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Abstract

We develop a method for solving stochastic control problems under one-dimensional Lévy
processes. The method is based on the dynamic programming principle and a Fourier cosine
expansion method. Local errors in the vicinity of the domain boundaries may disrupt the
algorithm. An extensive error analysis provides new insights based on which we develop an
extrapolation method to deal with the propagation of local errors.
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1 Introduction

Stochastic optimization can be defined as the optimization of a certain objective function, where an
underlying state process is subject to random perturbations. The class of optimization problems
can be subdivided into several different types, such as optimal stopping problems or impulse control
problems ([14]). In this paper, we focus on stochastic control problems, in which the controller
may influence the drift and diffusion terms of the underlying stochastic process.

In financial mathematics, the price of an option can often be formulated as a stochastic optimization
problem. In the last decades, financial mathematics has contributed significantly to the theory and
the improvement of the numerical methods to solve these problems. The techniques employed are
closely related to those in the field of real option problems ([4]), encountered in economics, for
example. These can also be represented by stochastic optimization problems.

In [6], an option pricing method for European options, based on Fourier cosine series expansions,
was developed. This method was called the COS method and it was extended in [7] to pricing
Bermudan, barrier, and American options, and to pricing swing options, which are frequently used
in energy markets, in [19]. We will generalize this Fourier cosine technique to solving stochastic
control problems, in which the state process can be controlled. Our work builds on both [6] and [7],
but it differs on essential points for the accurate treatment of stochastic control problems.
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In the resulting method, we need to determine the optimal control law for all possible state values.
For that purpose, the value function must be accurately represented in the entire computational
domain. It is known, however, that Fourier cosine expansions may be inaccurate near spatial
boundaries, particularly outside the expansion interval. We give a detailed insight into the source
of these local errors and their evolution. Based on this, we propose an extrapolation technique
near the domain boundaries as an accurate solution technique in this context.

We test the method by solving two stochastic control problems of practical interest. The first
one is the valuation of an option under uncertain volatility, which was solved in [15] and [16] by
fully implicit discretization methods for the corresponding nonlinear partial differential equation
(PDE). In contrast, the COS method will be based on the dynamic programming principle.

The second problem we discuss is a consumption-portfolio problem from economics. The model
used is a simplified version of the well-known portfolio-selection problem, which is originally for-
mulated and studied by Merton [11]. Here, an agent allocates his wealth to investments in risky
or risk-free assets, and to consumption. The objective is to maximize the expected lifetime utility,
by choosing consumption.

The outline of this paper is as follows. We start with the concepts and notation of stochastic
control problems under multi-dimensional state processes. Then, in Section 3, a method based
on the dynamic programming principle and the COS formula is derived for solving stochastic
control problems with a one-dimensional underlying Lévy process. Section 4 provides an extensive
error analysis and a way to solve possible propagating errors in the backward recursion. The two
practical examples come up in Section 5. Finally, a conclusion and our main contributions are
presented in Section 6.

2 Stochastic control problems

We consider the problem class of finite horizon stochastic control problems, where the objective
function is optimized over a given finite domain. We start with the notation of control problems
and some definitions, based on [14]. The numerical method that we will develop relies on the
dynamic programming principle, which is explained in Section 2.2.

2.1 Problem description

Let (Ω,F , P ) be a probability space, T > 0 a finite terminal time, F = (Fs)0≤s≤T a filtration
satisfying the usual conditions andW a d-dimensional Brownian motion on the filtered probability
space (Ω,F ,F, P ). For t ∈ [0, T ], we denote by Tt,T the set of stopping times valued in [t, T ]. The
controlled state process Xt is valued in R

n and satisfies the stochastic differential equation

dXs = b(s,Xs,αs)ds+ σ(s,Xs,αs)dWs. (2.1)

The process here is a controlled diffusion process, which we use in this section for ease of notation
and to stay in line with [14]. Later on, we will work with the class of Lévy processes.

The control process α = (αs)0≤s≤T is progressively measurable with respect to F and is valued in
the control set A, a subset of R�. In the class of stochastic optimization problems that we discuss
here, the state process is influenced by the control process, α, whose value is determined at any
time t based on the available information.

The measurable functions b : [0, T ] × R
n × A → R

n and σ : [0, T ] × R
n × A → R

n×d satisfy
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uniform Lipschitz conditions in A. Let A denote the set of control processes α that satisfy a
square integrability condition. With this notation, an element α ∈ A is a process over time, with
values in set A. With the conditions on b and σ, for all α ∈ A and for any starting condition
(t, x) ∈ [0, T ]×R

n a unique strong solution to equation (2.1) starting from x at s = t exists, which
is denoted by {Xt,x

s , t ≤ s ≤ T } ([14]). The dependence of Xt,x
s on the control process α is omitted

for notational convenience.

We assume that f : [0, T ]×R
n×A→ R and g : Rn → R are two measurable functions that satisfy

a lower boundedness or a linear growth condition.

The gain function on the finite horizon is defined as

J(t, x,α) := E

[∫ T

t

e−ρ(s−t)f(s,Xt,x
s ,αs)ds+ e−ρ(T−t)g(Xt,x

T )

]
, (2.2)

for all (t, x) ∈ [0, T ]× R
n and α ∈ A. The function f is a so-called running profit function and g

is a terminal reward function. ρ ≥ 0 is a discount rate, which is common in economic and financial
problems. The objective of the finite horizon problem is to maximize the gain function over all
admissible controls in A. We also introduce the so-called value function

v(t, x) := sup
α∈A

J(t, x,α). (2.3)

For an initial state (t, x) ∈ [0, T ) × R
n, we say that α∗ ∈ A is an optimal control if v(t, x) =

J(t, x,α∗). A control process α is called a Markovian control if it has the form αs = a(s,Xt,x
s )

for some measurable function a : [0, T ]× R
n → A.

The notion of stochastic control problems can easily be extended with the concepts of optimal
stopping or impulse control ([13]). Then the controller does not (only) have the disposal of a
control process α to optimize his objective, but he can determine the terminal time or can add
extra impulses to the state process.

2.2 Dynamic programming principle

An important principle in the theory of stochastic control is Bellman’s optimality principle, also
called the dynamic programming principle ([14]). It means that if one has taken an optimal control
path until some arbitrary observation time θ, then, given this information, it remains optimal to
use it after that observation time. The dynamic programming principle is stated as follows:

Result 2.1. (Dynamic programming principle (DPP) (Finite horizon))[14]
Let (t, x) ∈ [0, T ]× R

n. Then we have

v(t, x) = sup
α∈A

E

[∫ θ

t

e−ρ(s−t)f(s,Xt,x
s ,αs)ds+ e−ρ(θ−t)v(θ,Xt,x

θ )

]
, (2.4)

for any stopping time θ ∈ Tt,T .

By the dynamic programming principle, one can split the optimization problem into two parts.
An optimal control may be obtained by first searching for an optimal control from a time θ given
the state value Xt,x

θ , in other words, compute v(θ,Xt,x
θ ). Then, the quantity

E

[∫ θ

t

e−ρ(s−t)f(s,Xt,x
s ,αs)ds+ e−ρ(θ−t)v(θ,Xt,x

θ )

]
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is maximized over all controls on [t, θ]. We will use this principle to set up a numerical approach
for stochastic control problems in Section 3.

Remark 2.1. By the dynamic programming principle, one can derive the well-known Hamilton-
Jacobi-Bellman (HJB) equation corresponding to problem (2.3), see [14]. This second-order non-
linear partial differential equation is the infinitesimal version of the dynamic programming principle
and reads

−∂v
∂t

(t, x) + ρv(t, x)− sup
a∈A

[Lav(t, x) + f(t, x, a)] = 0, ∀(t, x) ∈ [0, T )× R
n, (2.5)

with differential operator of second order

Lav(t, x) = b(x, a) ·Dxv(t, x) +
1
2 tr(σσ

′(x, a)D2
xv(t, x)), (2.6)

where σσ′(x, a) is an n × n matrix with components (σσ′)ij(x, a) =
∑d

k=1 σik(x, a)σjk(x, a). La

is called the infinitesimal generator associated to the diffusion Xt with constant control a. The
vector Dx denotes the gradient of a function and matrix D2

x consists of its second derivatives. The
terminal condition is v(T, x) = g(x), ∀x ∈ R

n, resulting from the definition of the value function.

Stochastic control problems may be solved by the use of PDE methods to the corresponding HJB
equation. We refer to [8] and [16] for numerical discretization methods. Then, issues about con-
vergence to the correct, viscosity solution arise. The viscosity solution concept was introduced by
P.L. Lions ([10]). We refer to [2] for a general introduction to viscosity solutions and some general
uniqueness and existence results. As we use the dynamic programming approach, we will not go
into details about this.

3 COS method for stochastic control problems

In this section, we set up a general method to solve stochastic control problems under a one-
dimensional1 Lévy process, Xt, for which the characteristic function is known. This class contains
the constant coefficient jump diffusion processes. The method is based on the dynamic program-
ming principle and uses the so-called COS formula, which was developed in [6] for pricing European
options. It results in a recursive algorithm based on the Fast Fourier Transform algorithm. We
will explain the COS formula in Section 3.1. We start here with the discrete-time framework of
the solution method.

Initial time is denoted by t0 and T is the terminal time. We take a fixed equidistant grid of control
times t0 < t1 < . . . tm < . . . < tM = T , with Δt := tm+1 − tm, and a bounded set of possible
control values A ⊂ R

�. As a discrete approximation, we assume that the control processes are
constant during the time intervals [tm, tm+1]. At each control time tm, with m < M , one can
choose a control value from the set A, which influences the stochastic process during the time
interval [tm, tm+1]. This value is denoted by αm, where the subscript refers to the control time.
The choice may depend on the current value of the state process. With this notation, bold faced
α denotes a control process and αm denotes a single control value.

Remark 3.1. For diffusion processes, as in (2.1), the stochastic process evolves according to the
following dynamics:

dXs = b(s,Xs, αm)ds+ σ(s,Xs, αm)dWs, for s ∈ [tm, tm+1]. (3.1)

In the examples in Section 5 we will use processes of this form, to be precise, geometric Brownian
motions. Their log-transformed dynamics belong to the class of Lévy processes, which we consider
from now on.

1Extension of the methodology to higher dimensional state processes is part of forthcoming research.
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The value function reads

v(t, x) := max
α∈Â

E

[∫ T

t

e−ρ(s−t)f(s,Xt,x
s ,αs)ds+ e−ρ(T−t)g(Xt,x

T )

]
. (3.2)

Â ⊂ A denotes the set of all possible control paths {αm}M−1
m=0 , where αm is valued in the control

set A. The terminal condition is v(T, y) = g(y). We deal with a discrete-time stochastic control
problem, with M control times. Convergence of the numerical solution to the solution of the
original problem (2.3) is achieved by increasing the number of time steps (value of M).

The dynamic programming principle now gives:

v(tm−1, x) = max
αm−1∈A

E
tm−1,x

[∫ tm

tm−1

e−ρ(s−t)f(s,Xs, αm−1)ds+ e−ρΔtv(tm, Xtm)

]

= max
αm−1∈A

[∫ tm

tm−1

e−ρ(s−t)
E
tm−1,x[f(s,Xs, αm−1)]ds+ e−ρΔt

E
tm−1,x [v(tm, Xtm)]

]
.

(3.3)

For ease of notation, we use the form E
t,x[Xs] instead of E[Xt,x

s ]. We presume that the first term
in the maximization operator, i.e. the time integral, is known analytically, or can be approximated
using, for example, a numerical integration rule. We denote this value by F (tm−1, x, αm−1) and
call it the profit function. The expectation in the second term, which we call the continuation
value, is denoted by c(tm−1, x, αm−1). So, we use the notation

v(tm−1, x) = max
αm−1∈A

[F (tm−1, x, αm−1) + c(tm−1, x, αm−1)]. (3.4)

3.1 Fourier cosine expansion formula (COS formula)

Next, we explain the method of choice to approximate the continuation value, in the backward
recursion,

c(tm−1, x, α) = e−ρΔt
E
[
v(tm, Xtm)|Xtm−1 = x, αm−1 = α

]
= e−ρΔt

∫
R

v(tm, y)f(y|x, α)dy. (3.5)

The numerical method is based on series expansions of the value function at the next time level
and the density function. The resulting equation is called the COS formula, due to the use of
Fourier-cos ine series expansions. Fourier series expansions and their convergence properties have
been discussed in [1].

The conditional density function f(y|x, α) decays to zero rapidly as y → ±∞, so that we can,
for given x, truncate the infinite integration range of the expectation to some interval [a, b] ⊂ R

without loosing significant accuracy. This gives the approximation

c1(tm−1, x, α|[a, b]) = e−ρΔt

∫ b

a

v(tm, y)f(y|x, α)dy

= e−ρΔt

∫ b

a

v(tm, y)

+∞∑′

k=0

Gk(x, α) cos

(
kπ
y − a

b− a

)
dy. (3.6)
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The notation ci is used for the different approximations of c and keeps track of the numerical errors
that set in from each step. In the second equation in (3.6), the conditional density is replaced by
its Fourier cosine expansion in y on [a, b], with series coefficients {Gk(x, α)}+∞

k=0 defined by

Gk(x, α) :=
2

b− a

∫ b

a

f(y|x, α) cos
(
kπ
y − a

b− a

)
dy. (3.7)

∑′ in (3.6) indicates that the first term in the summation is weighted by one-half. We interchange
summation and integration and define:

Vk(tm) :=
2

b− a

∫ b

a

v(tm, y) cos

(
kπ
y − a

b− a

)
dy, (3.8)

which are the Fourier cosine series coefficients of v(tm, y) on [a, b]. This results in

c1(tm−1, x, α|[a, b]) =
b− a

2
e−ρΔt

+∞∑′

k=0

Gk(x, α)Vk(tm). (3.9)

Truncation of the series summation gives us the approximation

c2(tm−1, x, α|[a, b], N) =
b− a

2
e−ρΔt

N−1∑′

k=0

Gk(x, α)Vk(tm). (3.10)

The coefficients Gk(x, α) can now be approximated as follows

Gk(x, α) ≈ 2

b− a

∫
R

f(y|x, α) cos
(
kπ
y − a

b− a

)
dy

=
2

b− a
Re

(
ϕ

(
kπ

b− a

∣∣∣x, α) e−ikπ a
b−a

)
:= Fk(x, α). (3.11)

Re (.) denotes taking the real part of the input argument. ϕ(.|x, α) is the conditional characteristic
function of Xtm , given Xtm−1 = x and αm−1 = α. The density function of a stochastic process is
usually not known, but often its characteristic function is known (see [5], [6]). Moreover, for Lévy
processes it follows that:

ϕ(u|x, α) = ϕ(u|0, α)eiux := ϕlevy(u|α)eiux. (3.12)

Inserting the above equations in (3.10) gives us the COS formula for approximation of c(tm−1, x, α):

ĉ(tm−1, x, α|[a, b], N) := c3(tm−1, x, α|[a, b], N)

= e−ρΔt

N−1∑′

k=0

Re

(
ϕlevy

(
kπ

b− a

∣∣∣α) eikπ x−a
b−a

)
Vk(tm). (3.13)

Since the terms Vk(tm) are independent of x, we can calculate the continuation value for many
values of x simultaneously.

The value function is now approximated by

v̂(tm−1, x) := max
αm−1∈A

[F (tm−1, x, αm−1) + ĉ(tm−1, x, αm−1)]. (3.14)
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3.2 Recursion formula for coefficients Vk

The algorithm for solving stochastic control problems is based on the recursive recovery of the
coefficients Vk, starting with the coefficients at the terminal time:

Vk(tM ) =
2

b − a

∫ b

a

v(T, y) cos

(
kπ
y − a

b− a

)
dy, (3.15)

for which we assume that an analytic solution is available. This is the case for, among others,
exponential and polynomial terminal reward functions. These coefficients are used for the approx-
imation of the continuation value at time tM−1.

Next we consider the coefficients that are used to approximate the continuation value at time tm−1,
for m ≤ M − 1. The value function, equation (3.4), at time tm appears in the terms Vk(tm) and
we need to find an optimal control law for all state values y ∈ [a, b]. We propose two techniques
for this:

• Firstly, suppose that the set A of possible control values is finite, A = {α1, . . . , αq, . . . , αK},
where K is a finite number. Then it may be possible to determine sub-domains Dq

m ⊂ [a, b],
so that for each y ∈ Dq

m it is optimal to choose control αq
m at control time tm. The subscript

of αq
m indicates the time level and the superscript the control value. This approach will be

applied to the problem in Section 5.1.

• If this procedure cannot be applied, or in case the control set A is a continuous range, then
the interval [a, b] is divided into sub-intervals, which span the interval [a, b]. They are denoted
by Dq

m, q = 1, 2, . . . ,K, where K is a finite number. On each sub-interval, Dq
m, we determine

the optimal control, αq
m, for the time interval [tm, tm+1]. We here assume that the control

value is constant over the spatial sub-interval. With many sub-intervals this approximation
may be sufficiently accurate. This approach will be used in the application in Section 5.2.

In both approaches, we split the integral for the definition of Vk into different parts:

Vk(tm)

=
2

b− a

K∑
q=1

∫
Dq

m

F (tm, y, α
q
m) cos

(
kπ
y − a

b − a

)
dy +

2

b− a

K∑
q=1

∫
Dq

m

c(tm, y, α
q
m) cos

(
kπ
y − a

b − a

)
dy

:=

K∑
q=1

Uk(tm,Dq
m, α

q
m) +

K∑
q=1

Ck(tm,Dq
m, α

q
m), (m 
=M). (3.16)

Here assume that the terms Uk are known analytically2,

Uk(tm, z1, z2, α) =
2

b− a

∫ z2

z1

F (tm, y, α) cos

(
kπ
y − a

b− a

)
dy, (3.17)

where z1 and z2 denote the boundaries of interval Dq
m. In practical applications these terms may be

independent of time. The coefficients Ck at time tm can be approximated by using the coefficients
Vk from the next time level, as we will explain shortly. This results in a backward recursion of the
coefficients Vk.

2This is the case for, amongst others, exponential and polynomial functions F . If these terms are not known
analytically, they can be approximated by numerical integration rules or discrete Fourier cosine transforms.
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For approximation of the value function at time tM−2 we need the coefficients Vk(tM−1). We will
use the approximated values, ĉ(tM−1, y, α), to approximate the terms Ck(tM−1, z1, z2, α). This
approximation is then denoted by Ĉk(tM−1, z1, z2, α) and results in the coefficients:

V̂k(tM−1) :=

K∑
q=1

Uk(tM−1,Dq
M−1, α

q
M−1) +

K∑
q=1

Ĉk(tM−1,Dq
M−1, α

q
M−1). (3.18)

On the integrands of terms Ĉk we can apply again the Fourier cosine series expansion by inserting
equation (3.13):

Ĉk(tM−1, z1, z2, α)

=
2

b− a

∫ z2

z1

ĉ(tM−1, y, α) cos

(
kπ
y − a

b− a

)
dy

= e−ρΔt 2

b− a

∫ z2

z1

⎛
⎝N−1∑′

j=0

Re

(
ϕlevy

(
jπ

b− a

∣∣∣α) eijπ y−a
b−a

)
Vj(tM )

⎞
⎠ cos

(
kπ
y − a

b − a

)
dy

= e−ρΔtRe

⎛
⎝N−1∑′

j=0

ϕlevy

(
jπ

b− a

∣∣∣α)Vj(tM ) ·Mk,j(z1, z2)

⎞
⎠ , (3.19)

where the elements of matrix M(z1, z2) are given by:

Mk,j(z1, z2) :=
2

b− a

∫ z2

z1

eijπ
y−a
b−a cos

(
kπ
y − a

b− a

)
dy. (3.20)

Finally, we end up with the vector form

V̂ (tM−1) =

K∑
q=1

U(tM−1,Dq
M−1, α

q
M−1) +

K∑
q=1

e−ρΔtRe
(
M(Dq

M−1)w
q
)
, (3.21)

where

wq = {wq
j}N−1

j=0 with wq
j = ϕ

(
jπ

b− a

∣∣∣αq
M−1

)
Vj(tM ), wq

0 = 1
2ϕ(0|α

q
M−1)V0(tM ). (3.22)

The parameters of the matrices M are the boundary values of their respective integration ranges.

For the other coefficients, Vk(tm), 1 ≤ m ≤ M − 2, the approximations ĉ(tm, y, α) and V̂k(tm+1)
will be used to approximate the terms Ck(tm, z1, z2, α). The same arguments give the following
numerical approximation of the Fourier cosine coefficients at time tm:

V̂ (tm) =

K∑
q=1

U(tm,Dq
m, α

q
m) +

K∑
q=1

e−ρΔtRe (M(Dq
m)ŵq) , (m = 1, . . . ,M − 2), (3.23)

where

ŵq = {ŵq
j}N−1

j=0 with ŵq
j = ϕ

(
jπ

b− a

∣∣∣αq
m

)
V̂j(tm+1), ŵq

0 = 1
2ϕ(0|αq

m)V̂0(tm+1). (3.24)

An additional error is introduced because the coefficients are approximated using the approximated
elements V̂j(tm+1). We will examine this evolving error in Sections 4.2 and 4.3 and propose a more
accurate approximation for the Fourier-coefficients Vk(tm).
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3.3 Algorithm

The matrix-vector products Mw in the terms Ĉ can be computed by a Fourier-based algorithm,
as stated in the next result:

Result 3.1. (Efficient computation of Ĉ(tm, z1, z2, α))[7]
The matrix-vector product M(z1, z2)w can be computed in O(N log2N) operations, with the help
of the Fast Fourier Transform (FFT) algorithm.

The key insight of this efficient computation is the equality

Mk,j(z1, z2) = − i

π

(
M c

k,j(z2, z2) +M s
k,j(z1, z2)

)
, (3.25)

where matrix M c is a Hankel matrix and M s a Toeplitz matrix (M c
i,j = M c

i−1,j+1 and M s
i,j =

M s
i+1,j+1). The matrices M c

k,j and M s
k,j can be found in [7]. The special matrix structure enables

us to use the FFT algorithm for the matrix-vector products ([7]). If a process does not possess the
property in equation (3.12), the FFT algorithm cannot be employed in a straightforward way (see
[19]).

We can recover the terms V̂k(tm) recursively, starting with Vk(tM ). The algorithm to solve the
discrete-time stochastic control problem (3.2) backwards in time then reads:

Algorithm 1. (COS method for stochastic control problems)
Initialization:
Calculate coefficients Vk(tM ) for k = 0, 1, . . . , N − 1.
Main loop to recover V̂ (tm): For m =M − 1 to 1:

• Determine the sub-domains Dq
m for which the optimal control value is αq

m, or
determine the optimal control values αq

m for given sub-domains Dq
m.

• Compute V̂ (tm), equation (3.23), with the help of the FFT algorithm.

Final step:
Compute v̂(t0, x0) by inserting V̂k(t1) into equation (3.13).

The computational complexity of the algorithm is O
(
MKN log2N

)
, as we need to compute M

time steps, and K sub-intervals.

Remark 3.2. We elaborate on the differences between using the COS method for pricing Bermudan
and barrier options and for solving stochastic control problems. In Algorithm 1, we search for an
optimal control law for all state values y in the computational domain [a, b]. For this, the numerical
continuation values need to be accurate over the entire interval. Significant errors may arise,
however, in the vicinity of the boundaries, as we will show in Sections 4.1 and 5.2. In Section 4.2,
a remedy for this problem will be proposed. When pricing barrier and Bermudan call options, as
in [7], one searches for the early-exercise points, where the continuation value equals the payoff.
For this task, interval [a, b] can be chosen large so that the early-exercise points are not close to the
interval boundaries. When pricing financial options, this type of inaccuracy does thus not occur in
practice, e.g., for usual values of maturity T .

Another difference in applying the COS method to stochastic control problems is the dependency
of the characteristic function on the control values. As this function is evaluated often during the
optimization procedure, it may be time-consuming.
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4 Error analysis and extrapolation technique

In this section, we analyze the error of the COS method for stochastic control problems and base
our analysis on [6], [7], and [17]. Errors are introduced by the COS formula and by evolution
through time via the coefficients V̂k and a possibly incorrect control α. We start with the local
error where backward recursion of the approximated terms, V̂k, and control are not taken into
account, in Section 4.1. In the financial context, this corresponds to a European option with an
uncontrolled asset price process. We give an example in which the COS formula is inaccurate in the
vicinity of a domain boundary (Section 4.1.1). This may give difficulties with the recursive recovery
of the Fourier cosine coefficients Vk(tm). In Section 4.2, we propose an improved approximation
for Vk(tm), which is more accurate than V̂k(tm) from (3.23). Finally, the propagating error in the
backward recursion is studied and bounded.

4.1 Local error COS formula

We define the local error of the COS formula for the continuation value by

εCOS(tm−1, x, α|[a, b], N) := c(tm−1, x, α)− ĉ(tm−1, x, α|[a, b], N). (4.1)

The above notation includes the parameters used for the approximations, namely [a, b] and N .
The error

max
αm−1∈A

|εCOS(tm−1, x, αm−1|[a, b], N)| (4.2)

bounds the absolute error of the approximated value function v̂(tm−1, x), assuming that the correct
optimal control law has been chosen and that the function F (tm−1, x, α) is known analytically, or
can be approximated sufficiently accurate.

We first assume that the terms Vk(tm) are exact. An upper bound for the error of the European
option pricing COS formula with respect to the truncation range and the convergence rate, in
dependence of N , has been derived in [6]. Errors are introduced in three steps, we discuss them
one after the other:

1. The integration range truncation error:

ε1(tm−1, x, α|[a, b]) := c(tm−1, x, α) − c1(tm−1, x, α|[a, b]) = e−ρΔt

∫
R\[a,b]

v(tm, y)f(y|x, α)dy.

(4.3)
If v(tm, y)f(y|x, α) is sufficiently small outside the interval [a, b], then the error ε1 can be ignored.

2. The series truncation error on [a, b]:

ε2(tm−1, x, α|[a, b], N) := c1(tm−1, x, α|[a, b])− c2(tm−1, x, α|[a, b], N)

=
b− a

2
e−ρΔt

+∞∑
k=N

Gk(x, α)Vk(tm). (4.4)

The convergence rate of Fourier cosine series depends on the properties of the approximated func-
tions in the expansion interval. Information about different convergence types can be found in [1].
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For N large, so that |Vk(tm)| ≤ 1 for k ≥ N , the error can be bounded by

|ε2(tm−1, x, α|[a, b], N)| =

∣∣∣∣∣b− a

2
e−ρΔt

+∞∑
k=N

Gk(x, α)Vk(tm)

∣∣∣∣∣
≤ b− a

2
e−ρΔt

+∞∑
k=N

|Gk(x, α)|. (4.5)

The error is dominated by the series truncation error of the coefficients Gk.

With the theory in [1], we find that the error converges exponentially for density functions in the
class C∞([a, b]):

|ε2(tm−1, x, α|[a, b], N)| ≤ [ ] exp(−(N − 1)ν), ∀x, α, (4.6)

where ν > 0 is a constant and the empty brackets [ ] denote factors that vary slower than exponen-
tially in N . A density function with discontinuity in one of its derivatives results in an algebraic
convergence:

|ε2(tm−1, x, α|[a, b], N)| ≤ P

(N − 1)n−1
, ∀x, α, (4.7)

where P > 0 and n ≥ 1 are constants.

3. The error related to approximating Gk(x, α) by Fk(x, α) (equation (3.11)):

ε3(tm−1, x, α|[a, b], N) := c2(tm−1, x, α|[a, b], N)− c3(tm−1, x, α|[a, b], N)

=
b− a

2
e−ρΔt

N−1∑′

k=0

(Gk(x, α) − Fk(x, α))Vk(tm)

= −e−ρΔt

∫
R\[a,b]

⎡
⎣N−1∑′

k=0

cos

(
kπ
y − a

b− a

)
Vk(tm)

⎤
⎦ f(y|x, α)dy

= −e−ρΔt

∫
R\[a,b]

v̂(tm, y)f(y|x, α)dy. (4.8)

Remark 4.1. Note that the Fourier cosine series expansions in Section 3.1 are defined for y ∈
[a, b], whereas here the function v̂(tm, y) is evaluated on R\[a, b]. Here we denote by function
v̂(tm, y), for y ∈ R\[a, b], the symmetric extension of the Fourier cosine series expansion outside
the expansion interval. This value will usually be different from v(tm, y), even if N tends to infinity.

The integration range truncation error, ε1, enters by truncation of the infinite domain to the finite
domain [a, b]. Conversely, error ε3 is due to replacing the finite domain by an infinite domain in
equation (3.11). The third error ‘compensates’, completely or partly, for the first error. Addition
of both errors gives

ε1(tm−1, x, α|[a, b])+ε3(tm−1, x, α|[a, b], N) = e−ρΔt

∫
R\[a,b]

[v(tm, y)− v̂(tm, y)] f(y|x, α)dy. (4.9)

So, error ε1 + ε3 results from using e−ρΔtv̂(tm, y) instead of the true discounted value function
e−ρΔtv(tm, y). We can write the local error of the COS formula as

εCOS(tm−1, x, α|[a, b], N) = ε1(tm−1, x, α|[a, b]) + ε2(tm−1, x, α|[a, b], N) + ε3(tm−1, x, α|[a, b], N).

If, for given x, the integration interval [a, b] is chosen sufficiently wide then the series truncation
error ε2 dominates the overall local error. This implies that for smooth density functions the local
error converges exponentially to zero, otherwise it goes algebraically.
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For a given interval [a, b], the local error may however be large if x is in the vicinity of the domain
boundaries, resulting from error ε1 + ε3. We will show this by an example in the next section. A
local error may propagate via the backward recursion for a stochastic control problem.

4.1.1 Significant error in the vicinity of the boundaries

Here, an example of a large error close to the spatial boundaries is presented, when we use the
COS formula to price a European call option.

In the financial setting, the asset price at time t is denoted by St and the strike price by K. We
model the asset price by a geometric Brownian motion. The payoff of a call option at terminal
time, T , with log-asset price y = log(ST ), is given by the function

g(y) = (ey −K)+, (4.10)

where (z)+ := max(z, 0). Fourier cosine series expansion gives the approximation:

ĝ(y|[a, b], N) =

N−1∑′

k=0

Vk cos

(
kπ
y − a

b− a

)
, (4.11)

in which

Vk =
2

b− a

∫ b

a

g(y) cos

(
kπ
y − a

b− a

)
dy =

2

b− a

(
χk(logK, b, a, b)−Kψk(logK, b, a, b)

)
,

(a ≤ logK ≤ b). (4.12)

The analytic solution of the functions χk and ψk can be found in Appendix A. The risk-neutral
option pricing formula ([18]) reads

v(t0, x) = e−rΔt
E
t0,x [v(T,XT )] = e−rΔt

∫
R

g(y)f(y|x)dy, (4.13)

whereXs = logSs is the log-asset price process, r is the risk-neutral interest rate and Δt := T−t0 3.
The problem considered is a simplified, reduced version of stochastic control problem (2.3). The
COS formula yields

v̂(t0, x|[a, b], N) := e−rΔt

N−1∑′

k=0

Re

(
ϕlevy

(
kπ

b− a

)
eikπ

x−a
b−a

)
Vk

= e−rΔt

∫
[a,b]

g(y)f(y|x)dy + e−rΔt

∫
R\[a,b]

ĝ(y)f(y|x)dy − ε2(t0, x|[a, b], N).

(4.14)

We take N sufficiently large, so that error ε2 can be neglected. The equation above shows that a
significant error is introduced if ĝ(y)f(y|x) is not close to g(y)f(y|x) outside the expansion interval
[a, b], which is the case in the example to follow.

For the call option under geometric Brownian motion an analytic solution is available, i.e. the
Black-Scholes price, so that the numerical option value can be compared with the exact solution.
The following parameters are used for the tests in this section:

K = 100, S0 = 100 (x0 ≈ 4.6), r = 0.1, q = 0, T = 0.1, σ = 0.25, [a, b] = [3.82, 5.40], N = 210.
(4.15)

3Note that there is no control process α and no running profit function in this test.
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The parameters and the interval [a, b] are adopted from [6]. Log-asset price, x, is varied and the
results are shown in Figure 4.1. In the left-side plot, function g(y), the series expansion, and its
extension outside [a, b], which is symmetric in a and b, are presented. Function ĝ(y) resembles the
true payoff function well at the left-hand side of a, as the function is constant there. Hence, no
error is introduced in the vicinity of that boundary. However, at the right-side of b a difference
between the two functions is observed, which gives a significant error ε1+ε3 at that boundary. This
is shown in the right-side plot, where the exact Black-Scholes price and the COS approximation
are presented.
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Figure 4.1: Example of a significant error, ε1 + ε3, close to one of the boundaries.

The numerical option value for initial log-asset price, x0, is highly accurate, with an error less
than 10−14. However, inaccuracies at some place in the domain [a, b] may seriously affect the
backward recursion of the Fourier-coefficients, Vk(tm), when a stochastic control problem is solved
recursively.

4.2 Extrapolation method

The coefficients Vk(tm) are recovered recursively, backwards in time. In that case, the local error,
εCOS , described in the previous section, may propagate through time. Here, we propose a technique
to deal with this issue. In Section 4.3, we prove that the error of the approximated Fourier
coefficients converges exponentially in N , for probability density functions in the class C∞([a, b]).

Recall that the approximated Fourier cosine coefficients at time tm−1 are given by

V̂k(tm−1) =
2

b− a

∫ b

a

[
max

αm−1∈A
[F (tm−1, x, αm−1) + ĉ(tm−1, x, αm−1)]

]
cos

(
kπ
x− a

b− a

)
dx.

From this definition it follows that inaccurate numerical continuation values at time tm−1 may affect
the choice of the optimal control value and the coefficients, which in turn affect the continuation
value at time tm−2, and so on.

The idea to deal with the propagating error is to determine the area in which inaccurate approx-
imate values from the COS method occur. In this area, we employ an extrapolation technique to
compute a value with improved accuracy, using the accurate numerical continuation values from
the neighboring region.

In practical applications, it may be possible to determine the area in which ĉ(tm−1, x, α) is in-
accurate, assuming that coefficients Vk(tm) are exact. The density function, together with the
value function, give the desired information. For instance, suppose we can calculate a value x∗, so
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that the continuation value is well approximated for x ∈ [x∗, b] and is inaccurate for x ∈ [a, x∗] 4.
The continuation function c(tm−1, x, α), on [a, x∗], can then be approximated by an extrapolation
technique. For this, we employ a second-order Taylor expansion in x∗:

cex(tm−1, x, α) := ĉ(tm−1, x
∗, α) + ĉx(tm−1, x

∗, α)(x − x∗) + 1
2 ĉxx(tm−1, x

∗, α)(x− x∗)2. (4.16)

The derivatives can easily be computed in this setting, as:

ĉx(tm−1, x
∗, α) = e−ρΔt

N−1∑′

k=0

Re

(
ϕlevy

(
kπ

b − a

∣∣∣α) eikπ x∗−a
b−a

ikπ

b− a

)
Vk(tm), (4.17)

ĉxx(tm−1, x
∗, α) = e−ρΔt

N−1∑′

k=0

Re

(
ϕlevy

(
kπ

b− a

∣∣∣α) eikπ x∗−a
b−a

(
ikπ

b− a

)2
)
Vk(tm). (4.18)

We denote the extrapolated continuation value by

c̃(tm−1, x, α) :=
{ cex(tm−1, x, α), for x ∈ [a, x∗],
ĉ(tm−1, x, α), for x ∈ [x∗, b].

(4.19)

The local error of the COS formula with extrapolation technique is denoted by

ε̃COS(tm−1, x, α|[a, b], N) := c(tm−1, x, α)− c̃(tm−1, x, α|[a, b], N), (4.20)

and we have:
ε̃COS(tm−1, x, α|[a, b], N) = O((x − x∗)3), for x ∈ [a, x∗]. (4.21)

We use continuation value c̃ to determine the optimal control law and to approximate the terms
Ck by

C̃k(tm−1, z1, z2, α) :=
2

b− a

∫ z2

z1

c̃(tm−1, y, α) cos

(
kπ
y − a

b− a

)
dy. (4.22)

The corresponding Fourier coefficients are denoted by Ṽk(tm−1).

Suppose the interval [z1, z2] ⊂ [a, b] can be divided into [z1, x
∗] and [x∗, z2]. Then the corresponding

Fourier cosine coefficients read

C̃k(tm−1, z1, z2, α) =
2

b − a

∫ x∗

z1

cex(tm−1, x
∗, α) cos

(
kπ
y − a

b− a

)
dy

+ e−ρΔtRe

⎛
⎝N−1∑′

j=0

ϕlevy

(
jπ

b− a

∣∣∣α) Vj(tm) ·Mk,j(x
∗, z2)

⎞
⎠ , (4.23)

where the analytic solution to the first part can be found in Appendix B. The extrapolation
technique can be improved by using a higher-order Taylor expansion. In that case, a similar
approach can be applied.

Remark 4.2. If we know that the continuation value should be of exponential form, which is
sometimes the case for the type of problems we are interested in, it may be more accurate to use
an exponential extrapolation to approximate function c(tm−1, x, α) on [a, x∗], as follows:

cex(tm−1, x, α) := ĉ(tm−1, x
∗, α) exp

(
w(y − x∗)

)
, for x ∈ [a, x∗], (4.24)

with

w =
ĉx(tm−1, x

∗, α)
ĉ(tm−1, x∗, α)

. (4.25)

We will also use this form in an example in Section 5.2.

4The methodology above can also be applied if the approximated continuation value is inaccurate in a certain
area [x∗∗, b].
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4.3 Error propagation in the backward recursion

In this section, we study the error of the Fourier cosine coefficients in the backward recursion. We
start with the algorithm without the extrapolation technique and define

εk(tm, z1, z2, α) := Ck(tm, z1, z2, α)− Ĉk(tm, z1, z2, α). (4.26)

The terms Uk are assumed to be exact, so that the error in the Fourier coefficients is given by

εk(tm) := Vk(tm)− V̂k(tm) =

K∑
q=1

εk(tm,Dq
m, α

q
m). (4.27)

We assume that an accurate, true control law 5 is found, which is denoted by α∗
m. Here the

dependency on the state value is omitted. The error may be larger in case of incorrect control
values.

At time lattice M − 1 we have:

εk(tM−1, z1, z2, α) =
2

b− a

∫ z2

z1

(c(tM−1, y, α)− ĉ(tM−1, y, α)) cos

(
kπ
y − a

b− a

)
dy

=
2

b− a

∫ z2

z1

εCOS(tM−1, y, α) cos

(
kπ
y − a

b− a

)
dy. (4.28)

Here we omit the dependency of the error on the interval [a, b] and N . Coefficients Vk(tM ) are
assumed to be known analytically, so that the only error introduced by the COS formula is the
local error, εCOS . This error may be significant close to the domain boundaries a and b. We end
up with

εk(tM−1) =
2

b− a

∫ b

a

εCOS(tM−1, y, α
∗
M−1) cos

(
kπ
y − a

b− a

)
dy. (4.29)

Note that the terms εk(tM−1) are the Fourier cosine coefficients of the local error at time tM−1 on
the expansion interval [a, b].

For the approximation of c(tM−2, x, α) the COS formula with coefficients V̂k(tM−1) is used. The
approximated value is denoted by c(tM−2, x, α). The use of the approximations V̂k(tM−1) in
equation (3.23) gives rise to an additional error in Ck(tM−2, z1, z2, α):

εk(tM−2, z1, z2, α) =
2

b− a

∫ z2

z1

(c(tM−2, y, α)− c(tM−2, y, α)) cos

(
kπ
y − a

b − a

)
dy, (4.30)

with c obtained by inserting V̂k(tM−1) in the COS formula:

c(tM−2, y, α) = e−ρΔt

N−1∑′

j=0

Re

(
ϕlevy

(
jπ

b− a

∣∣∣α) eijπ y−a
b−a

)
V̂j(tM−1)

= e−ρΔt

N−1∑′

j=0

Re

(
ϕlevy

(
jπ

b− a

∣∣∣α) eijπ y−a
b−a

)
(Vj(tM−1)− εj(tM−1))

= ĉ(tM−2, y, α)− e−ρΔt

N−1∑′

j=0

Re

(
ϕlevy

(
jπ

b− a

∣∣∣α) eijπ y−a
b−a

)
εj(tM−1).(4.31)

5which is an optimistic assumption if the continuation value is inaccurate.
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The error in the coefficients Ck can now be separated into two parts:

εk(tM−2, z1, z2, α)

=
2

b− a

∫ z2

z1

(c(tM−2, y, α)− ĉ(tM−2, y, α) + ĉ(tM−2, y, α)− c(tM−2, y, α)) cos

(
kπ
y − a

b− a

)
dy

=
2

b− a

∫ z2

z1

(εCOS(tM−2, y, α) + ε(tM−2, y, α)) cos

(
kπ
y − a

b− a

)
dy, (4.32)

where

ε(tM−2, y, α) = e−ρΔt

N−1∑′

j=0

Re

(
ϕlevy

(
jπ

b− a

∣∣∣α) eijπ y−a
b−a

)
εj(tM−1). (4.33)

ε resembles the COS formula (3.13), now with Fourier coefficients εj(tM−1). For sufficiently large
value of N we find

ε(tM−2, y, α)

= e−ρΔt

∫
[a,b]

εCOS(tM−1, z, α
∗
M−1)f(z|y, α)dz + e−ρΔt

∫
R\[a,b]

ε̂COS(tM−1, z, α
∗
M−1)f(z|y, α)dz

≈ e−ρΔt
E
tM−2,y[εCOS(tM−1, XtM−1 , α

∗
M−1)], (4.34)

where ε̂COS is the Fourier cosine expansion of the local error. So,

c(tM−2, y, α)−c(tm−1, y, α) ≈ εCOS(tM−2, y, α|[a, b], N)+e−ρΔt
E
tM−2,y[εCOS(tM−1, XtM−1 , α

∗
M−1)].
(4.35)

The recursive algorithm gives

εk(tm) ≈ 2

b− a

∫ b

a

(εCOS(tm, y, α
∗
m) + e−ρΔt

E
tm,y[εCOS(tm+1, Xtm+1 , α

∗
m+1)]) cos

(
kπ
y − a

b− a

)
dy.

(4.36)
The first part of the error is due to the use of the COS formula at time tm. The possible propaga-
tion of errors from time level tm+1 causes the second part to appear. The value of the expectation
depends on the drift and diffusion of the stochastic process6. A clarifying example is provided in
Section 5.2.1. It is not possible to bound the error εk(tm) by increasing the number of terms in
the Fourier series expansions, N , as the error ε1 + ε3 remains. The propagation of the error may
give rise to incorrect results of the algorithm.

Next we discuss the error convergence if we employ the extrapolation methodology from Section
4.2. The error in the terms Ck is redefined by

εk(tm, z1, z2, α) := Ck(tm, z1, z2, α)− C̃k(tm, z1, z2, α) (4.37)

and

εk(tm) := Vk(tm)− Ṽk(tm) =

K∑
q=1

εk(tm,Dq
m, α

q
m). (4.38)

Result 4.1. With a sufficiently accurate extrapolation technique, with [a, b] ⊂ R chosen sufficiently
wide and a probability density function f in C∞([a, b]), error εk(tm) converges exponentially in N
for 1 ≤ m ≤M − 1.

The proof of this result is similar to that for pricing Bermudan options, which can be found in
[7]. Note that error ε1 + ε3 has now been reduced. It can also be proved that if the local error
converges algebraically, then so does ε.

6A large error εCOS at the left-hand side of the computational domain may ‘disappear’ by a large positive drift.
It may travel through the domain for other drift terms.
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5 Examples

In this section, we apply Algorithm 1 to two different stochastic control problems. In the first
example, we calculate the price of a butterfly option under uncertain volatility. Because we are
dealing with zero option values at both boundaries, interval [a, b] can be chosen sufficiently large
and extrapolation of the continuation value is not required for accuracy.

The second example deals with an optimal consumption-portfolio problem, with which we can
demonstrate the impact of a significant error near the spatial boundaries, and its propagation.
The continuous-time variant of this stochastic control problem admits an analytic solution. This
problem is thus instructive as we can show the propagation of a local error and the improvement
by extrapolation of the continuation value.

5.1 Butterfly option under uncertain volatility

The model we use for pricing a butterfly options under uncertain volatility is based on the problem
described in [16]. The setting of this problem is the financial option market. The dynamics of the
asset price is assumed to evolve according to the following dynamics:

dSs = rSsds+αsSsdWs, S0 given. (5.1)

(αs)0≤s≤T is an uncertain volatility process, which is valued in the interval [α−, α+] and r is the
risk-neutral interest rate. We consider the worst case for an investor with a long position in a
European-style option. Then, the value function reads:

v(t, S) = inf
α∈A

J(t, S,α) = inf
α∈A

E[e−r(T−t)g(ST )], (5.2)

where g(.) is the payoff function of a butterfly option at terminal time T , which is given by:

g(S) = (S −K1)
+ − 2

(
S − K1 +K2

2

)+

+ (S −K2)
+, (5.3)

for certain strike prices K1 and K2. The pricing problem is now formulated as a stochastic control
problem, whereby the process αs is the control process, with values in A = [α−, α+]. Note that
there is no running profit function included in this problem formulation, but only a terminal reward
function.

Contrary to the problem in equation (2.3), the infimum over gain functions J(.) is taken. However,
similar theory and solution algorithms can be developed for minimization problems.

Remark 5.1. The corresponding Hamilton-Jacobi-Bellman equation reads

−∂v
∂t

(t, S) + rv(t, S) − min
α∈[α+,α−]

[
rS

∂v

∂S
(t, S) +

1

2
α2S2 ∂

2v

∂S2
(t, S)

]
= 0, ∀(t, S) ∈ [0, T )× R+,

(5.4)
which yields

if ∂2v
∂S2 ≤ 0 ⇒ take α = α+,

if ∂2v
∂S2 > 0 ⇒ take α = α−.

(5.5)

This allows us to restrict the set of possible control values to A = {α−, α+}. We see that the

control value, that is the volatility, is a function of the Greek Γ = ∂2v
∂S2 .

The same partial differential equation is derived for a transaction costs model in [9].
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As before, we consider an equidistant time grid, t0, t1, . . . , tM = T , with Δt := tm − tm−1. In the
numerical approximation a constant volatility αm ∈ {α−, α+} is applied within the time intervals
[tm, tm+1]. We switch to the log-asset price process Xs = logSs, so

dXs = (r − 1
2α

2
m)ds+ αmdWs, for s ∈ [tm, tm+1]. (5.6)

We use here the dynamic programming principle to determine

v(tm−1, x) = min
αm−1∈{α−,α+}

e−ρΔt
E[v(tm, Xtm)|Xtm−1 = x, αm−1]

= min
[
c(tm−1, x, α

−), c(tm−1, x, α
+)
]
, (5.7)

with continuation value

c(tm−1, x, α) = e−ρΔt
E[v(tm, Xtm)|Xtm−1 = x, αm−1 = α]

≈ e−ρΔt

N−1∑′

k=0

Re

(
ϕlevy

(
kπ

b− a

∣∣∣α) eikπ x−a
b−a

)
Vk(tm) := ĉ(tm−1, x, α). (5.8)

The characteristic function, ϕlevy(u|α) = exp(iu(r− 1
2α

2)Δt− 1
2u

2α2Δt), depends on the volatility
α.

Algorithm 1 is used to solve the pricing problem. The coefficients at the terminal time are known
analytically

Vk(tM ) :=
2

b− a

∫ b

a

g(ey) cos

(
kπ
y − a

b− a

)
dy

=
2

b− a

[
χk(logK1, b, a, b)− 2χk

(
log

K1 +K2

2
, b, a, b

)
+ χk(logK2, b, a, b)

−K1ψk(logK1, b, a, b) + (K1 +K2)ψk

(
log

K1 +K2

2
, b, a, b

)
+K2ψk(logK2, b, a, b)

]
,

(a ≤ logK1, logK2 ≤ b), (5.9)

see Appendix A for the analytic solution to the functions χk and ψk. For the other time levels the
Fourier coefficients are approximated by

V̂k(tm) =
2

b− a

∫ b

a

min
[
ĉ(tm, y, α

−), ĉ(tm, y, α+)
]
cos

(
kπ
y − a

b− a

)
dy. (5.10)

It is worth mentioning that we do not need to use the extrapolated value Ṽk, with function c̃,
from Section 4.2. The reason for this is that the value function converges to zero if the log-asset
price goes to plus or minus infinity. So, for sufficiently large intervals [a, b], the value function
on time lattice tm+1 is almost zero outside the expansion interval. Then, by assuming that N is
chosen sufficiently large, the function v̂(tm+1, x) is also accurate outside [a, b] and the local error
of the COS formula at time tm is small for all y ∈ [a, b]. Because of this, extrapolation for the
continuation value is not necessary.

We can divide the integration interval [a, b] into sub-domains D−
m and D+

m, for which the optimal
control values at control time tm are α−

m and α+
m, respectively:

V̂k(tm) =
2

b− a

∫
D−

m

ĉ(tm, y, α
−
m) cos

(
kπ
y − a

b− a

)
dy +

2

b− a

∫
D+

m

ĉ(tm, y, α
+
m) cos

(
kπ
y − a

b− a

)
dy

:= Ĉk(tm,D−
m, α

−
m) + Ĉk(tm,D+

m, α
+
m). (5.11)
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Inserting the COS formula results in the following recursive formula for the coefficients Ĉk:

Ĉk(tm, z1, z2, α) =
2

b− a

∫ z2

z1

ĉ(tm, y, α) cos

(
kπ
y − a

b− a

)
dy

≈ e−ρΔtRe

⎛
⎝N−1∑′

j=0

ϕlevy

(
jπ

b− a

∣∣∣α) V̂j(tm+1)Mk,j(z1, z2)

⎞
⎠ . (5.12)

In the numerical experiment we use the following model parameters:

T = 0.25, r = 0.1, K1 = 90, K2 = 110, S0 = 100, α− = 0.15 and α+ = 0.25. (5.13)

For the integration interval we take [a, b] = [log 70, log 130].

M v̂(t0, x0)
60 2.3178

120 2.3078
240 2.3027
480 2.3002
960 2.2990

(a) Option values (N ≥ 400).

N
400 600 800 1000 1200

M

60 0.2997 0.3510 0.4365 0.5127 0.5801
120 0.5062 0.6198 0.7412 0.8670 1.0544
240 0.9727 1.1883 1.3898 1.6326 1.8447
480 1.9219 2.3336 2.7366 3.1954 3.5870
960 3.8537 4.6722 5.3908 6.2907 7.1339

(b) CPU times (s).

Table 5.1: Results butterfly option pricing model.

In Tables 5.1a and 5.1b, results for different values ofM and N are shown. The option values have
converged in N up to nine decimal places, for N ≥ 400. Increasing the number of control times, M ,
gives convergence to the true option value. The results are highly satisfactory and match the prices
in [16] and [15]. The computation time is linear in M and O(N log2N) in the number of terms in
the Fourier cosine series expansions. In Result 4.1, we deduced an exponentially converging error
in N , assuming that the correct control law was found. In practice, we may however find incorrect
control values for small values of N and the convergence result therefore holds for sufficiently large
N .

5.2 Optimal consumption path

The second example we discuss is a simplified version of Merton’s optimal consumption-portfolio
problem [11]. Here, an agent consumes a proportion of his wealth and invests the remaining part
in assets, with rate of return, μ, and fixed volatility, σ. The dynamics of the invested capital are
given by

dKs = μKsds+ σKsdWs. (5.14)

Let αsZs denote the amount of wealth consumed at time s, with αs the control process and wealth
Zs. Taking into account equation (5.14) and consumption gives

dZs =
Zs

Ks
dKs −αsZsds

= (μ−αs)Zsds+ σZsdWs. (5.15)

The agent chooses his consumption to maximize his expected discounted utility of consumption over
a finite time horizon with terminal time T . The optimal consumption problem can be represented
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by the stochastic control problem:

v(t, z) = max
α∈A

E
t,z

[∫ T

t

e−ρ(s−t)U(αsZs)ds+ e−ρ(T−t)U(ZT )

]
, (5.16)

where z is the current wealth level, and ρ ≥ 0 is the utility discount rate [3].

The utility function, U(.), measures the utility gain of consumption αsZs. We presume a constant
relative risk aversion (CRRA) utility function

U(C) = Cγ/γ, γ ≤ 1, γ 
= 0. (5.17)

The exact solution to this continuous-time control problem can be found by the corresponding
HJB equation and the verification theorem ([12], [14]):

v(t, z) =
b(t)

γ
zγ with b(t) =

(
1 + (ν − 1) exp(ν(t− T ))

ν

)1−γ

, (5.18)

where ν = (ρ− γμ− 1
2γ(γ − 1)σ2)/(1− γ). The optimal consumption law is then given by

α∗(t) = b(t)1/(γ−1). (5.19)

Note that this optimal control process is independent of current wealth level, z. For the tests in
this section we choose the following set of parameters:

T = 100, ρ = 0.03, γ = −3, Z0 = 100, μ = 0.04, σ = 0.1. (5.20)

Figure 5.1 shows the optimal control law. At the terminal time, T , the remaining wealth is assumed
to be completely consumed. Based on economic arguments the control process α∗(t) goes to one
if the time approaches the terminal time. At earlier time levels the control process has reached a
steady state.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Time t

α
∗ (
t)

Figure 5.1: Optimal control law α∗(t).

For the numerical approach we employ an equidistant grid of control times, t0, t1, . . . , tM = T ,
with Δt := tm − tm−1. At each control time, tm, one can choose a constant fraction of wealth,
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αm ∈ A = [0, 1], which is consumed during the time interval [tm, tm+1]
7. We switch to the log-

wealth process, Xs = logZs, so

dXs = (μ− αm − 1
2σ

2)ds+ σdWs, for s ∈ [tm, tm+1]. (5.21)

We rewrite the value function as

v(t, x) = max
α∈Â

E
t,x

[∫ T

t

e−ρ(s−t)U(αse
Xs)ds+ e−ρ(T−t)U(eXT )

]
, (5.22)

where x is the current log-wealth level. Â ⊂ A denotes the set of all possible control paths
{αm}M−1

m=0 , where αm is valued in the control set A. The dynamic programming principle gives us

v(tm−1, x) = max
αm−1∈A

E
tm−1,x

[∫ tm

tm−1

e−ρ(s−t)U(αm−1e
Xs)ds+ e−ρΔtv(tm, Xtm)

]

:= max
αm−1∈A

[F (x, αm−1) + c(tm−1, x, αm−1)]. (5.23)

For the time-independent profit function we find

F (x, α) =
αγ

γξ(α)
(eΔtξ(α) − 1)eγx, with ξ(α) = −ρ+ γ(μ− α− 1

2σ
2) + 1

2γ
2σ2. (5.24)

Applying the COS formula yields

ĉ(tm−1, x, α) = e−ρΔt

N−1∑′

k=0

Re

(
ϕlevy

(
kπ

b− a

∣∣∣α) eikπ x−a
b−a

)
Vk(tm), (5.25)

where the characteristic function is given by

ϕlevy (u|α) = exp
(
iu(μ− α− 1

2σ
2)Δt− 1

2σ
2u2Δt

)
. (5.26)

We use Algorithm 1 to solve the discrete-time stochastic control problem (5.22). The coefficients
at time tM read

Vk(tM ) =
2

b− a

∫ b

a

eγy/γ cos

(
kπ
y − a

b − a

)
dy =

2

b− a

1

γ2
χk(aγ, bγ, aγ, bγ), (5.27)

with the analytic function χk in Appendix A.

We divide the interval [a, b] into 200 equally-sized sub-intervals Dq
m and approximate the opti-

mal control value for the midpoint of each sub-interval, assuming that this value is an accurate
approximation for the entire sub-interval.

The terms Uk are time-independent and known analytically:

Uk(z1, z2, α) =
2

b− a

∫ z2

z1

F (y, α) cos

(
kπ
y − a

b− a

)
dy

=
αγ

γ2ξ(α)
(eΔtξ(α) − 1)

2

b− a
χk(z1γ, z2γ, aγ, bγ). (5.28)

7For this problem, the true optimal control values are in the set A = [0, 1]. A wider control set only makes the
difficulties that we describe here even more severe.
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The coefficients Ĉk are recovered by the coefficients V̂k from the next time level and the FFT
algorithm, as explained in Section 3.2.

We first show in Section 5.2.1 how the local error of the COS formula propagates backwards in
time. Then the extrapolation methodology from Section 4.2 is applied to improve the solution (in
Section 5.2.2). The following parameters are used for the tests in the next subsections:

[a, b] = [−2, 8], N = 210, M = 100. (5.29)

5.2.1 Example of a propagating error

Here, we show how local errors propagate when we do not apply extrapolation. Parameter N is
chosen sufficiently large, so that error ε2 can be neglected. From the error analysis in Section 4.1
it follows that

ĉ(tM−1, x, α|[a, b], N) = e−ρΔt

∫
[a,b]

v(tM , y)f(y|x, α)dy + e−ρΔt

∫
R\[a,b]

v̂(tM , y)f(y|x, α)dy.

(5.30)
Function v(tM , y) resembles v̂(tM , y) on [a, b] for sufficiently large values of N . However, the
approximated continuation value is inaccurate when error ε1 + ε3 in (4.9) is large. The inaccuracy
of ĉ(tM−1, x, α) may give rise to a propagating error. First of all, it may result in an incorrect
control value from the maximization operator in (3.14). Secondly, an inaccurate value function
and coefficients V̂k(tM−1) give rise to inaccurate numerical continuation values at time tM−2. This
is demonstrated by four plots in Figure 5.2.

The upper-left plot presents the terminal reward function, the Fourier cosine expansion, and its
extension outside the expansion interval, which is symmetric in a = −2 and different from the
correct terminal reward function at the left-hand side of a. In the lower-left plot the continuation
value is shown for two control values, α = 0.7 and α = 1.0. The exact optimal control value for
the discrete-time stochastic control problem at time tM−1 is αM−1 ≈ 0.7. It is independent of the
current log-wealth level. From Figure 5.2 it is clear that significant errors occur in the vicinity of
the left-side domain boundary.

The addition of the profit function gives us the graphs in the upper-right plot. As the value
function at time tM−1 is defined by the maximization operator over all αM−1 ∈ A, inaccurate
control values will be determined, at least for x < −1. Because of this, the approximated value
function will be too high. The lower-left plot shows the continuation values at time tM−2 for two
different control values. The local error at time levelM −1 has propagated and, in addition, errors
from the COS formula occur in the vicinity of the boundary. The correct optimal control value
equals αM−2 ≈ 0.4 and, again, incorrect control values will be determined by the maximization
operator, if extrapolation is not used here.

The solution for all time steps gives rise to the optimal control values in Figure 5.3a. The correct
control law should be independent of x, which is clearly not the case.

5.2.2 Improvement by extrapolation

We use the extrapolation technique from Section 4.2 to deal with the propagating error.

The function f(y|x, α) represents a normal density function of a random variable with distribution

N
(
x+ (μ− α− 1

2σ
2)Δt, σ

√
Δt
)
. (5.31)
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Figure 5.2: The propagation of local errors ([a, b] = [−2, 8]).

(a) Incorrect values, due to local errors and their prop-
agation.

(b) Correct values, with extrapolation method.

Figure 5.3: Optimal control laws.

We can presume that the continuation value is well approximated on [x∗, b], with

x∗ := a− (μ− α− 1
2σ

2)Δt+ 5σ
√
Δt. (5.32)

The terminal reward function, the density, and profit functions are all of exponential form. There-
fore, we approximate c(tm−1, x, α) on [a, x∗] by employing an exponential extrapolation technique 8:

cex(tm−1, x, α) := ĉ(tm−1, x
∗, α) exp

(
w(y − x∗)

)
, for x ∈ [a, x∗], (5.33)

8Note that polynomial extrapolation will also work well here.
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with

w =
ĉx(tm−1, x

∗, α)
ĉ(tm−1, x∗, α)

. (5.34)

As proposed in Section 4.2, we will use the improved continuation value, c̃(tm−1, x, α), to find
the optimal control values and to approximate the coefficients Ck(tm−1, z1, z2, α). Suppose the
interval [z1, z2] ⊂ [a, b] can be divided into [z1, x

∗] and [x∗, z2]. Then the corresponding Fourier
cosine coefficients read

C̃k(tm−1, z1, z2, α) =
2

b − a

∫ x∗

z1

cex(tm−1, x
∗, α) cos

(
kπ
y − a

b− a

)
dy

+ e−ρΔtRe

⎛
⎝N−1∑′

j=0

ϕlevy

(
jπ

b− a

∣∣∣α) Vj(tm) ·Mk,j(x
∗, z2)

⎞
⎠ , (5.35)

where

2

b− a

∫ x∗

z1

cex(tm−1, x
∗, α) cos

(
kπ
y − a

b − a

)
dy =

2

b− a
ĉ(tm−1, x

∗, α)
e−wx∗

w
χk(wz1, wx

∗, wa, wb).

(5.36)
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Figure 5.4: Extrapolation of the continuation value (� = x∗).

Figure 5.4 shows the values x∗ and the improved continuation values for α = 0.7 and α = 1.0.
The values are accurate, even in the vicinity of boundary a = −2, and the correct optimal control
values will be determined, see Figure 5.3b for the complete result.

The exact solution to the continuous-time stochastic control problem is v(t0, x0) = −0.8419. For
the discrete-time variant we find v̂(t0, x0) = −0.8419. Table 5.2 shows the value function for
different numbers of control times, M . They converge to the true value. We can conclude that the
procedure with exponential extrapolation works highly satisfactorily.

M 10 25 50 100 150 200
v̂(t0, x0) -0.8843 -0.8548 -0.8459 -0.8430 -0.8424 -0.8422

Table 5.2: Results for different values of M (N = 210).

Remark 5.2. The dynamics of the invested capital, equation (5.14), can easily be extended to a
jump-diffusion process. Then no analytical solution to the stochastic control problem is available,
but we can apply the COS method, as the characteristic function of a jump-diffusion process is
known analytically, with the extrapolation technique.
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6 Conclusion

In this paper, we presented a general approach for solving stochastic control problems under a
one-dimensional Lévy process. The method relies on the dynamic programming principle and the
COS formula ([6]), which is based on Fourier cosine series expansions. A recursive algorithm has
been defined based on the recursive recovery of the series coefficients. With the use of a Fast
Fourier Transform algorithm we reach a computational complexity of order O(N log2N), per time
step, where N denotes the number of terms in the series expansions.

We provided an extensive error analysis, with which we acquired knowledge about the origin and
evolution of errors. We demonstrated how significant errors of the COS formula in the vicinity of
domain boundaries may arise, and how they may propagate backwards in time. This understanding
enabled us to improve the method by introducing an extrapolation method for the area in which
the COS formula may give inaccurate continuation values. Extrapolation by Taylor expansion or
by exponential extrapolation can easily be applied as the derivatives of approximated continuation
values can be computed easily based on the COS formula. An exponentially converging error, in
N , is found for a sufficiently accurate extrapolation method, [a, b] ⊂ R sufficiently wide and a
probability density function in the class C∞([a, b]).

In [7], the COS method has been employed for pricing Bermudan and barrier options. A difference
in using the COS method for stochastic control problems is the dependence of the characteristic
function of the stochastic process on the control value, which may be time-consuming. Besides,
we need to determine the optimal control law from a finite or continuous control set, for the entire
spatial domain. Therefore, the approximated value function needs to be accurate over the complete
spatial domain, which is not always the case when using the COS formula. These difficulties have
been solved by the extrapolation technique.

We tested our numerical method by two examples, a butterfly option under uncertain volatility
and an optimal consumption-portfolio problem. The COS method for stochastic control problems
performed highly satisfactory.

Many other problems from finance and the real options context can be represented as a stochastic
control problem. This makes our methodology applicable to various practical problems.

Appendix

A Functions χk and ψk

The functions χk and ψk are given by:

χk(z1, z2, a, b) =

∫ z2

z1

ey cos

(
kπ
y − a

b− a

)
dy and ψk(z1, z2, a, b) =

∫ z2

z1

cos

(
kπ
y − a

b− a

)
dy

(A.1)
and admit the following analytic solutions (for example with Maple 14):

χk(z1, z2, a, b) =
1

1 +
(

kπ
b−a

)2
[
cos

(
kπ
z2 − a

b− a

)
ez2 − cos

(
kπ
z1 − a

b− a

)
ez1

+
kπ

b− a
sin

(
kπ
z2 − a

b− a

)
ez2 − kπ

b− a
sin

(
kπ
z1 − a

b− a

)
ez1
]
, (A.2)
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ψk(z1, z2, a, b) =

{ [
sin
(
kπ z2−a

b−a

)
− sin

(
kπ z1−a

b−a

)]
b−a
kπ , for k 
= 0,

z2 − z1, for k = 0.
(A.3)

B Estimation of coefficients with extrapolation

Suppose

cex(tm−1, x, α) := ĉ(tm−1, x
∗, α) + ĉx(tm−1, x

∗, α)(x − x∗) + 1
2 ĉxx(tm−1, x

∗, α)(x − x∗)2. (B.1)

Then

2

b− a

∫ z2

z1

cex(tm−1, x
∗, α) cos

(
kπ
y − a

b− a

)
dy

=
2

b− a
ψk(z1, z2, a, b)

(
ĉ(tm−1, x

∗, α)− ĉx(tm−1, x
∗, α)x∗ + 1

2 ĉxx(tm−1, x
∗, α)(x∗)2

)
+

2

b− a
ξk(z1, z2, a, b)

(
ĉx(tm−1, x

∗, α)− ĉxx(tm−1, x
∗, α)x∗

)
+

2

b− a
ξ̄k(z1, z2, a, b)

1
2 ĉxx(tm−1, x

∗, α), (B.2)

with

ξk(z1, z2, a, b) =

∫ z2

z1

y cos

(
kπ
y − a

b − a

)
dy

=
b− a

(kπ)2

[
cos

(
kπ
z2 − a

b − a

)
(b − a)− cos

(
kπ
z1 − a

b− a

)
(b− a)

+kπ sin

(
kπ
z2 − a

b− a

)
z2 − kπ sin

(
kπ
z1 − a

b− a

)
z1

]
(B.3)

and

ξ̄k(z1, z2, a, b) =

∫ z2

z1

y2 cos

(
kπ
y − a

b − a

)
dy

= 2
b− a

(kπ)3

[
−kπz2(b− a) cos

(
kπ
z2 − a

b− a

)
+ kπz1(b − a) cos

(
kπ
z1 − a

b− a

)

+
(
(b− a)2 − 1

2
(kπz2)

2
)
sin

(
kπ
z2 − a

b− a

)
−
(
(b− a)2 − 1

2
(kπz1)

2
)
sin

(
kπ
z1 − a

b− a

)]
.
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