discretization and BCOS method for BSDEJs

In this section, we explain the BCOS method to solve BSDEJ (6.8). We suppose that the asset
price follows the following FSDE:

dSt/St− = bdt+ σdωt +

∫
E

β(J)Ñ (dJ, dt), with β(J) = eJ − 1. (6.15)

Moreover, E is assumed to be a finite set, E = {j1, j2, . . . jnj}, with Lévy measure ν({j�}) = λp�,
where λ = ν(R) is the intensity rate. In other words, p� is the probability of jump size j� and
ν(dJ) = λ

∑nj

�=1 p�δj�(dJ). So,∫
E

β(J)Ñ (dJ, dt) =

nj∑
�=1

β(j�)Ñ({j�}, dt). (6.16)

We define μ := b− ∫
E
β(J)ν(dJ) and switch to the log-asset domain Xt = logSt, i.e.,

dXt =

(
μ− 1

2σ
2 +

∫
E

Jν(dJ)

)
dt+ σdωt +

∫
E

JÑ(dJ, dt). (6.17)

The Euler discretization of the FSDE (6.17) reads

XΔ
m+1 = XΔ

m +

(
μ− 1

2σ
2 +

∫
E

Jν(dJ)

)
Δt+ σΔωm +

∫
E

JÑ(dJ,Δt), (6.18)

where we defined Ñ(dJ,Δt) := Ñ(dJ, (tm, tm+1]) = Ñ(dJ, tm+1) − Ñ(dJ, tm). The characteristic
function of XΔ

m+1, given XΔ
m = x, reads

ϕ(u|x) = ϕ(u|0)eiux = φ(u)eiux, with

φ(u) := exp
(
iu(μ− 1

2σ
2)Δt− 1

2u
2σ2Δt

)
eλΔt(ϕJ(u)−1), ϕJ (u) =

nj∑
�=1

p�e
iuj� . (6.19)

For the discretization of the BSDEJ, we start from

Ym = Ym+1 +

∫ tm+1

tm

f(s, Zs, Us)ds−
∫ tm+1

tm

Zsdωs −
∫ tm+1

tm

∫
E

Us(J)Ñ (dJ, ds). (6.20)

Both processes ω and Ñ are independent. Taking conditional expectations of both sides of (6.20)
and applying the theta-method results, similar as equation (3.5), in

Ym ≈ Em[Ym+1] + Δtθ1f(tm, Zm, Um) + Δt(1 − θ1)Em[f(tm+1, Zm+1, Um+1)], θ1 ∈ [0, 1]. (6.21)

Multiplying both sides of equation (6.20) by Δωm and taking conditional expectations gives us,
similar as equation (3.6),

0 ≈ Em[Ym+1Δωm] + Δt(1 − θ2)Em[f(tm+1, Zm+1, Um+1)Δωm]

−Δtθ2Zm −Δt(1− θ2)Em[Zm+1], θ2 ∈ [0, 1]. (6.22)

Multiplying both sides of equation (6.20) by Ñ({j�},Δt) and taking conditional expectations gives

0 = Em[Ym+1Ñ({j�},Δt)] +

∫ tm+1

tm

Em

[
f(s, Zs, Us)Ñ({j�}, s− tm)

]
ds−

∫ tm+1

tm

p�λEm [Us(j�)] ds,

(6.23)
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where we used the Itô isometry for

Em

[∫ tm+1

tm

∫
E

Us(J)Ñ(dJ, ds)Ñ ({j�},Δt)

]
= Em

[∫ tm+1

tm

p�λUs(j�)ds

]
. (6.24)

By the theta-discretization we get

0 ≈ Em[Ym+1Ñ({j�},Δt)] + Δt(1 − θ3)Em[f(tm+1, Zm+1, Um+1)Ñ({j�},Δt)]

− p�λΔtθ3Um(j�)− p�λΔt(1 − θ3)Em[Um+1(j�)], θ3 ∈ [0, 1], for � = 1, . . . , nj . (6.25)

The above equations lead to a time discretization (Y Δ, ZΔ, UΔ) for (Y, Z, U), as follows

Y Δ
M = g(XΔ

M ), (6.26a)

for m = M − 1, . . . , 0 :

ZΔ
m = −θ−1

2 (1− θ2)Em[ZΔ
m+1] +

1
Δtθ

−1
2 Em[Y Δ

m+1Δωm]

+ θ−1
2 (1− θ2)Em[f(tm+1, Z

Δ
m+1, U

Δ
m+1)Δωm], (6.26b)

UΔ
m(j�) = −θ−1

3 (1− θ3)Em[UΔ
m+1(j�)] +

1
p�λΔtθ

−1
3 Em[Y Δ

m+1Ñ({j�},Δt)]

+ 1
p�λ

θ−1
3 (1− θ3)Em[f(tm+1, Z

Δ
m+1, U

Δ
m+1)Ñ({j�},Δt)], � = 1, . . . , nj (6.26c)

Y Δ
m = Em[Y Δ

m+1] + Δtθ1f(tm, ZΔ
m, UΔ

m) + Δt(1 − θ1)Em[f(tm+1, Z
Δ
m+1, U

Δ
m+1)]. (6.26d)

As the terminal condition is a deterministic function of XΔ
M and because XΔ is a Markov process,

it is easily seen that there are deterministic functions y(tm, x), z(tm, x), and u(tm, x, j�) so that

Y Δ
m = y(tm, XΔ

m), ZΔ
m = z(tm, XΔ

m), UΔ
m(j�) = u(tm, XΔ

m, j�), � = 1, . . . , nj . (6.27)

So, the random variables Y Δ
m , ZΔ

m, and UΔ
m(j�) are functions of XΔ

m, for each m = 0, . . . ,M . The
functions y(tm, x), z(tm, x), and u(tm, x, j�) are obtained in a backward manner, by means of

y(tM , x) = g(x), (6.28a)

for m = M − 1, . . . , 0 :

z(tm, x) = −θ−1
2 (1 − θ2)E

x
m[z(tm+1, X

Δ
m+1)] +

1
Δtθ

−1
2 E

x
m[y(tm+1, X

Δ
m+1)Δωm]

+ θ−1
2 (1− θ2)E

x
m[f(tm+1, z(tm+1, X

Δ
m+1), u(tm+1, X

Δ
m+1, (.)))Δωm], (6.28b)

u(tm, x, j�) = −θ−1
3 (1 − θ3)E

x
m[u(tm+1, X

Δ
m+1, j�)] +

1
p�λΔtθ

−1
3 E

x
m[y(tm+1, X

Δ
m+1)Ñ({j�},Δt)]

+ 1
p�λ

θ−1
3 (1− θ3)E

x
m[f(tm+1, z(tm+1, X

Δ
m+1), u(tm+1, X

Δ
m+1, (.)))Ñ({j�},Δt)],

� = 1, . . . , nj (6.28c)

y(tm, x) = E
x
m[y(tm+1, X

Δ
m+1)] + Δtθ1f(tm, z(tm, x), u(tm, x, (.)))

+ Δt(1 − θ1)E
x
m[f(tm+1, z(tm+1, X

Δ
m+1), u(tm+1, X

Δ
m+1, (.)))]. (6.28d)

Similar as in Section 4, the Fourier-cosine coefficients of the functions z(tm, x),
f(tm, y(tm, x), z(tm, x), u(tm, x, .)), and y(tm, x) are denoted by Zk(tm), Fk(tm), and Yk(tm),
respectively. Let U�

k(tm) be the Fourier-cosine coefficients of u(tm, x, j�), i.e.,

U�
k(tm) =

2

b− a

∫ b

a

u(tm, x, j�) cos

(
kπ

x− a

b− a

)
dx, � = 1, . . . , nj . (6.29)
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We obtain the following COS formulas to approximate the conditional expectations in equation
(6.28c), see Appendix A.2 for details,

E
x
m[UΔ

m+1(j�)] ≈
N−1∑′

k=0

U�
k(tm+1)�

(
φ

(
kπ

b− a

)
eikπ

x−a
b−a

)
, (6.30a)

E
x
m

[
Y Δ
m+1Ñ({j�},Δt)

]
≈

N−1∑′

k=0

Yk(tm+1)�
{
φ

(
kπ

b− a

)
eikπ

x−a
b−a p�λΔt

[
exp

(
i
kπj�
b− a

)
− 1

]}
,

(6.30b)

E
x
m

[
f(tm+1, Z

Δ
m+1, U

Δ
m+1)Ñ({j�},Δt)

]
≈

N−1∑′

k=0

Fk(tm+1)�
{
φ

(
kπ

b− a

)
eikπ

x−a
b−a p�λΔt

[
exp

(
i
kπj�
b− a

)
− 1

]}
.

(6.30c)

Furthermore we use the COS formulas (4.16a), (4.16b), (4.16c), (4.18a), and (4.18b) from Section
4.2 and 4.3, obtained with the equality in Appendix A.1, to find

z(tm, x) ≈ −1− θ2
θ2

b− a

2

N−1∑′

k=0

Zk(tm+1)Φk(x) +
1

Δtθ2

b− a

2

N−1∑′

k=0

Yk(tm+1)σΔt
dΦk(x)

dx

+
1− θ2
θ2

b− a

2

N−1∑′

k=0

Fk(tm+1)σΔt
dΦk(x)

dx
, (6.31a)

u(tm, x, j�) ≈ −1− θ3
θ3

b− a

2

N−1∑′

k=0

U�
k(tm+1)Φk(x) +

1

Δtθ3

b− a

2

N−1∑′

k=0

Yk(tm+1)

[
exp

(
i
kπj�
b− a

)
− 1

]
Φk(x)

+
1− θ3
θ3

b− a

2

N−1∑′

k=0

Fk(tm+1)

[
exp

(
i
kπj�
b− a

)
− 1

]
Φk(x), (6.31b)

y(tm, x) ≈ b− a

2

N−1∑′

k=0

Yk(tm+1)Φk(x) + Δtθ1f(tm, z(tm, x), u(tm, x, .))

+ Δt(1 − θ1)
b− a

2

N−1∑′

k=0

Fk(tm+1)Φk(x). (6.31c)

The coefficients Zk(tm), Fk(tm), and Yk(tm) are recovered in a similar way as explained in Section
4.4. The computation of the Fourier-cosine coefficients U�

k(tm) of function u(tm, x, j�) can be
decomposed into three parts

2

b− a

∫ b

a

E
x
m[UΔ

m+1(j�)] cos

(
kπ

x− a

b− a

)
dx ≈ �

⎛
⎝N−1∑′

j=0

U�
j (tm+1)φ

(
jπ

b− a

)
Mk,j

⎞
⎠ , (6.32a)

2

b− a

∫ b

a

E
x
m[Y Δ

m+1N({j�},Δt)] cos

(
kπ

x− a

b− a

)
dx

≈ �
⎛
⎝N−1∑′

j=0

p�λΔt

[
exp

(
i
kπj�
b− a

)
− 1

]
Yj(tm+1)φ

(
jπ

b− a

)
Mk,j

⎞
⎠ , (6.32b)

2

b− a

∫ b

a

E
x
m[f(tm+1, Z

Δ
m+1, U

Δ
m+1)N({j�},Δt)] cos

(
kπ

x− a

b− a

)
dx
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≈ �
⎛
⎝N−1∑′

j=0

p�λΔt

[
exp

(
i
kπj�
b− a

)
− 1

]
Fj(tm+1)φ

(
jπ

b− a

)
Mk,j

⎞
⎠ , (6.32c)

In summary, this results in

U�
k(tm) ≈ �

(N−1∑′

j=0

[
− 1− θ3

θ3
U�
j (tm+1)φ

(
jπ

b− a

)
+

1

Δtθ3
Δt

[
exp

(
i
kπj�
b− a

)
− 1

]
Yj(tm+1)φ

(
jπ

b− a

)

+
1− θ3
θ3

Δt

[
exp

(
i
kπj�
b− a

)
− 1

]
Fj(tm+1)φ

(
jπ

b− a

)]
Mk,j

)
. (6.33)

With the above equations we can recover the Fourier-cosine coefficients recursively and solve the
BSDEJ backwards in time.

6.4 Reference values

We first explain briefly how we can use the original COS method, in a completely different way, to
obtain reference values for the numerical tests in Section 7. The utility maximization problem,

V (w) = max
αt∈A

E [U(Wα
T − g(ST ))] , (6.34)

is a two-dimensional stochastic control problem with the following underlying processes

dSt/St− = bdt+ σdωt +

∫
E

β(J)Ñ(dJ, dt), (6.35)

dWα
t = αtbdt+ αtσdωt + αt

∫
E

β(J)Ñ (dJ, dt). (6.36)

We can solve this problem by the 2D-COS method. This method was developed in [RO12] for
pricing rainbow options, for which the payoff depends on two or more asset price processes, and
can also be applied to stochastic control problems.

If it is not possible to invest in assets and to hedge the risky option, i.e. αt = 0, ∀t ∈ [0, T ], then
the portfolio value Wα

t = w is constant and the problem reduces to

V (w) = E [U(w − g(ST ))] = −e−ηw
E

[
eηg(ST )

]
. (6.37)

We can approximate this one-dimensional expectation by using the one-dimensional COS formula
from [FO08].

7 Numerical experiments BSDEJ

In this section we use the BCOS method to value a put option under jump-diffusion asset prices
by using utility indifference pricing, as explained in Section 6.2. For the numerical tests, we use
the following parameter values

S0 = 1, K = 1, b = 0.1779, σ = 0.2, T = 0.1. (7.1)

The jumps occurring are assumed to be bivariate distributed with possible jump sizes j1 and j2,
with

j1 = −0.1338, j2 = −0.9838, p1 = p2 = 0.5, λ = 0.0228, (7.2)
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so that the expected value is−0.5588 and the standard deviation is 0.4250. These values correspond
to the real-world P-measure for the jump-diffusion asset price in [KFV09].

Similar as in [FO08], we choose the computational domain

[a, b] =

[
x0 + κ1 − L

√
κ2 +

√
κ4, x0 + κ1 + L

√
κ2 +

√
κ4

]
, L ∈ [12]. (7.3)

The cumulants κ1, κ2, and κ4 of the Brownian motion and the Merton jump-diffusion process
are, for example, given in [FO08]. Again we set the number of terms in the Fourier-cosine series
expansions equal to N = 29 and Q = N grid points for the DCT.

We distinguish between three theta-discretization schemes:

Scheme E: θ1 = 1, θ2 = 1, θ3 = 1,
Scheme F: θ1 = 0.5, θ2 = 1, θ3 = 1,
Scheme G: θ1 = 0.5, θ2 = 0.5, θ3 = 0.5.

For solving equations (6.28) in the first time iteration, m = M − 1, we set θ1 = θ2 = θ3 = 1,
because the driver function f(.) depends on the unprescribed values z(tM , x) and u(tM , x, .).

No hedge We start with the setting where is it not possible to invest in assets and to hedge the
risky option, i.e. αt = 0, ∀t ∈ [0, T ]. In Figure 7.1 results of the BCOS method are shown. The

left-side plot shows the initial values of the BSDEs, Y ξ
0 , Y

−ξ
0 , and Y 0

0 , for different values of η, and
the right-side plots gives the bid and ask prices. The dots are the values obtained by the BCOS
method, while the circles give the reference value obtained by the COS method as described in
Section 6.4. The approximated values are equal.
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Figure 7.1: Results Y0 and utility indifference prices (Scheme G, N = 29, M = 64).

Restricted hedging strategy For the second test we assume that the set of admissible strate-
gies is given by A = [−15, 15]. In other words, a maximum of 15 Euro is used to buy or sell
assets. We use the Newton’s method to find the optimal strategy in equation (6.8b). Figure
7.2 presents the results of the BCOS method. The reference values (circles) are obtained by the
2D-COS method.

Convergence in M For the last test we investigate the convergence of the error in the number
of timesteps M for η = 1 and with terminal conditions ξ and −ξ. Reference values are obtained
by choosing a high number of timesteps M . The approximated value ŷ(t0, x0) converges with
O(Δt) for schemes E and F and with O((Δt)2) for scheme G, as expected. The values ẑ(t0, x0),
û(t0, x0, j1), and û(t0, x0, j2) converge with O(Δt) for all three schemes. Again the scheme with
θi = 1/2, i = 1, 2, 3 gives the best convergence rate. The CPU times for different values of N and
M are shown in Table 7.1.
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Figure 7.2: Results Y0 and utility indifference prices (Scheme G, N = 29, M = 64).
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lower left: error û(t0, x0, j1), lower right: error û(t0, x0, j2).

M 4 8 16 32 64 128 256 512

N = 29 0.0694 0.1086 0.1908 0.3358 0.6428 1.2555 2.4931 4.9387

N 26 27 28 29

M = 256 0.7897 1.0745 1.5204 2.4931

Table 7.1: CPU time (s).

8 Conclusion

In this paper we proposed a probabilistic numerical method for solving backward stochastic differ-
ential equations (BSDEs). The first step consists of discretizing the BSDE by taking conditional
expectations and applying a general theta-discretization for the time-integrals. Then, the BCOS
method solves the problem backwards in time by approximating the conditional expectations with
the help of COS formulas. The Fourier-cosine coefficients are recovered recursively in an efficient
way by using discrete Fourier-cosine transforms and an FFT algorithm.

Numerical tests demonstrate the applicability of the BCOS method for BSDEs in economic and
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financial problems. In the tests we observed different convergence results for Z0 and Y0. The
convergence of the error in the number of timesteps depends on the smoothness and Lipschitz
constant of the driver function and the terminal condition. In general, we achieve the highest
convergence rate for the theta-scheme with θ1 = θ2 = 1

2 .

Utility indifference pricing is used to value options in an incomplete market under a jump-diffusion
asset price process, possibly with a restricted hedging portfolio. The bid and ask prices are rep-
resented by BSDEs with jumps. We extended our BCOS method to solving these BSDEJs under
jump-diffusion with a finite number of jump sizes. Numerical experiments show highly satisfac-
torily and efficient pricing results. The theta-scheme with θ1 = θ2 = θ3 = 1

2 gives the fastest
convergence.

Appendix

A COS formulas

In this section we explain how to approximate several conditional expectations under the discrete
process

XΔ
m+1 = XΔ

m + μΔt+ σΔωm+1 +

∫
E

JN(dJ,Δt), (A.1)

with characteristic function

ϕ(u|x) = ϕ(u|0)eiux = φ(u)eiux, with

φ(u) := exp
(
iuμΔt− 1

2u
2σ2Δt

)
eλΔt(ϕJ(u)−1), (A.2)

where ϕJ (.) denotes the characteristic function of jump size J . We define uk := kπ
b−a .

A.1 Computation of expectation E
x
m [·Δωm]

For equations (4.12), (4.16b), and (4.16c) we need to compute the expectation

E
x
m

[
cos

(
uk(X

Δ
m+1 − a)

)
Δωm

]
= � (Ex

m

[
exp

(
iuk(X

Δ
m+1 − a)

)
Δωm

])
= �

(
E
x
m

[
exp

(
iuk(x+ μΔt+ σΔωm+1 +

∫
E

JN(dJ,Δt)− a)

)
Δωm+1

])

= �
(

1√
2π

√
Δt

∫
R

exp

(
iuk(x+ μΔt+ σθ +

∫
E

JN(dJ,Δt)− a)

)
θe

− 1
2

(
θ√
Δt

)2

dθ

)
. (A.3)

Integration by parts gives us

E
x
m

[
cos

(
uk(X

Δ
m+1 − a)

)
Δωm

]
= �

(
iukσΔt

1√
2π

√
Δt

∫
R

exp

(
iuk(x+ μΔt+ σθ +

∫
E

JN(dJ,Δt)− a)

)
e
− 1

2

(
θ√
Δt

)2

dθ

)

= σΔt�
(
E
x
m

[
iuk exp

(
iuk(x+ μΔt+ σΔωm +

∫
E

JN(dJ,Δt)− a)

)])

= σΔt�
(
iukφ (uk) e

iuk(x−a)
)
. (A.4)

The derivation for diffusion processes can be found by omitting the jump part in the derivation.
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A.2 Computation of expectation E
x
m

[
· Ñ({j�},Δt)

]

Equation (6.30b), and similarly equation (6.30c), require the computation of

E
x
m

[
Y Δ
m+1Ñ({j�},Δt)

]
= E

x
m

[
Y Δ
m+1N({j�},Δt)

]− E
x
m

[
Y Δ
m+1

]
ν({j�})Δt. (A.5)

The second part in (A.5) can be written as

E
x
m

[
Y Δ
m+1N({j�},Δt)

] ≈ N−1∑′

k=0

Yk(tm+1)�
(
E
x
m

[
N({j�},Δt) exp

(
iuk(X

Δ
m+1 − a)

)])
, (A.6)

with

E
x
m

[
N({j�},Δt) exp

(
iuk(X

Δ
m+1 − a)

)]
= E

x
m [exp (iuk(x + μΔt+ σΔωm − a))]Ex

m

[
N({j�},Δt) exp

(
iuk

∫
E

JN(dJ,Δt)

)]
. (A.7)

Now let τq, q = 1, 2, . . . , NΔt denote the jump times between tm and tm+1, with jump sizes Jτq .
Then, we find by the law of iterated expectations the following equality

E

[
N({j�},Δt) exp

(
iuk

∫
E

JN(dJ,Δt)

)]
= E

[
NΔt∑
q=1

Ij�(Jτq ) exp

(
iuk

NΔt∑
q=1

Jτq

)]

= E

[
E

[
NΔt∑
q=1

Ij�(Jτq ) exp

(
iuk

NΔt∑
q=1

Jτq

)∣∣∣NΔt

]]

=

∞∑
n=0

e−λΔt (λΔt)n

n!
E

[
n∑

q=1

Ij�(Jτq ) exp

(
iuk

n∑
q=1

Jτq

)]

=
∞∑

n=0

e−λΔt (λΔt)n

n!
np�e

iukj� (ϕJ (uk))
n−1

= eiukj�p�λΔteλΔt(ϕJ (uk)−1). (A.8)

We end up with the approximation

E
x
m

[
Y Δ
m+1Ñ({j�},Δt)

]
≈

N−1∑′

k=0

Yk(tm+1)�
(
φ(uk)e

iuk(x−a) [exp (iukj)− 1] p�λΔt
)
. (A.9)

B Discrete Fourier-cosine Transform

In this section, we explain the idea of using discrete Fourier-cosine transforms (DCTs) to approx-
imate the Fourier-cosine coefficients Fk of function f(x), i.e.,

Fk =
2

b− a

∫ b

a

f(x) cos

(
kπ

x− a

b− a

)
dx. (B.1)

For this, we take Q ≥ N grid-points and define

xn := a+ (n+ 1
2 )

b− a

Q
and Δx :=

b− a

Q
. (B.2)
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We determine the value of function f(x) on the grid-points. The midpoint-rule integration gives
us

Fk ≈
Q−1∑
n=0

2

b− a
f(xn) cos

(
kπ

xn − a

b− a

)
Δx

=

Q−1∑
n=0

f(xn) cos

(
kπ

2n+ 1

2Q

)
2

Q
. (B.3)

The above DCT (Type II) can be calculated efficiently by, for example, MATLAB’s function dct.
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