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Abstract

We develop an efficient Fourier-based numerical method for pricing
Bermudan and discretely monitored barrier options under the Heston
stochastic volatility model. The two-dimensional pricing problem is dealt
with by a combination of a Fourier cosine series expansion, as in [9, 10],
and high-order quadrature rules in the other dimension. Error analysis
and experiments confirm a fast error convergence.

1 Introduction

In Mathematical Finance, stochastic volatility models have been developed to
capture the volatility smiles and skews present in market quotes. Within this
class, the Heston stochastic volatility model [13], in which the variance of (the
logarithm of) the stock price is modeled by a square-root process, has become
popular in industrial practice. The pricing of European options is particularly
efficient.

Pricing European options starts from the risk-neutral valuation formula,
which appears as an integration of the product of a probability density and a
payoff function. The integration is either performed by numerical integration
rules, which involve the Fast Fourier Transform (FFT) algorithm to speed up
the computation (a particular example is the Carr-Madan method [7]), or by
advanced alternatives, like methods based on series expansions (such as the
Fourier cosine expansion based COS method [9]).

All these methods require the availability of the characteristic function (ChF),
i.e., the Fourier transform of the probability density function of the underlying
stock price. Since the ChF of Heston’s model has already been given in the orig-
inal paper [13], fast and accurate valuation tools for European options under
Heston’s model are available.

Many exotic financial products include some form of path dependency. Monte
Carlo simulation methods are often used for the valuation of such products in
practice. As a result, the recent numerical advances in the context of Heston’s
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model were obtained mainly for Monte Carlo simulation methods [6, 4]. How-
ever, it is well-known that the development of efficient simulation methods for
pricing problems with early exercise features, as they are encountered for ex-
ample when pricing Bermudan or discretely-monitored barrier options, is not a
trivial task.

In this paper we aim to develop a stable and efficient Fourier-based valua-
tion method that can price both Bermudan and discrete-barrier options under
the Heston stochastic volatility dynamics. It is in essence a generalization of
the COS [9, 10] method, which is an efficient option pricing method for (one-
dimensional) Lévy processes, to the (two-dimensional) Heston model. The fol-
lowing three issues, however, make this topic challenging:

- Near-singular behavior of the probability density of the variance:

The variance in the Heston model is governed by a non-central chi-square
distribution. For some combinations of the relevant parameters, the den-
sity of the variance grows drastically in the left-side tail, i.e. the density
values tend to infinitely large numbers as the variance approaches zero.
Truncation of the integration range for the variance may then easily in-
troduce significant truncation errors.

- The integration kernel is not known explicitly:

For path-dependent options, the pricing formula requires a two-dimensional
integration over the log-stock price and the variance. The probability den-
sity function of the joint distribution is, however, not known in closed-form
and has to be recovered from the ChF.

- Quadratic computational complexity:

In numerical analysis, highest computational speed is often related to lin-
ear computational complexity, which means that the computational time
grows only linearly w.r.t. an increasing number of unknowns, and/or ex-
ponential error convergence, i.e., the error decreases exponentially with a
growing number of unknowns.

A direct application of basic numerical integration rules for options with
early exercise features under Heston’s model would result in quadratic
computational complexity in both dimensions and would therefore cost a
significant amount of CPU time.

The contributions of the present paper are the following. We determine
parameters sets for which the near-singular behavior matters, and tackle the
problem by a transformation from the variance domain to the log-variance do-
main. Secondly, to solve the two-dimensional problem in a robust and efficient
manner, we combine the Fourier cosine expansion from [10] with quadrature
rules.

The paper is organized as follows. In Section 2, we describe the Heston
asset dynamics. We focus on the issue of the left-side tail of the variance den-
sity. In Section 3, the discrete pricing formula for Bermudan options is derived
and an efficient recursive algorithm is developed. Minor differences when pric-
ing discrete-barrier options are highlighted in Section 4. In Section 5 the error
convergence and the error propagation are analyzed. Various numerical experi-
ments are presented in Section 6, and conclusions are drawn in Section 7.
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2 Heston Model Details

In this section we give some insight in the Heston model. After some known
results from the literature, we focus, in particular, on the near-singular behavior
of the variance process near the origin. By means of several numerical experi-
ments, we find the relevant parameter sets giving rise to this phenomenon, and
propose a transformation to deal with it when pricing options.

2.1 Heston Model Basics

The Heston stochastic volatility model defines the dynamics of the logarithm of
the stock price (log-stock), xt, and the variance, νt, by the following stochastic
differential equations (SDEs) [13]:

dxt =

(

µ− 1

2
νt

)

dt+ ρ
√
νtdW1,t +

√

1 − ρ2
√
νtdW2,t (1)

dνt = λ (ν̄ − νt) dt+ η
√
νtdW1,t, (2)

where the three non-negative parameters, λ, ν̄ and η, represent the speed of
mean reversion, the mean level of variance, and the volatility of the volatility
process, respectively. The Brownian motions, W1,t and W2,t, are independent
and ρ is the correlation between the log-stock and the variance processes.

The square-root process defined in (2) precludes negative values for νt, and
if νt reaches zero it can subsequently become positive. The Feller condition,
2λν̄ ≥ η2, guarantees that νt stays positive; otherwise, it may reach zero. As
indicated in [12, 8], with

q := 2λv̄/η2 − 1 and ζ := 2λ/
(

(1 − e−λ(t−s))η2
)

,

the process 2ζνt ∼ χ2
(

q, 2ζνse
−λ(t−s)

)

, for 0 < s < t, is governed by the
non-central chi-square distribution with degree q and non-centrality parameter
2ζνse

−λ(t−s). Therefore, the probability density function of νt given νs reads

pν (νt|νs) = ζe−ζ(νse−λ(t−s)+νt)

(

νt

νse−λ(t−s)

)

q
2

Iq

(

2ζe−
1
2λ(t−s)√νsνt

)

, (3)

where Iq(·) is the modified Bessel function of the first kind with order q.
The Feller condition is thus equivalent to “q ≥ 0”. This is difficult to satisfy

in practice. It has, for example, been reported [4] that one often finds 2λv̄ << η2

from market data, in which case the cumulative distribution of the variance
shows a near-singular behavior near the origin, or, in other words, the left tail
of the variance density grows extremely fast in value.

Such a behavior in the left tail may easily give rise to significant errors, es-
pecially for integration-based option pricing methods, for which the integration
range needs to be truncated.

A lot of recent research effort has been put in the development of efficient
Monte Carlo methods, based on exact path simulation and moment matching,
for the Heston dynamics. This has brought important insights, in particular in
the underlying distributions that we will briefly review here.
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The exact simulation method, developed in Broadie and Kaya [6], provides,
next to an exact formula to sample the log-stock price, insight in the distribution
for stochastic volatility models. Integration of (1) and (2) yields [6]:

xt − xs = µ(t− s) − 1

2

∫ t

s

ντdτ + ρ

∫ t

s

√
ντdW1,τ +

√

1 − ρ2

∫ t

s

√
ντdW2,τ , (4)

νt − νs = λν̄(t− s) − λ

∫ t

s

ντdτ + η

∫ t

s

√
ντdW1,τ . (5)

Equation (5) can be rewritten as an equation for
∫ t

s

√
ντdW1,τ , which, substi-

tuted in (4), gives the following exact formula for xt:

xt − xs = µ(t− s) +
ρ

η
(νt − νs − λν̄(t− s)) +

(

λρ

η
− 1

2

)
∫ t

s

ντdτ

+
√

1 − ρ2

∫ t

s

√
ντdW2,τ . (6)

Equation (6) can be used to sample xt, once the values of the variance, νt,

and the time-integrated variance,
∫ t

s
ντdτ , are available. The variance is then

sampled from (an approximation of) the non-central chi-square distribution, and
the time-integrated variance is sampled from a distribution which is recovered
from the ChF, Φ(u; νt, νs), for which a closed-form expression is available:

Φ(υ; νt, νs) := E

[

exp

(

iυ

∫ t

s

ντdτ

)∣

∣

∣

∣

νt, νs

]

=

Iq

[

√
νtνs

4γ(υ)e−
1
2 γ(υ)(t−s)

η2(1 − e−γ(υ)(t−s))

]

Iq

[

√
νtνs

4λe−
1
2 λ(t−s)

η2(1 − e−λ(t−s))

] · γ(υ)e
− 1

2 (γ(υ)−λ)(t−s)(1 − e−λ(t−s))

λ(1 − e−γ(υ)(t−s))
·

exp

(

νs + νt

η2

[

λ(1 + e−λ(t−s))

1 − e−λ(t−s)
− γ(υ)(1 + e−γ(υ)(t−s))

1 − e−γ(υ)(t−s)

])

, (7)

where, again, q = 2λν̄/η2 − 1 and Iq(x) is the modified Bessel function of the
first kind with order q. Variable γ(υ) is defined by

γ(υ) :=
√

λ2 − 2iη2υ. (8)

In [6] the cumulative distribution function of the time-integrated variance is
recovered numerically from the expression,

Pr

(
∫ t

s

ντdτ ≤ x

)

=
2

π

∫ ∞

0

sin(ux)

u
Re {Φ(u)} du, (9)

(Re {·} denoting the real part of the expression in brackets) by means of the
composite Trapezoidal rule. This un-biased simulation method requires a sig-
nificant amount of CPU time [4], mainly because of the numerical inversion
step.

Remark 2.1 (Fast inverse Fourier transform by a Fourier cosine expansion).
Application of the composite Trapezoidal rule for (9) is time-consuming, because
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the ChF is highly oscillatory, which implies that large values for N are required
for accuracy.

The Fourier inversion step can be accelerated by the use of a Fourier cosine
series expansion [9], see also Remark 3.1. The Fourier expansion method belongs
to the spectral methods and recovers a distribution function for all x ∈ R, from a
ChF. The error convergence is exponential for smooth functions, i.e. of O

(

eαN
)

with some α < 0.

2.2 The Left-Side Tail

As a first step to understand the near-singular behavior in the variance direction,
we set up a series of numerical experiments to determine the behavior of the
left-side tail. The following results can be used as a rule of thumb to determine
the values for which the variance density is governed by extremely large values
at the left tail.

Result 2.1 (The left-side tail). Although each of the three parameters, λ, ν̄ and
η, in (2) plays a unique role in the tuning of the shape and the magnitude of the
variance density, the decay rate at the left tail can be well characterized by values
of q, whose definition interval is [−1,∞). Based on the non-negativeness of λ,
ν̄ and η, the near-singular problem occurs when q ∈ [−1, 0], which is directly
related to the Feller condition.

The experiments that support this insight are set up as follows: The values
of ν̄ and η are drawn randomly from [0, 1] (we consider interval [0, 1] reasonable
for both ν̄ and η), and λ is given by (1 + q)η2/(2ν̄). The experimental results
are displayed in Figure 1.

As shown in Figure 1, the value of q determines the decay rate in the left
tail of the variance density function, whereas the right-side tail always decays to
zero rapidly. For q >> 0 the density values tend towards zero in both tails. For
q smaller and approaching 0, the decay of the left-side tail slows down. Near
q = 0, the left tail stays almost constant. For q ∈ [−1, 0], the left tail increases
drastically in value.

In a recent paper, [4], several challenging test cases, based on different values
of λ,η and ν̄, were illustrated. For all those test cases we find q ≈ −0.96, which
indeed is an indication of difficult tests, see Figure 1.

The fact that q determines the decay rate of the densities’ left tail can be
understood if we take a closer look at Equation (3) for the variance density
function. When q changes sign, both functions, (·)q/2 and Iq(·), change shape
around the origin, i.e., from monotonically increasing they become monotoni-
cally decreasing.

2.3 Transformation to Log-Variance Process

Based on the insights in the previous subsections, we propose here a solution
strategy for the problem of the left-side tail: We transform the problem from
the variance domain to the log-variance domain.

By the change of variables, the density of the log-variance process, based on
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Figure 1: Decay rate in the left-side tail of the variance density, as q approaches
−1 from above.

(3), reads:

pln(ν) (σt|σs) =

ζe−ζ(eσse−λ(t−s)+eσt )

(

eσt

eσse−λ(t−s)

)

q

2

eσtIq

(

2ζe−
1
2λ(t−s)

√
eσseσt

)

,(10)

where σs := ln(νs) and pln(ν)(σt|σs) denotes the probability density of the log-
variance at a future time, given the information at current time.
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Figure 2: Decay rate of the left tail of the log-variance density as q approaches
−1 from above
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Figure 3: Decay rate in log-scale of the left tail of the log-variance density as q
approaches −1 from above

With the change of variables, a term eσt appears, which, for q ∈ [−1, 0],
compensates the (·) q

2 –term, so that it converges towards zero as σt → −∞. It
is shown in Figure 2 that the densities of the log-variance process for different
parameter sets are more symmetric than those from Figure 1; It is also illustrated
in log-scale, in Figure 3, that for q ∈ [−1, 0] the left tails of the densities do
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not increase significantly in value anymore. Instead, these tails decay to zero
rapidly as σt → −∞, although the decay rate decreases as q approaches −1. In
Figures 2 and 3 we have only shown the problematic cases from Figure 1; the
left-side tails of the cases with q > 0 also decay very well for the log-variance
process, of course.

Remark 2.2 (Truncation range). Before applying any numerical method, we
need to define a proper truncation range for the log-variance density. For this,
information about the center of the density as well as the decay of the left and
right tails is required.

Instead of giving a rule-of-thumb for this truncation range, as in [9, 16], we
propose to use Newton’s method to determine the interval boundaries, according
to a pre-defined error tolerance, TOL. In accordance with this tolerance, the
stopping criteria of the Newton method reads pln(ν)(x|σ0;T ) <TOL for x ∈
R\[aν , bν ].

We also need the derivative of pln(ν)(σt|σs) w.r.t. σt. It can be derived with
the help of Maple:

dpln(ν)(σt|σs)

dσt
= −

[

(−ζeσt − q − 1) Iq

(

2
√

ζeσtu
)

− Iq+1

(

2
√

ζeσtu
)]

·

ζe−u−ζeσt+σt ·
(

ζeσt

u

)q/2

, (11)

with u := ζeσs−λ(t−s).
A proper initial guess for interval boundaries is also required. We estimate

the center of the truncation range by the logarithm of the mean value of the
variance, see e.g. [4],

ln(E(νt)) = ln
(

ν0e
−λT + ν̄

(

1 − e−λT
))

.

As the left tail usually decays much slower than the right tail and because the
speed of decay seems closely related to the value of q, we use the following values
as the initial guesses for the boundaries of the truncation range [aν , bν ]:

[a0
ν , b

0
ν ] =

[

ln(E(νt)) −
5

1 + q
, ln(E(νt)) +

2

1 + q

]

. (12)

2.4 Joint Distribution of Log-Stock and Log-Variance

When valuing path-dependent options, we need to know the joint distribution of
the log-stock and log-variance processes at a future time, given the information
at the current time, i.e. px,ln(ν)(xt, σt|xs, σs) with 0 < s < t. An analytic
formula for this distribution does not exist, but we can deduce the relevant
information from the Fourier domain.

The SDEs in (1), (2) indicate that the variance at a future time is indepen-
dent from the log-stock value at the current time, i.e. pν(νt|νs, xs) = pν(νt|νs).
As a result, we have

px,ν(xt, νt|xs, νs) = px|ν(xt|νt, xs, νs) · pν(νt|νs), (13)

where we use px,ν to denote the joint probability density of the log-stock and the
variance processes at a future time point, given that the information is known
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at the current time; px|ν denotes the probability density of the log-stock process
at a future time point, given the variance value (and also given the information
known at the current time). Equivalently, we have

px,ln(ν)(xt, σt|xs, σs) = px| ln(ν)(xt|σt, xs, σs) · pln(ν)(σt|σs), (14)

where px| ln(ν) denotes the probability density of log-stock at a future time spot,
given the log-variance value as well as the information known at the current
time.

The probability density of the log-variance, pln(ν)(σt|σs), is already given in
(10) and therefore we need px| ln(ν)(xt|σt, xs, σs). Although there is no closed-
form expression for px| ln(ν), one can easily derive its conditional characteristic
function, ϕ(ω;xs, σt, σs), based on (6):

ϕ(ω;xs, σt, σs) := Es [exp (iωxt|σt)]

= exp

(

iω

[

xs + µ(t− s) +
ρ

η
(eσt − eσs − λν̄(t− s))

])

·

Φ

(

ω

(

λρ

η
− 1

2

)

+
1

2
iω2(1 − ρ2); eσt , eσs

)

, (15)

where Φ(u; νt, νs) is the ChF of the time-integrated variance as given in (7).

3 The Pricing Method for Bermudan Options

In this section, we derive the pricing formula for Bermudan options under Hes-
ton’s model. This gives rise to a two-dimensional integral with a kernel which is
only partly available in closed form. To evaluate this two-dimensional integral,
we develop a discrete formula based on Fourier cosine series expansions for the
integration of the part of the kernel which is not known in closed form and a
quadrature rule for the integral of the known part of the kernel. An efficient
algorithm to compute the discrete formula with the help of the FFT algorithm
is introduced.

3.1 The Pricing Equations

For a European option, which is defined at time s and matures at time t, with
0 < s < t, the risk-neutral valuation formula reads

v(xs, σs, s) = e−r(t−s)EQ
s [v(xt, σt, t)] . (16)

Here, v(xs, σs, s) denotes the option price at time s, r is the risk-free interest
rate and EQ

s is the expectation operator under the risk-neutral measure, Q, given
the information at s.

The Markov property enables us to price a Bermudan option between two
consecutive early-exercise dates by the risk-neutral valuation formula (16). This
value is then called the continuation value. The arbitrage-free price of the
Bermudan option on any early-exercise date is the maximum of the continuation
value and the exercise payoff.
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For M early-exercise dates, and T := {tm, tm < tm+1|m = 0, 1, · · · ,M},
with tM ≡ T and ∆t := tm+1 − tm, the Bermudan option pricing formula reads

v(xtm
, σtm

, tm) =























g(xtm
, tm) for m = M ;

max [c(xtm
, σtm

, tm), g(xtm
, tm)] for m = 1, 2, · · · ,M − 1;

c(xtm
, σtm

, tm) for m = 0,
(17)

with g(xτ , τ) being the payoff function at time τ and c(xτ , στ , τ) the continua-
tion value at time τ .

We simplify the notation and use xm and σm for xtm
and σtm

, respectively.
The continuation value is given by

c(xm, σm, tm) = e−r∆tE
Q
tm

[v(xm+1, σm+1, tm+1)] , (18)

which can be written as:

c(xm, σm, tm) = e−r∆t · (19)
∫

R

∫

R

v(xm+1, σm+1, tm+1)px,ln(ν) (xm+1, σm+1 | xm, σm) dσm+1dxm+1.

With (14) we get:

c(xm, σm, tm) = e−r∆t ·
∫

R

[

∫

R

v(xm+1, σm+1, tm+1)px| ln(ν) (xm+1| σm+1, xm, σm) dxm+1

]

pln(ν) (σm+1|σm) dσm+1. (20)

Equations (17) and (20) define the problem we would like to solve numerically.
The inner integral in (20) equals the pricing formula for European options de-
fined between tm and tm+1, provided the variance value at the future time point
is known.

A scaled log-asset price will be used from now on in this work, defined by

xm = ln (Sm/K) .

3.2 Density Recovery by Fourier Cosine Expansions

The COS method, based on Fourier cosine expansions, is a very efficient method
for the recovery of probability density functions from the corresponding char-
acteristic functions. It can therefore be efficiently used for the risk-neutral
valuation formula in cases where the density is not known in closed-form. We
will apply the COS method to approximate the unknown conditional probability
density, px| ln(ν) in (20).

The key idea of the COS method [9] is to approximate the underlying prob-
ability density function, which is typically a smooth, real-valued function, by its
Fourier cosine series expansion, taking into account that the Fourier series coef-
ficients have a direct connection to the characteristic function. We now describe
how to recover the density function px| ln(ν) in (20) by the COS method.
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First we define a truncated integration range, [a, b] ⊂ R, such that

∫ b

a

px| ln(ν)(xm+1|σm+1, xm, σm)dy ≤ TOLx, (21)

for some pre-defined error tolerance TOLx. In [9] this interval is defined as

[a, b] := [ξ1 − 12
√

|ξ2|, ξ1 + 12
√

|ξ2|], (22)

where ξn denotes the n-th cumulant of the log-stock process. With an inte-
gration interval [a, b] satisfying (22), we recover the probability density by its
Fourier cosine series expansion:

px| ln(ν)(xm+1|σm+1, xm, σm) =

∞
∑′

n=0

Pn(σm+1, xm, σm) cos

(

nπ
xm+1 − a

b− a

)

.

(23)
∑′

indicates that the first element in the summation is multiplied by one-half.

The coefficients Pn are the Fourier cosine coefficients, defined by

Pn(σm+1, xm, σm) :=

2

b− a

∫ b

a

px| ln(ν)(xm+1|σm+1, xm, σm) cos

(

nπ
xm+1 − a

b− a

)

dxm+1.

By the expansion in (23), one separates xm+1 from xm. This type of variable
separation is not restricted to Fourier cosine series expansions, but in this case
the Fourier expansion is advantageous as the series coefficients have a direct
relation to the characteristic function and are therefore known, i.e.

Pn(σm+1, xm, σm) ≈ 2

b− a
Re

{

ϕ

(

nπ

b− a
;xm, σm+1, σm

)

e−inπ a
b−a

}

, (24)

with ϕ(θ;x, σm+1, σm) given by (15).
The error in this approximation is related to TOLx, as analyzed in [9], and

Equation (24) approximates the Pn with machine accuracy if [a, b] is sufficiently
wide. Subsequently, we truncate the series summation in (23).

From Fourier theory, we know that cosine series of functions belonging to
C∞([a, b] ⊂ R), with non-zero derivatives, converge exponentially with respect
to the number of terms in the series, so that the series can be truncated without
loosing accuracy. By replacing Pn in (23) by (24) and truncating the series by
N terms, one obtains a semi-analytic formula which accurately approximates
the probability density:

px| ln(ν)(xm+1|σm+1, xm, σm) =

N−1
∑′

n=0

2

b− a
Re

{

ϕ

(

nπ

b − a
; 0, σm+1, σm

)

einπ xm−a

b−a

}

cos

(

nπ
xm+1 − a

b− a

)

+ ǫcos.

(25)

Here, we used the fact that ϕ(ω;xm, σm+1, σm) = eiωxmϕ(ω; 0, σm+1, σm), i.e.,
xm can be separated from the σ-terms and appears as a simple exponential
term. This is important for the efficient computation in the Bermudan case.
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The error of this approximation, ǫcos, decreases exponentially with respect
to N , provided that the truncation range is set sufficiently wide (proof is given
in [9]).

Remark 3.1 (Recover a CDF). The COS method can also be used to recover a
cumulative probability distribution, F (x): We simply insert the COS reconstruc-
tion of the density f(t) into the definition integral of the cumulative probability
after truncating the integration range, i.e.

F (x) =

∫ x

−∞

f(t)dt ≈
∫ x

b

f(t)dt

≈
∫ x

b

N−1
∑′

n=0

2

b− a
Re

{

ϕ

(

nπ

b− a

)}

cos

(

nπ
t− a

b− a

)

dt

=

N−1
∑′

n=0

2

b− a
Re

{

ϕ

(

nπ

b− a

)}
∫ x

b

cos

(

nπ
t− a

b− a

)

dt

=

N−1
∑′

n=0

2

b− a
Re

{

ϕ

(

nπ

b− a

)}

ψn(b, x),

where ψn(l, u) is given in (63).

3.3 Discrete Fourier-based Pricing Formula

Equation (17) shows that the option price at time t0 is a continuation value,
which, as indicated by (20), depends on the continuation values at the times
t1, t2, · · · , tM . The option price at time t0 can be recovered by recursion, back-
wards in time. This is the same approach as in [10], but here the integration is
more involved, because of the two-dimensional kernel.

3.3.1 Quadrature Rule in Log-Variance Dimension

Using the initial values defined in (12) and (22), we obtain the truncation range
[aν , bν ] by Newton’s method.

After truncating the integration region by [aν , bν ]×[a, b], we need to compute

c1(xm, σm, tm) := e−r∆t ·
∫ bν

aν

[

∫ b

a

v(xm+1, σm+1, tm+1)px| ln(ν) (xm+1| σm+1, xm, σm) dxm+1

]

pln(ν) (σm+1|σm) dσm+1. (26)

(We use the notation ci, i = 1, . . . , 3 to denote different approximations of
continuation value, c, to keep track of the numerical errors that enter with each
approximation.)

There are two ways to discretize the outer integral w.r.t. σm+1, i.e by
interpolation-based quadrature rules or by a spectral series reconstruction of
the interpolant (as in the COS method). In the latter case since the ChF of
pln(ν) is not known, one would have to use a numerical method to retrieve the
series coefficients for a series reconstruction, which would add additional com-
putational costs. However, since pln(ν) itself is known analytically, we apply a

12



J-point quadrature integration rule (like Gauss-Legendre quadrature, composite
Trapezoidal rule, etc.) to the outer integral, which gives

c2(xm, σm, tm) := e−r∆t
J−1
∑

j=0

wj · pln(ν)(ςj |σm) · (27)

[

∫ b

a

v(xm+1, ςj , tm+1)px| ln(ν) (xm+1| ςj , xm, σm) dxm+1

]

.

Here the wj are the weights of the quadrature nodes ςj , j = 1, 2, ..., J − 1.

Remark 3.2 (Which quadrature rule to use?). There are merits and demerits
to using high-order quadrature rules, like the Gauss-Legendre quadrature rule,
and to low-order equidistant rules, like the composite Trapezoidal rule. The ad-
vantage of the former is an exponential error convergence rate for integration of
smooth functions, as is the case for pln(ν), whereas the latter has only polyno-
mial error convergence. However, the computational complexity of the method
can be greatly reduced by the Trapezoidal rule, due to a special matrix structure
which results after discretization on an equidistant grid. We will come back to
this issue.

3.3.2 COS Reconstruction in Log-Stock Dimension

In the next step, we replace px| ln(ν), which is not known, by the COS approx-
imation (25), and interchange the summation over n with the integration over
xm+1 to obtain:

c3(xm, σm, tm) := e−r∆t
J−1
∑

j=0

wj

N−1
∑′

n=0

Vn,j(tm+1)Re

{

ϕ̃

(

nπ

b− a
, ςj , σm

)

einπ xm−a

b−a

}

,

(28)
with

Vn,j (tm+1) :=
2

b− a

∫ b

a

v(xm+1, ςj , tm+1) cos

(

nπ
xm+1 − a

b− a

)

dxm+1, (29)

and
ϕ̃(ω, σm+1, σm) := pln(ν)(σm+1|σm) · ϕ (ω; 0, eσm+1, eσm) . (30)

The kernel function ϕ̃ will be the only input which characterizes the Heston
model. By combining the lengthy formulas of (10) and (15), the Bessel function
present in pln(ν) cancels with the Bessel function in the denominator of ϕ, leaving

one Bessel-term, Iq

(

e
1
2 (σm+1+σm) · 2κ(υ)e− 1

2 γ(υ)∆t
)

with γ(υ) given by (8),

υ = ω

(

λρ

η
− 1

2

)

+
1

2
iω2(1 − ρ2) and κ(υ) =

2γ(υ)

η2(1 − e−γ(υ)∆t)
.

Coefficients Vn,j (tm+1) defined in (29) can be interpreted as the Fourier co-
sine series coefficients of the option value at time tm+1. Expression c3(xm, σm, tm)
in (28) thus becomes a scaled inner product of the Fourier cosine series coeffi-
cients of the option price and of the underlying density.
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Finally, we interchange the summations in (28) which yields the discrete
formula for the continuation value:

c3(xm, σm, tm) = e−r∆tRe







N−1
∑′

n=0

βn(σm, tm)einπ xm−a

b−a







, (31)

where

βn(σm, tm) :=

J−1
∑

j=0

wjVn,j(tm+1)ϕ̃

(

nπ

b− a
, ςj , σm

)

. (32)

Equation (31) expresses the continuation value at time tm as a series expansion.
The series coefficients, which depend only on the value of the variance (and not
on the log-stock value) at time tm+1, are (scaled) inner products of the cosine
series coefficients of the option price at time tm+1 and the variance-dependent
characteristic function ϕ̃.

Due to the use of a quadrature rule in the log-variance dimension, we com-
pute on a log-variance grid. The same log-variance grid is employed for all time
points, which gives:

c3(xm, ςp, tm) = e−r∆tRe







N−1
∑′

n=0

βn(ςp, tm) exp

(

inπ
xm − a

b− a

)







, (33)

with

βn(ςp, tm) :=

J−1
∑

j=0

wjVn,j(tm+1)ϕ̃

(

nπ

b− a
, ςj , ςp

)

. (34)

For xm, however, no computational grid is needed, since the price is con-
structed from a linear combination of cosine basis functions, in which the series
coefficients do not depend on xm itself. As such, xm can be separated from
the other variables; it is only present in the cosine functions. This enables us
to derive an analytic formula for the series coefficients, as shown in the next
subsection.

One of the advantages of this spectral dimension is that Expression (31)
is known for any value of xm ∈ R, not just for discrete values. So, one can
determine the early-exercise points rapidly, by solving

c3(xm, ςj , tm) − g(xm) = 0, j = 0, 1, · · · , J − 1,

with an efficient root-finding procedure, like Newton’s method.
When the early-exercise points, x∗(σm, tm), have been determined, Proce-

dure (17) can be used to compute the Bermudan option price. More specifically:

• At tM : v(xM , σM , tM ) = g(xM );

• At tm, with m = 1, 2, · · · ,M − 1:

v̂(xm, σm, tm) =

{

g(xm) for x ∈ [a, x∗(σm, tm)]
c3(xm, σm,m) for x ∈ (x∗(σm, tm), b]

(35)

for a put option, and

v̂(xm, σm, tm) =

{

c3(xm, σm,m) for x ∈ [a, x∗(σm, tm)]
g(xm) for x ∈ (x∗(σm, tm), b]

(36)

for a call option.
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• At t0: v̂(x0, σ0, t0) = c3(x0, σ0, t0).

v̂ denotes that we deal with approximate option values, due to the various ap-
proximations involved.

With the procedure above and Expression (31), we can compute recursively
v̂(x0, σ0, t0) from v̂(xM , σM , tM ), backwards in time.

However, a more efficient technique exists. Instead of reconstructing v̂ for
each time point, we can recover the cosine series coefficients using backward
recursion, and only at time t0 we apply (31) to reconstruct v̂.

3.4 Backward Recursion

In this subsection we show that the cosine coefficients of v̂(x1, σ1, t1) can be re-
covered recursively, with the FFT, from those of v̂(xM , σM , tM ) inO ((M − 1)JN ℓ)
operations, with ℓ = max [log2(N), J ].

We first discuss the final time point, tM . Since the option price at the
maturity date equals the payoff (which does not depend on time), one can
derive an analytic expression for Vn,j(tM ) using (29):

Vn,j(tM ) =

{

Gn(0, b), for call options

Gn(a, 0), for put options,
(37)

where the Gn-functions are the cosine coefficients of the payoff function g(y),
i.e.

Gn(l, u) :=
2

b− a

∫ u

l

g(y) cos

(

nπ
y − a

b− a

)

dy, (38)

with

g(y) = [αK (ey − 1)]
+
, α =

{

1, for a call option

−1, for a put option.
(39)

The analytic solution for Gn(l, u) is presented in Appendix A.
Subsequently, we continue with time point tM−1. By inserting Vn,j(tM ) into

(34), we obtain βn(ςp, tM−1) for p = 0, 1, · · · , J − 1. With (33) one finds an
analytic formula, c3(xM−1, ςp, tM−1), for the continuation value at time tM−1.
By Newton’s method, we then solve c3(y, ςp, tM−1)− g(y) = 0 to determine the
location of the early-exercise point, y ≡ x∗(ςp, tM−1).

With early-exercise point, x∗(ςp, tM−1), known and v̂(xM−1, ςp, tM−1) as in
(35) or (36), we split the integral in (29) in two parts (for p = 0, 1, · · · , J − 1.):

V̂k,p(tM−1) =







Ĉk,p(x
∗(ςp, tM−1), b, tM−1) +Gk(a, x∗(ςp, tM−1)) for a put,

Ĉk,p(a, x
∗(ςp, tM−1), tM−1) +Gk(x∗(ςp, tM−1), b) for a call.

where V̂ , Ĉ denote approximate values; The Ĉk,p represent the cosine coeffi-
cients of the continuation value:

Ĉk,p(l, u, tM−1) :=
2

b− a

∫ u

l

c3(y, ςp, tM−1) cos

(

kπ
y − a

b− a

)

dy. (40)

For the exact cosine coefficient of the continuation value, Ck,p, we should have
used c from (40), instead of the COS approximation c3 from (33).
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After replacing c3 in (40) by the COS approximation, interchanging summa-
tion and integration, we obtain

Ĉk,p(l, u, tM−1) = e−r∆t Re







N−1
∑′

n=0

Mk,n(l, u)βn(ςp, tM−1)







, (41)

with

Mk,n(l, u) :=

∫ u

l

exp (inπ
y − a

b− a
) cos

(

kπ
y − a

b− a

)

dy. (42)

Expression (42) can be obtained analytically.
The expressions above can be cast in an easy readable format in matrix/vector

notation:
Ĉ(l, u, tM−1) = e−r∆t Re {M(l, u)B′(tM−1)} , (43)

where B′ indicates that the first row of matrix B is multiplied by one-half.
Matrix M(l, u) is an N ×N matrix composed of elements from Mk,n(l, u),

and matrix B(tM−1) is an N × J matrix, with J column vectors:

B(tM−1) = [β0(tM−1), β1(tM−1), · · · , βJ−1(tM−1)] . (44)

The column vectors (denoted by subscripts), βp(tM−1), are connected to the
coefficients V(tM ), i.e., to the matrix with elements Vn,j(tM ), as follows:

βp(tM−1) = [V(tM ) · ϕ̃(ςp)]w, (45)

where w is a column vector (length J) with the quadrature weights and the

(time-invariant) matrix ϕ̃(ςp) is anN×J matrix with as elements ϕ̃
(

nπ
b−a , ςj , ςp

)

,

as defined in (30). The operator “·” in (45) denotes an element-wise matrix-
matrix product.

From [10] we know that matrix M(l, u) can be written as the sum of a
Hankel matrix, Mc(l, u), and a Toeplitz matrix, Ms(l, u). Because matrix-
vector products with Hankel and Toeplitz matrices can be transformed into
circular convolutions of two vectors, the FFT algorithm can be applied to achieve
the O(N log2(N)) complexity in log-stock space. Details are given in Appendix
A.

Repeating the same computational procedure, backwards in time, we can
derive the equations that connect V̂(tm−1) to V̂(tm), for m = M − 1,M −
2, · · · , 2:



































































V̂(tm) :=







Ĉ(x∗(ςp, tm), b, tm) + G(a, x∗(ςp, tm)) for a put

Ĉ(a, x∗(ςp, tm), tm) + G(x∗(ςp, tm), b) for a call

β̂j(tm−1) :=
[

V̂(tm) · ϕ̃(ςj)
]

w

B̂(tm−1) :=
[

β̂0(tm−1), β̂1(tm−1), · · · , β̂J−1(tm−1)
]

Ĉ(l, u, tm−1) := e−r∆t Re
{

M(l, u)B̂′(tm−1)
}

(46)
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We continue the procedure until V̂(t1) is recovered, which is then inserted
into (34) and (31) to get a grid of option prices, v̂(x0, ςj , t0), for j = 0, 1, · · · , J−
1.

Now, one can either use a spline interpolation to get the value of v̂(x0, σ0, t0)
from v̂(x0, ςj , t0) or, at the initial stage of the computation, shift the σ-grid, so
that σ0 lies exactly on the grid.

We summarize the backward recursion algorithm below.

Algorithm 1: Pricing Bermudan options under Heston’s model.
Initialization:

• Find aν and bν by Newton’s method;

• Calculate V(tM ) with the analytic formula;

• Prepare matrix ϕ̃(ςj) for j = 0, 1, · · · , J − 1.

Main Loop to recover V̂(tm) for m = M − 1 to 1:

• Determine early-exercise point by Newton’s method;

• Calculate the first row and column of Ms and Mc.

• For j = 0, 1, · · · , J − 1, calculate β̂j(tm) =
[

V̂(tm) · ϕ̃(ςj)
]

w.

• Multiply the first element of β̂j(tm) by one-half.

• Compute the column vectors of Ĉ(tm), e−r∆t Re
{

Mβ̂′
j(tm−1)

}

,

using the FFT algorithm;

• Recover V̂(tm) by (35) or (36).

Final step: Calculate v̂(x, ςj , t0) by inserting V̂(t1) into (34) and (31). Use
spline interpolation to get v̂(x, σ0, t0).

Remark 3.3 (Multiple values of S0). Due to the use of the spectrally-oriented
discretization in the log-stock dimension, the cosine-coefficients of V̂(tm) do not
depend on the initial value of asset prices. Only in the final step, one needs
to insert an initial value, S0, into (34) and (31) to get the option price. If
necessary, the method could thus price multiple options that only vary in the
value of S0 simultaneously, with almost no additional cost.

Remark 3.4 (Scaled Bessel function). Special attention should be given to the
calculation of ϕ̃(ω, σm+1, σm). First of all, it involves a modified Bessel function
of the first kind, which increases dramatically in value when q → −1 and/or ω →
∞. The scaled Bessel function should be used instead. A robust package has been
developed in [1, 2] with algorithms to compute I∗d (z) := exp (− |Re {z}|) Id(z)
with a complex-valued argument, z, and a real-valued order, d. As MATLAB
(which we use here) incorporates this package for the MATLAB Bessel function,
we replace Iq (·) by e|Re{·}|I∗q (·) during the computations.

Remark 3.5 (Computation of Bessel function). The computation of the mod-
ified Bessel function costs significantly more (a factor of approximately 1000)
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CPU time than a simple multiplication, because the main part of the Bessel func-
tion algorithm is based on iterations. If the computation of the Bessel function
costs A times the number of operations needed for a multiplication, a matrix

based on ϕ̃
(

kπ
b−a , ςq, ςj

)

would require O(NJ2A) operations to compute all ma-

trix elements.
If one employs equidistant quadrature rules for the log-variance dimension,

then for a given value of k, the input argument of the Bessel function is a
function of the grid point combination, ςq + ςj, which gives rise to the Hankel
matrix (if ςj represents an equidistant grid). The favorable structure of a Hankel
matrix enables us to only determine one row and one column of the J×J matrix,
for each value of k. The total number of operations needed is therefore reduced to
O(NJA). However, since the error convergence is much slower with equidistant
quadrature rules, J should be set much larger than for Gaussian quadrature
rules. We will discuss this trade-off effect in the section with numerical results.

With the considerations in the remarks above, the computational effort in
the initialization step with non-equidistant quadrature rules is dominated by the
computation of the Bessel function in matrix ϕ̂, which is of order O(ANJ2).

The computations in the main loop of the algorithm are of orderO(MN log2(N)J2),
dominated by the calculation of matrix B̂(tm−1). Since the computation of vec-

tor β̂j(tm−1) costs O(NJ) operations, the calculation of matrix B̂(tm−1) is of
O(NJ2) complexity.

The direct computation of the matrix-matrix product in (43) would cost
O(N2J) operations. The computational complexity of (43) is, however,O(N log2(N)J),
due to the special structure of matrix M(l, u) and the use of the FFT algorithm.

Therefore, the overall complexity is O(max[A,M log2(N)]NJ2).

4 Discrete Barrier Options

Also for discretely-monitored barrier options, the pricing technique explained
above can be used. It is even somewhat easier as the barrier levels are known
in advance, unlike the (time-dependent) early-exercise points, and need not
be determined inside the recursion loop. In the following we give the pricing
formula for barrier put options with double barriers.

For an “out” barrier put option withM monitoring dates, the pricing formula
reads for m = 0, 1, · · · ,M − 1:

v(xm, σm, tm) =

{

Rebate rb, when knocked out,
c(xm, σm, tm), otherwise,

(47)

and:

v(xM , σM , tM ) =

{

Rebate rb, when knocked out,
g(xM ), otherwise,

(48)

where the continuation value is governed by (20), as for Bermudan options.
The option price at the maturity date, tM , equals the payoff if the option is

not knocked out (or knocked in), otherwise the option price equals the rebate.
Following (29), the Fourier cosine coefficients of v(xm, σm, tM ), i.e., Vn,j(tM ),
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satisfy

Vn,j(tM ) =
2

b− a

∫

[a,l]∪[u,b]

rb cos

(

nπ
y − a

b− a

)

dy +
2

b− a

∫ u

l

g(y) cos

(

nπ
y − a

b − a

)

dy

=
2rb
b− a

(ψn(a, l) + ψn(u, b)) +Gn(l, u), (49)

with g(y) as defined in (39), l and u denote lower and upper barrier levels,
respectively 1, and the Gn-terms are the cosine coefficients of the payoff function
g(y), as given in Appendix A.

At tM−1 the barrier levels split the integral in (35) or (36) into several parts:

V̂k,p(tM−1) =
2rb
b− a

(ψk(a, l) + ψk(u, b)) +
2

b− a

∫ u

l

c3(y, ςp, tM−1) cos

(

kπ
y − a

b− a

)

dy

=
2rb
b− a

(ψk(a, l) + ψk(u, b)) + Ĉk,p(l, u, tM−1). (50)

where Ĉk,p are the cosine coefficients of the continuation value as given in (40).
We can repeat the derivation from before: We replace c3 in (40) by the COS

approximation and interchange the summation and the integration, which gives:

Ĉ(l, u, tM−1) = e−r∆t Re {M(l, u)B′(tM−1)} , (51)

where, as before, the first row of matrix B is multiplied by one-half, and B(tM−1)
is obtained as in (44) and (45). Matrix M(l, u) is anN×N matrix, which is time-
invariant as l and u are a-priori known barrier levels. As a result, this matrix
M(l, u) (only two columns and two rows needed for the circular convolution)
can be pre-computed. Compared to Algorithm I the main difference is that the
computation of this matrix is not in the main recursion loop.

Following the same procedure, we move backwards in time and find the
equations that connect V̂(tm−1) with V̂(tm), for m = M − 1,M − 2, · · · , 2.
Having V̂(t1) approximated, we insert it in (34) and (31) to obtain the option
price v̂(x0, σ0, t0).

5 Error Analysis

As in [9, 10] we study here the convergence of the local error at each time lattice,
as well as the propagation of the error from one time lattice to the next.

5.1 Local Error

We first analyze the convergence of the local error

ǫ(xm, σm, tm) := |c(xm, σm, tm) − c3(xm, σm, tm)| .

We depart from (20) and denote the inner integral as ϑ(xm, σm+1, σm), which
actually satisfies a risk-neutral valuation formula and thus defines the continu-
ation value at time tm given σm+1 and σm. For analysis purposes, we introduce

1For single-sided barrier options, one can simply apply the same method by setting l = a

or u = b.
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an intermediate approximation, after the truncation of the integration range of
the outer-integral by [aν , bν ]:

c0(xm, σm, tm) := e−r∆t

∫ bν

aν

pln(ν) (σm+1|σm)ϑ(xm, σm+1, σm)dσm+1. (52)

Since the option price is bounded on a bounded interval, we can assume that a
positive number, δ0, exists with

δ0 = sup [ϑ(xm, σm+1, σm)] , ∀σm+1, σm ∈ [aν , bν ], ∀xm ∈ [a, b].

It then follows that

|c− c0| ≤ δ0e
−r∆t

∫

R\[aν ,bν ]

pln(ν) (σm+1|σm) dσm+1,

which suggests that this truncation error depends purely on the decay to zero
of the log-variance density function, far in the tails. One can expect larger
truncation errors for the difficult parameter sets, like for q ∈ (−1, 0] compared
to q ∈ (0,+∞). We assume a positive number, depending on q, δ1(q), to exist
such that

e−r∆t

∫

R\[aν ,bν ]

pln(ν) (σm+1|σm) dσm+1 ≤ TOL · δ1(q). (53)

TOL in (53) appears because the size [aν , bν ] ensures that pln(ν)(σm+1|σm) <
TOL for σm+1 ∈ R\[aν , bν ]. Collecting the information gives:

|c− c0| ≤TOL · δ1(q) · δ0.

Another intermediate quantity is obtained by replacing px| ln(ν) in (52) with
the approximation by the Fourier cosine series expansion, i.e.

c(xm, σm, tm) = e−r∆t

∫ bν

aν

pln(ν) (σm+1|σm) ϑ̃(xm, σm+1, σm)dσm+1, (54)

where ϑ̃ is the COS-approximation of ϑ:

ϑ̃(xm, σm+1, σm) :=
2

b− a

∫ b

a

v(xm+1, σm+1, tm+1)
[

N−1
∑′

n=0

cos

(

nπ
xm+1 − a

b− a

)

·

Re

{

ϕ

(

nπ

b− a
; 0, σm+1, σm

)

einπ xm−a

b−a

}

]

dxm+1.

The error analysis in [9] shows that the error due to the COS approximation,

ǫcos(N, a, b) := sup
[∣

∣

∣
ϑ(xm, σm+1, σm) − ϑ̃(xm, σm+1, σm)

∣

∣

∣

]

, ∀xm ∈ [a, b], ∀σm+1, σm ∈ R,

converges exponentially in N for very smooth densities when the integration
range [a+ xm, b+ xm] is sufficiently wide. As such, we have

|c0 − c|= ǫcos(N, a, b)

(

e−r∆t

∫ bν

aν

pln(ν) (σm+1|σm) dσm+1

)

≤ ǫcos(N, a, b).
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The approximation c3 defined in (31) can now be obtained by applying a
quadrature rule to the integral of (54). Suppose that the (absolute) error from
the quadrature rule is ǫQ(J). With the triangle inequality, it then follows that
∀ xm ∈ [a, b] and ∀ σm, σm+1 ∈ [aν , bν ]:

ǫ(xm, σm, tm) = |c− c3| ≤ |c− c0| + |c0 − c| + |c− c3|
≤TOL · δ0 · δ1(q) + ǫcos(N, a, b) + ǫQ(J) := ǫloc. (55)

The local error thus consists of three parts:

1. Truncation error from the log-variance domain, which depends on the
decay rate to zero of the log-variance density, outside the truncation range;

2. Quadrature error, which converges exponentially in J when a Gauss-
Legendre quadrature rule is used (as the log-variance density belongs to
C∞);

3. COS approximation error, which converges exponentially in N when in-
terval [a, b] is set sufficiently wide.

One can observe the numerical convergence of the local error with respect to
parameter J by setting N sufficiently large and TOL sufficiently small. This is
included in Section 6.

5.2 Error Propagation during Recursion

In the backward recursion, we recovered the approximate Fourier cosine series
coefficients V̂k,p(tm) instead of Vk,p(tm). In this subsection, we will study the

error εk,p(tm) :=
∣

∣

∣
V̂k,p(tm) − Vk,p(tm)

∣

∣

∣
, and its evolution through time. We

focus on a Bermudan put here.
Starting at tM , V(tM ) is exact since the option price at tM is known ana-

lytically. At time tM−1, an error, εk,p(tM−1), exists because we replaced c by
c3 to determine Vk,p(tM−1). Based on (40), we get

εk,p(tM−1) =
2

b− a

∣

∣

∣

∣

∣

∫ b

x∗(ςp,tM−1)

(c3(y, ςp, tM−1) − c(y, ςp, tM−1)) cos

(

kπ
y − a

b− a

)

dy

∣

∣

∣

∣

∣

The above integral can be seen as an inner product of function (c3 − c) and
the cosine function, so that we can bound this error by the Cauchy-Schwarz
inequality:

(εk,p(tM−1))
2 ≤ 4

(b − a)2

[

∫ b

x∗(ςp,tM−1)

ǫ2(y, σM−1, tM−1)dy ·
∫ b

x∗(ςp,tM−1)

cos2
(

kπ
y − a

b− a

)

dy

]

The early-exercise point always lies in [a, b] so that b − x∗ < b − a. With
cos2(x) ≤ 1, we find, for all k, p, that

(εk,p(tM−1))
2 ≤ 4

(
b− a)2

∫ b

x∗(ςp,tM−1)

ǫ2(y, σm, tm)dy ≤ 4

b− a

∫ b

a

ǫ2(y, σm, tm)dy.

With (55) for all σm and y, we obtain

εk,p(tM−1) ≤ 2ǫloc.
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In the matrix max-norm, this reads as

∣

∣

∣

∣

∣

∣
V̂(tM−1) − V(tM−1)

∣

∣

∣

∣

∣

∣

max
≤ 2ǫloc.

In the following, we will prove, by induction, that if

∣

∣

∣

∣

∣

∣
V̂(tm+1) − V(tm+1)

∣

∣

∣

∣

∣

∣

max
∼ O (ǫloc) , (56)

then it will also hold for time tm:
The final equation in (46) is equivalent to:

Ĉk,q(x
∗(ςq), b, tm) =

2

b− a

∫ b

x∗(ςp,tM−1)

ĉ3(y, ςq, tm) cos

(

kπ
y − a

b− a

)

dxm,

where ĉ3(xm, σm, tm) is based on the same definition as c3(xm, σm, tm) in (28),
except that Vn,j(tm+1) is replaced by V̂n,j(tm+1). As such, it holds that

c3(xm, σm, tm) − ĉ3(xm, σm, tm) =

e−r∆t
J−1
∑

j=0

wj

N−1
∑′

n=0

(

V̂n,j(tm+1) − Vn,j(tm+1)
)

· Re

{

ϕ̃

(

nπ

b− a
, ςj , σm

)

einπ xm−a

b−a

}

.

To analyze this error term, we decompose ϕ̃ using (30) and replace the Re {·}-
term by Pn, defined in (24), which gives

c3(xm, σm, tm) − ĉ3(xm, σm, tm) = e−r∆t
J−1
∑

j=0

wjpln(ν)(ςj |σm)Θ(ςj , xm, σm),

(57)
where

Θ(ςj , xm, σm) :=

N−1
∑′

n=0

(

V̂n,j(tm+1) − Vn,j(tm+1)
)

·
[

Pn(ςj , xm, σm) −
∫

R\[a,b]

px| ln(ν)(y|ςj , xm, σm) cos

(

nπ
y − a

b− a

)

dy

]

.

From (22), we know that

∫

R\[a,b]

px| ln(ν)(y|ςj , xm, σm) cos

(

nπ
y − a

b− a

)

dy ∼ O(TOLx).

As Θ can be viewed as an inner product of two vectors, we can apply the
Cauchy-Schwarz inequality:

Θ2(ςj , xm, σm)≤
N−1
∑′

n=0

ε2n,j(tm+1)

N−1
∑′

n=0

[Pn(ςj , xm, σm) +O(TOLx)]
2
.

For smooth density functions, as we have in Heston’s model, the cosine series

coefficients Pn converge exponentially in n. The sum,
∑′

(Pn +O(TOL)x)2, is
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therefore a sum of a geometric series, which is thus bounded. We assume that
a positive number, δ3, exists, which satisfies

δ3 := sup





N−1
∑′

n=0

[Pn(ϑj , xm, σm) +O(TOLx)]
2



 , ∀xm ∈ [a, b], ∀σm, ςj ∈ R.

It then follows that

Θ2(ςj , xm, σm) ≤ δ3

N−1
∑′

n=0

ε2n,j(tm+1)

With (56), we can write εn,j(tm+1) ≤
√
δ4ǫloc for some positive number δ4, and

find that
Θ2(ςj , xm, σm) ≤ δ3δ4Nǫ

2
loc.

Returning to Eq. (57) and employing the Cauchy-Schwarz inequality, gives us

|c3(xm, σm, tm) − ĉ3(xm, σm, tm)| ≤ e−r∆t

√

√

√

√

J−1
∑

j=0

(wjpln(ν)(ςj |σm))2
J−1
∑

j=0

Θ2(ςj , xm, σm)

≤ e−r∆t
√

δ3δ4δ5 ·
√
JN · ǫloc,

where δ5 is an upper bound for
∑J−1

j=0 (wjpln(ν)(ςj |σm))2 for all values of σm.
With the results above, error εk,q(tm) can be bounded as follows:

∣

∣

∣
V̂k,q(xm, σm, tm) − Vk,q(xm, σm, tm)

∣

∣

∣
=
∣

∣

∣
Ĉk,q(a, x

∗(ςq, tm), tm) − Ck,q(a, x
∗(ςq, tm), tm)

∣

∣

∣

≤ 2

b− a

√

∫ b

x∗(ςp,tM−1)

(c(y, ςq, tm) − c3(y, ςq, tm))2dy

√

∫ b

x∗(ςp,tM−1)

cos2
(

kπ
y − a

b− a

)

dy

≤ 2e−r∆t
√

δ3δ4δ5 ·
√
JN · ǫloc. (58)

So, when ǫloc converges exponentially in both N and J , it holds that
∣

∣

∣

∣

∣

∣
V̂(tm) − V(tm)

∣

∣

∣

∣

∣

∣

max
∼ O(ǫloc).

The speed of convergence will, however, decrease when the number of mon-
itoring dates increases, due to the increasing weighting term in (58). Larger
values for N and J are required in that case. We will examine this via numeri-
cal experiments in the next sections.

6 Numerical Results

In this section, we first confirm, by numerical experiments, in Subsection 6.1
the error convergence analysis from Section 5 by pricing discrete barrier options
for which we set l = a and u = b. This should give us the prices of European
options with the barrier option pricing algorithm, and therefore we can generate
reference values by the European version of the COS method from [9]. Since
only a limited number of reference values are found in the literature, we use this
special case to study the error convergence.
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Subsequently, we price two Bermudan-style options with several early-exercise
dates in Subsection 6.2. Their values should resemble American reference op-
tions that we use for comparison.

The computer used is a standard laptop with an Intel(R) 2.2GHz CPU and
a 4-GB memory. The program is written in MATLAB.

6.1 Error Analysis Experiment

We check the error convergence analysis from Section 5 by pricing discrete bar-
rier options for which we set l = a and u = b. This gives us European option
prices, so we compute highly accurate reference values (accurate up to the 8-th
decimal place) by the European option pricing method from [9].

Three tests are extracted from [4], one relatively easy case, with q > 0, and
two significantly more difficult cases for which q ∈ [−1, 0]:

• Test No.1 (q = 0.6): η = 0.5, λ = 5, ν̄ = 0.04, T = 1;

• Test No.2 (q = −0.84): η = 0.5, λ = 0.5, ν̄ = 0.04, T = 1;

• Test No.3 (q = −0.96): η = 1, λ = 0.5, ν̄ = 0.04, T = 10.

Numerical methods for early-exercise or barrier options are usually either
based on finite differences for PDEs [14] or on tree-based methods [17, 18]. Re-
sults with these techniques using the parameter sets that give rise to significant
pricing difficulties for early-exercise options under Heston’s dynamics (i.e. the
Feller condition not satisfied) have however not yet been published.

Other parameters to determine the values of the put (α = −1) include:

ρ = −0.9, ν0 = 0.04, S0 = 100,K = 100, r = 0,

and we do not consider dividend payment here.

Table 1: Convergence in J for Test No.1 (q = 0.6) with N = 27, M = 12 and the European
option reference value is 7.5789038982.

Fourier cosine expansion plus composite Trapezoidal Rule

(J = 2d) TOL = 10−4 TOL = 10−6 TOL = 10−8

d time(sec) error time(sec) error time(sec) error

4 0.05 -4.53 10−3 0.06 4.89 10−2 0.06 2.09

5 0.15 -7.04 10−3 0.15 -3.97 10−5 0.16 7.66 10−4

6 0.56 -4.93 10−3 0.55 -3.37 10−5 0.56 -5.28 10−7

7 2.34 -4.29 10−3 2.35 -1.29 10−5 2.42 -4.08 10−7

Fourier cosine expansion plus Gauss-Legendre Rule

(J = 2d) TOL = 10−4 TOL = 10−6 TOL = 10−8

d time(sec) error time(sec) error time(sec) error

4 0.12 -7.51 10−3 0.12 1.02 10−2 0.12 1.41

5 0.43 -3.95 10−3 0.42 -1.85 10−5 0.40 2.99 10−5

6 1.69 -3.95 10−3 1.59 -1.54 10−5 1.54 -6.41 10−6

7 6.88 -3.95 10−3 7.07 -1.34 10−5 6.49 -6.32 10−7
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First of all, we compare the error convergence in J for the Heston pricing
methods with the composite Trapezoidal rule (upper part of Table 1) with
results obtained by the Gauss-Legendre quadrature rule (lower part of Table 1).
We prescribe the pre-defined truncation error tolerances, TOL, in log-variance
dimension as 10−4, 10−6 and 10−8, respectively. The number of monitoring
dates is set to 12 and for N we choose N = 27.

The results in Table 1 demonstrate that when N and J are sufficiently large
(like N = J = 27), the truncation error, governed by ”TOL”, dominates the
overall error; For small values of TOL (like TOL≤ 10−6) and N is fixed, a very
fast error convergence in J is obtained (and the computational complexity is
quadratic in J). As pointed out earlier, with the composite Trapezoidal rule,
the calculation of φ̃ in the initialization phase requires less CPU time than with
the non-equidistant Gauss-Legendre rule. From the experiments of Test No. 1,
we can conclude that for q > 0 both methods give highly accurate results within
a fraction of a second.

We continue with the difficult test cases for which q → −1. While seemingly
pleasant in both CPU time and convergence for Test No.1, the composite Trape-
zoidal rule (as well as the composite Simpson rule) is no longer appealing when
q is less than zero, as it requires very large values of J to achieve the desired
accuracy. The Gauss-Legendre rule can, however, still produce satisfactory re-
sults for relatively small values of J . Therefore, we only illustrate the results
obtained by the Gauss-Legendre rule in log-variance dimension in Table 2.

Table 2: Convergence in J as q → −1; Fourier cosine expansion plus Gauss-Legendre rule,
N = 28, M = 12, TOL= 10−7, European reference values are 6.2710582179 (Test No. 2) and
13.0842710701 (Test No.3).

Test No. 2 (q = −0.84) Test No. 3 (q = −0.96)

(J = 2d) time(sec) time(sec)

d total Init. Loop error total Init. Loop error

6 3.03 2.85 0.18 5.63 3.11 2.93 0.18 -22.7

7 13.3 12.78 0.56 6.89 10−3 12.1 11.55 0.53 -8.51 10−2

8 56.4 52.32 4.07 -2.12 10−5 55.7 51.74 4.00 -1.60 10−3

Compared to Test No.1, the absolute errors in the Tests No. 2 and No.3 are
larger for the same N and the same J . When q → −1, the left-side tail of the
log-variance density function tends to converge slower to zero. As a result, the
truncation range in the log-variance dimension is set very wide (by Newton’s
method) to reach the same tolerance level, TOL. The wider the truncation range
the larger values of J are required for the same level of accuracy. However, the
error convergence in J is still reasonably fast.

The results presented in Table 2 indicate that, as q approaches −1, the
initialization step dominates the overall computational time, in particular the
expensive computation of the Bessel function. The computations in the main
loop of the pricing algorithm cost less than 8 percent of the total time. So, if
we can find a proxy for the Bessel function which can be computed in a cheap
way (like the moment matching based functions in [4]), the overall computation
time could be significantly reduced. We leave this for further research.

Next, we examine the error convergence in N , keeping the number of points
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in log-variance direction, J , fixed. The results are presented in Table 3. One can
observe that the error convergence is faster than quadratic (the linear increments
in CPU time are not shown).

Table 3: Convergence in N ; COS + Gauss-Legendre, M = 12, TOL= 10−7, J = 27 for Test
No.1 and J = 28 for Test No.2.

d : (N = 2d)

Test: 4 5 6 7

No. 1 (q = 0.6) 2.94 10−1 -1.63 10−2 -3.01 10−5 -1.79 10−6

No. 2 (q = −0.84) 7.32 10−1 -9.75 10−2 -2.30 10−2 -1.72 10−4

We also check the propagation of the error through time. For this, we fixedN
and J and measured the error convergence for increasing values of M (presented
in Table 4). We employ somewhat different values for J here to indicate that it
does not need to be a power of 2. The results confirm that the local error grows
only very slowly for q > 0 and somewhat faster for q ∈ [−1, 0]. The overall
error can be further reduced by setting larger values for J and/or N . Doubling
parameter M corresponds to doubling of CPU time in the main loop, which is
in accordance with the error analysis.

Table 4: Error propagation in M ; COS + Gauss-Legendre, TOL= 10−7; N = 27, J = 100
for Test No.1, and N = 28, J = 300 for Test No.2.

M :

Test: 10 20 40

No. 1 (q = 0.6) -2.14 10−6 -3.13 10−6 -4.92 10−6

No. 2 (q = −0.84) -2.56 10−5 -2.71 10−5 -7.02 10−4

6.2 Bermudan Options

We will now consider Bermudan options, and use Algorithm 1 to price them.
With increasing values for the number of exercise dates, M , the prices of Bermu-
dan options converge towards the equivalent American options. The M time
lattices can be viewed as a discretization in time.

Tree-based methods that are used to price American options using M time
steps return thus prices of the equivalent Bermudan options with M exercise
dates. The same holds for other pricing methods: If M time steps are used in
a path simulation for American options, then the price of a Bermudan option
with M early-exercise dates is computed.

This insight enables us to take a reference value from the American option
pricing literature here, with our choice of parameter M resembling the number
of time steps used in a tree-based, PDE or Monte Carlo method.

Two parameter test sets are used here. One is chosen in the PDE-based finite
differences literature, for example in [14], with q > 0; and the second is with
q ∈ [−1, 0], inspired by results with a tree-based method in [17]. The reference
value for the first test case is available and accurate up to the 6th digit, see [14].
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For the latter test Bermudan reference values are not available. So we provide
our results that may serve as a reference test for future computations by other
pricing methods.

The most commonly used test parameters for American options under the
Heston dynamics in the literature read:

• Test No. 4 (q = 0.98): S0 = {8, 9, 10, 11, 12},K = 10, T = 0.25, r =
0.1, λ = 5, η = 0.9, ν̄ = 0.16, ν0 = 0.0625 and ρ = 0.1,

which gives q > 0. So, a very accurate and efficient pricing performance is
expected from our method. Results are presented in Table 5, where CPU time
is measured for five different values of S0 computed simultaneously. The con-
vergence of the Bermudan options to the American option reference values is
clearly visible 2.

Table 5: Errors of Test No. 4 (q = 0.98); COS + Gauss-Legendre, N = 27, J = 27 and
TOL= 10−7, plus reference values.

S0 8 9 10 11 12 time (sec)

ref.val. 2.000000 1.107621 0.520030 0.213677 0.082044 total Init. Loop

M=10 -1.80 10−2 -4.79 10−3 -2.85 10−3 -1.31 10−3 -5.18 10−4 6.9 6.34 0.57

M=20 -9.54 10−3 -2.39 10−3 -1.40 10−3 -6.65 10−4 -2.78 10−4 7.5 6.36 1.13

M=40 -5.14 10−3 -1.07 10−3 -5.50 10−4 -2.54 10−4 -1.22 10−4 8.9 6.57 2.32

M=80 -2.83 10−3 -2.86 10−4 2.75 10−5 5.42 10−5 -8.43 10−7 14.1 7.35 6.70

A negative correlation coefficient, ρ, is often observed in market data. A
test example for a Bermudan put with this parameter and q ∈ [−1, 0] was given
in [17], where the parameters were set as:

• Test No. 5 (q = −0.47): S0 = {90, 100, 110},K = 100, T = 0.25, r =
0.04, λ = 1.15, η = 0.39, ρ = −0.64, ν̄ = 0.0348, ν0 = 0.0348.

However, reference values were not available in the paper, so that we provide
our results as a reference in Table 6.

Table 6: Results of Test No. 5 (q = −0.47); COS + Gauss-Legendre; N = 28, J = 28 and
TOL= 10−7.

S0 time (sec)

M 90 100 110 total Init. Loop

20 9.9783714 3.2047434 0.9273568 68.9 58.2 10.7

40 9.9916484 3.2073345 0.9281068 81.9 59.3 22.6

60 9.9957789 3.2079202 0.9280425 93.2 59.4 33.8

2Although it is not our main concern in this paper, one can obtain American option prices
much more rapidly by extrapolating prices of Bermudan options with small values of M .
Details are given in [16, 10].
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7 Conclusions

In this paper, we have focused on pricing Bermudan and discretely-monitored
barrier options under Heston’s stochastic volatility model with a Fourier-based
method. The near-singular problem in the left-side tail of the Heston variance
density has been dealt with by a change of variables to the log-variance do-
main. An efficient discrete pricing formula is derived by applying a Fourier
series expansion technique to the log-stock dimension and a quadrature rule to
the log-variance dimension. By means of an error analysis we have determined
the various sources for the errors, which are verified by numerical experiments.

The pricing method exhibits a fast error convergence. Furthermore, the
method is robust with respect to parameter variations. For pricing early-exercise
options for which the parameters in the Heston model satisfy the Feller con-
dition, the new solution method gives highly accurate option prices within a
fraction of a second. The challenge was, however, to price options in case the
Feller condition was not satisfied. The computation of the Bessel functions in
the initialization step of the algorithm dominates the overall computation time
in that case. The error convergence is also highly satisfactory then. Choosing
approximately 128 points in the log-stock and in the log-variance dimension is
usually sufficient for an error reduction of the order 10−4, even if the Feller
condition is not satisfied.

For the near future research, we expect a significant speed-up when the Bessel
function computations can be replaced by the computation of an accurate proxy.
Replacing the MATLAB implementation by an efficient C code would further
reduce CPU time.

A Derivations

In this appendix we repeat some basic derivations and results obtained in [9]
and needed in the present paper.

Given that g(x) = [α ·K(ex − 1)]+, we have

Gn(l, u) =
2

b− a
αK [χk(l∗, u∗) − ψk(l∗, u∗)] , α =

{

1 for a call,
−1 for a put,

(59)

with

l∗ =

{

max(l, 0) α = 1,
min(l, 0) α = −1.

u∗ =

{

max(u, 0) α = 1,
min(u, 0) α = −1.

(60)

and

χk(l∗, u∗) :=

∫ u∗

l∗
ex cos

(

nπ
x− a

b− a

)

dx, (61)

ψk(l∗, u∗) :=

∫ u∗

l∗
cos

(

nπ
x− a

b− a

)

dx. (62)
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χk and ψk admit the following analytic solutions:

χk(l, u) =
1

1 +
(

nπ
b−a

)2

[

cos

(

nπ
u− a

b− a

)

eu − cos

(

nπ
l − a

b− a

)

el

+
nπ

b − a
sin

(

nπ
u− a

b− a

)

eu − nπ

b − a
sin

(

nπ
l − a

b− a

)

el

]

,

ψk(l, u) =











[

sin
(

nπ u−a
b−a

)

− sin
(

nπ l−a
b−a

)] b− a

nπ
n 6= 0,

(u − l) n = 0.

(63)

We also show that the matrix M(l, u) with elements Mk,n(l, u) in (42) is
the sum of a Hankel matrix, Ms(l, u), and a Toeplitz matrix, Mc(l, u), and that
the matrix-vector-product, M(l, u)u, can then be computed by means of the
FFT in O(N log2N) operations.

We use eiα = cosα + i sinα in the definition of Mk,n(l, u) in (42) and find
that

Mk,n(l, u) = − i

π

(

Mc
k,n(l, u) + Ms

k,n(l, u)
)

, (64)

where

Mc
k,n(l, u) :=























(u− l)πi
(b − a)

k = n = 0,

exp

(

i(n+ k)
(u− a)π

b− a

)

− exp

(

i(n+ k)
(l − a)π

b− a

)

n+ k
otherwise

(65)
and

Ms
k,n(l, u) :=























(u− l)πi
b− a

k = n,

exp

(

i(n− k)
(u− a)π

b − a

)

− exp

(

i(n− k)
(l − a)π

b− a

)

n− k
k 6= n.

(66)
The matrices

Mc(l, u) := {Mc
k,n(l, u)}N−1

k,n=0 and Ms(l, u) := {Ms
k,n(l, u)}N−1

k,n=0

have special structure: The matrix Mc(l, u) is a Hankel matrix,

Mc(l, u) =















m0 m1 m2 · · · mN−1

m1 m2 · · · · · · mN

...
...

mN−2 mN−1 · · · m2N−3

mN−1 · · · m2N−3 m2N−2















N×N

(67)
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and Ms(l, u) is a Toeplitz matrix,

Ms(l, u) =















m0 m1 · · · mN−2 mN−1,
m−1 m0 m1 · · · mN−2,

...
. . .

...
m2−N · · · m−1 m0 m1

m1−N m2−N · · · m−1 m0















N×N

(68)

with

mn :=











(u− l)π
b− a

i n = 0

1
n

[

exp

(

in
(u− a)π

b− a

)

− exp

(

in
(l− a)π

b− a

)]

n 6= 0
(69)

The matrix-vector product can now be transformed into a circular convolution,
see also, for example, in [10]. The product Ms(l, u)u is equal to the first N
elements of ms ⊛ us with the 2N -vectors:

ms = [m0,m−1,m−2, · · · ,m1−N , 0,mN−1,mN−2, · · · ,m1]
T ,

and us = [u0, u1, · · · , uN−1, 0, · · · , 0]
T
.

A Hankel matrix times a column vector, Mc(l, u)u, is equal to the first N
elements of mc ⊛ uc, in reversed order, with the 2N -vectors defined by

mc = [m2N−1,m2N−2, · · · ,m1,m0]
T

and uc = [0, · · · , 0, u0, u1, · · · , uN−1]
T .
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