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Abstract

We construct multi-currency models with stochastic volatility and correlated
stochastic interest rates with a full matrix of correlations. We first deal with a
foreign exchange (FX) model of Heston-type, in which the domestic and foreign
interest rates are generated by the short-rate process of Hull-White [HW96]. We
then extend the framework by modeling the interest rate by a stochastic volatility
displaced-diffusion Libor Market Model [AA02], which can model an interest
rate smile. We provide semi-closed form approximations which lead to efficient
calibration of the multi-currency models. Finally, we add a correlated stock to the
framework and discuss the construction, model calibration and pricing of equity-
FX-interest rate hybrid payoffs.
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1 Introduction

Since the financial crisis, investors tend to look for products with a long time horizon,
that are less sensitive to short-term market fluctuations. When pricing these exotic
contracts it is desirable to incorporate in a mathematical model the patterns present in
the market that are relevant to the product.

Due to the existence of complex FX products, like the Power-Reverse Dual-
Currency [SO02], the FEquity-CMS Chameleon or the Equity-Linked Range Accrual
TRAN swaps [Cap07], that all have a long lifetime and are sensitive to smiles or skews
in the market, improved models with stochastic interest rates need to be developed.

The literature on modeling foreign exchange (FX) rates is rich and many stochastic
models are available. An industrial standard is a model from [SO02], where log-normally
distributed FX dynamics are assumed and Gaussian, one-factor, interest rates are used.
This model gives analytic expressions for the prices of basic products for at-the-money
options. Extensions on the interest rate side were presented in [Sch02b; Mik01], where
the short-rate model was replaced by a Libor Market Model framework.

A Gaussian interest rate model was also used in [Pit06], in which a local volatility
model was applied for generating the skews present in the FX market. In another
paper, [KJ07], a displaced-diffusion model for FX was combined with the interest rate
Libor Market Model.

Stochastic volatility FX models have also been investigated. For example, in [HP09]
the Schobel-Zhu model was applied for pricing FX in combination with short-rate
processes. This model leads to a semi-closed form for the characteristic function.
However, for a normally distributed volatility process it is difficult to outperform the
Heston model with independent stochastic interest rates [HP09].
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Research on the Heston dynamics in combination with correlated interest rates has
led to some interesting models. In [And07] and [Gie04] an indirectly imposed correlation
structure between Gaussian short-rates and FX was presented. The model is intuitively
appealing, but it may give rise to very large model parameters [AAA08]. An alternative
model was presented in [AM06; AAAO0S8], in which calibration formulas were developed
by means of Markov projection techniques.

In this article we present an FX Heston-type model in which the interest rates are
stochastic processes, correlated with the governing FX processes. We first discuss the
Heston FX model with Gaussian interest rate (Hull-White model [HW96]) short-rate
processes. In this model a full matrix of correlations is used.

This model, denoted by FX-HHW here, is a generalization of our work in [GO09],
where we dealt with the problem of finding an affine approximation of the Heston equity
model with a correlated stochastic interest rate. In this paper, we apply this technique
in the world of foreign exchange.

Secondly, we extend the framework by modeling the interest rates by a market model,
i.e., by the stochastic volatility displaced-diffusion Libor Market Model [AA02; Pit05].
In this hybrid model, called FX-HLMM here, we incorporate a non-zero correlation
between the FX and the interest rates and between the rates from different currencies.
Because it is not possible to obtain closed-form formulas for the associated characteristic
function, we use a linearization approximation, developed earlier, in [GO10].

For both models we provide details on how to include a foreign stock in the multi-
currency pricing framework.

Fast model evaluation is highly desirable for FX options in practice, especially during
the calibration of the hybrid model. This is the main motivation for the generalization
of the linearization techniques in [GO09; GO10] to the world of foreign exchange. We
will see that the resulting approximations can be used very well in the FX context.

The present article is organized as follows. In Section 2 we discuss the extension of
the Heston model by stochastic interest rates, described by short-rate processes. We
provide details about some approximations in the model, and then derive the related
forward characteristic function. We also discuss the model’s accuracy and calibration
results. Section 3 gives the details for the cross-currency model with interest rates driven
by the market model and Section 4 concludes.

2  Multi-Currency Model with Short-Rate Interest
Rates

Here, we derive the model for the spot FX, £(t), expressed in units of domestic
currency, per unit of a foreign currency.

We start the analysis with the specification of the underlying interest rate processes,
rq(t) and r,(t). At this stage we assume that the interest rate dynamics are defined via
short-rate processes, which under their spot measures, i.e., Q—domestic and Z—foreign,
are driven by the Hull-White [HW96] one-factor model:

dra(t) = Aa(0a(t) — ra(t))dt + nadW2(2), (2.1)
dr(t) = Ap(0p(t) — re(t))dt + nedWF(2),

where Wé@(t) and W]?(t) are Brownian motions under Q and Z, respectively. Parameters
Ad, Ay determine the speed of mean reversion to the time-dependent term structure
functions 04(t), 0¢(t), and parameters 74, 1y are the volatility coefficients.

These processes, under the appropriate measures, are linear in their state variables,
so that for a given maturity T' (0 < ¢ < T') the zero-coupon bonds (ZCB) are known to
be of the following form:

(2.3)



with A4(t,T), Af(t,T) and By(t,T), Bf(t,T) analytically known quantities (see for
example [BMO07]). In the model the money market accounts are given by:

de(t) = Td(t)Md(t>dt, and de(i) = Tf(lf)Mf(lf)dlf. (2.4)

By using the Heath-Jarrow-Morton arbitrage-free argument, [HJM92], the dynamics
for the ZCBs, under their own measures generated by the money savings accounts, are
known and given by the following result:

Result 2.1 (ZCB dynamics under the risk-free measure). The risk-free dynamics of the
zero-coupon bonds, Py(t,T) and P¢(t,T), with maturity T are given by:

T

% = rq(t)dt — </t Fd(t,s)ds> Aw(t), (2.5)
T

(m = rp(t)dt — </t Ff(t,s)ds> deZ(t)’ (2.6)

where Tq(t,T), T'f(t,T) are the volatility functions of the instantaneous forward rates
fat,T), fr(t,T), respectively, that are given by:

T
AFatT) = TatT) [ Talt,s)ds + Tult. DIV D), (2.7)
T
dfe(t,T) = rf(t,T)/ Ty(t,s)ds + Ty (t, T)AWF(t). (2.8)
t
Proof. For the proof see [MR97]. O

The spot-rates at time ¢ are defined by rq(t) = fa(t, t), rr(t) = fr(¢,1).

By means of the volatility structures, I'y(t,T), T's(¢t,T), one can define a number
of short-rate processes. In our framework the volatility functions are chosen to be
La(t,T) = naexp (—Aa(T —t)) and I'y(t,T) = nrexp(—As(T' —t)). The Hull-White
short-rate processes, rq(t) and r¢(t) as in (2.1), (2.2), are then obtained and the term
structures, 6q(t), 0¢(t), expressed in terms of instantaneous forward rates, are also
known. The choice of specific volatility determines the dynamics of the ZCBs:

% ra(t)dt + naBa(t, T)AW (1),
(m = rp(t)dt +nBy(t, T)AWE (1), 29

with Bq(t,T) and B¢(t,T) as in (2.3), given by:

1
Ba(t,T) = (e_)‘d(T_t) - 1) . By(t,T) =

L 1 (e—AAT—t) _ 1) , (2.10)

f

For a detailed discussion on short-rate processes, we refer to the analysis of Musiela and
Rutkowski in [MR97]. In the next subsection we define the FX hybrid model.
2.1 The Model with Correlated, Gaussian Interest Rates

The FX-HHW model, with all processes defined under the domestic risk-neutral
measure, Q, is of the following form:

ag(t)/€(t) = (ralt) =) b+ a@AWEE), €©0) >0
do(t) = k(G — o(t)dt+  y/o(t)dWE(t), o(0) >0
dra(t) = Na(Ba(t) = ra(®)dt+ nad WD), 74(0) >0
drp(t) = (A(O05() = rs(8) =mppes/o@) A+ npdWR(H), 74(0)>0

(2.11)



Here, the parameters s, Ag, and Ay determine the speed of mean reversion of the latter
three processes, their long term mean is given by &, 64(t), 0¢(t), respectively. The
volatility coefficients for the processes rq(t) and r;(t) are given by 14 and n; and the
volatility-of-volatility parameter for process o(t) is 7.

In the model we assume a full matri%( of correlations between the Brownian motions
W(t) = [WE(t), WE(t), WE(t), Wi ()]

L peo ped pey

1
AW () (dW ()T = | Pee Pod  Pof | gt 2.12
E)AW () Ped Pod 1 pay (212)

pef  Pof Pdf 1

Under the domestic-spot measure the drift in the short-rate process, 7¢(t), gives rise to an
additional term, —nype r4/0(t). This term ensures the existence of martingales, under
the domestic spot measure, for the following prices (for more discussion, see [Shr04]):

My (t)
My(t)

Pf(t7 T)

xa(t) =€) e

and  x2(t) :=£(t)

where Py(t,T) is the price foreign zero-coupon bond (2.9), respectively, and the money
savings accounts My (t) and My(t) are from (2.4).

To see that the processes x1(t) and x2(t) are martingales, one can apply the Itd
product rule, which gives:

dyi(t) 5 Q

- Vo) awd(t), (2.13)
Dl TN + B DA (214
2

The change of dynamics of the underlying processes, from the foreign-spot to the
domestic-spot measure, also influences the dynamics for the associated bonds, which,
under the domestic risk-neutral measure, Q, with the money savings account considered
as a numéraire, have the following representations

dPy(t,T)

Pd(lf, T) = rd(t)dt + ndBd(t, T)dW;lQ(t), (215)
(m = (Tf(t) — pe,ny By (2, T)\/@) dt +nyBy(t, T)AWR(t), (2.16)

with Bg(¢,T) and Bf(¢,T) as in (2.10).

2.2 Pricing of FX Options

In order to perform efficient calibration of the model we need to be able to
price basic options on the FX rate, V(t,X(t)), for a given state vector, X(t) =

[£(t), (), ra(t),rs ()]

M(t)
My(T)

My(t) = exp (/Ot rd(s)ds> .

Now, we consider a forward price, II(¢), such that:

max(£(T) — K, 0) VIt X() .
o ( T ‘ft) = hg 1.

V(t,X(t)) = E2 < max(£(T) — K, 0)’]-}) ,

with




By It6’s lemma we have:

1 V(t)

AM(0) = AV ) = ralt) g7 o (2.17)

with V(¢) := V(¢,X(t)). We know that II(¢) must be a martingale, i.e.: E(dII(¢)) = 0.
Including this in (2.17) gives the following Fokker-Planck forward equation for V:

1,0V VLY 02
raV = infaT} erd’f"d"fw +35 ol g2 2 +Pof’777fxfaaar
0%V 1 0%V
+pa,dvndﬁ7 37057 + P, fnfif ~ T cmdff
0%V 1 0%V
6070 550 +58% e + (Ap(0p(t) —7y) = Ps,fﬁfﬁ) W
aVv oV av. oV
+Aa(fa(t )_Td)87d+ k(o U)%‘F(Td_rf)fafg‘kﬁ

This 4D PDE contains non-affine terms, like square-roots and products. It is therefore
difficult to solve it analytically and a numerical PDE discretization, like finite differences,
needs to be employed. Finding a numerical solution for this PDE is therefore rather
expensive and not easily applicable for model calibration. In the next subsection we
propose an approzimation of the model, which is useful for calibration.

2.2.1 The FX Model under the Forward Domestic Measure

To reduce the complexity of the pricing problem, we move from the spot measure,
generated by the money savings account in the domestic market, My(t), to the forward
FX measure where the numéraire is the domestic zero-coupon bond, Py(t,T). As
indicated in [MR97; Pit06], the forward is given by:

FXT(t) = &(t) (2.18)

where FX” (t) represents the forward exchange rate under the T-forward measure, and
&(t) stands for foreign exchange rate under the domestic spot measure. The superscript
should not be confused with the transpose notation used at other places in the text.
By switching from the domestic risk-neutral measure, Q, to the domestic T-forward
measure, QT the discounting will be decoupled from taking the expectation, i.e.:

II(t) = Py(t, T)E” (max (FX"(T) — K,0) | 7). (2.19)

In order to determine the dynamics for FX” (t) in (2.18), we apply Itd’s formula:

_ B(t,T) £(t) Py(t,T)
dFX”(t) = Pd(t’T)dﬁ(t)—de(t )de(t,T)—g(t)Wde(t,T)
O @PUT)) + s (AP (4. T)
P (t,T) £(t)
“PT) (dPy(t, T)dE(t)) — Wde(t,T)de(t,T). (2.20)

After substitution of SDEs (2.11), (2.15) and (2.16) into (2.20), we arrive at the following
FX forward dynamics:
dFX” (¢
oL = B T) (B0, T) = /700 = pu B0 T))

+\/o(t)AWE(t) — naBa(t, T)AWE(t) + np By (t, T)AW (1) (2.21)



Since FX”(t) is a martingale under the T-forward domestic measure, i.e.,
Py(t, T)ET(FX"(T)|F;) = Pa(t, T)FX”(t) =: Ps(t,T)&(t), the appropriate Brownian
motions under the T—forward domestic measure, dW/['(t), dW[(t), dW](t) and
dW}F(t), need to be determined.

A change of measure from domestic-spot to domestic T-forward measure requires a
change of numéraire from money savings account, My(t), to zero-coupon bond Py(t,T').
In the model we incorporate a full matrix of correlations, which implies that all processes
will change their dynamics by changing the measure from spot to forward. Lemma 2.2
provides the model dynamics under the domestic T-forward measure, Q7.

Lemma 2.2 (The FX-HHW model dynamics under the Q7 measure). Under the T-
forward domestic measure, the model in (2.11) is governed by the following dynamics:

dlfg = Vo) AW (t) — naBa(t, T)AW,] (t) + ny By (t, T)AW] (t), (2.22)
where
do(t) = (f@(& — () + Ypo.anaBa(t, T) \/ﬁ) dt +vy/o () AW (¢) (2.23)
dra(t) = (Ma(0a(t) — ra(t)) + n3Ba(t,T)) dt + nadW; (1), (2.24)
dry() = (A(05(8) = 74(8) = nype,s /o (®) + mangpas Balt, 1)) dt +nydWF (1),
(2.25)

with a full matriz of correlations given in (2.12), and with By(t,T), By(t,T) given
by (2.10).
The proof can be found in Appendiz A.

From the system in Lemma 2.2 we see that after moving from the domestic-spot
Q-measure to the domestic T-forward Q7 measure, the forward exchange rate FXT(t)
does not depend explicitly on the short-rate processes r4(t) or r¢(t). It does not contain
a drift term and only depends on dW, (t), AW} (t), see (2.22).

Remark. Since the sum of three correlated, normally distributed random variables,
Q = X+Y +Z, remains normal with the mean equal to the sum of the individual means
and the variance equal to

O’é = og( + 0%— + cr% +2pxy0ox0y +2px,70x07 + 2py,z0y07,
we can represent the forward (2.22) as:
dFXT/FX" = (o +n3Bj+ 0B} — 2pe.anaBav/o
1
+2pe.p17 Byv/o = 204 pnany BaBy)? AW (2.26)

Although the representation in (2.26) reduces the number of Brownian motions in
the dynamics for the FX, one still needs to find the appropriate cross-terms, like
dWL (#)dWZI (t), in order to obtain the covariance terms. For clarity we therefore prefer
to stay with the standard notation.

Remark. The dynamics of the forwards, FX (t) in (2.22) or in (2.26), do not depend
explicitly on the interest rate processes, rq(t) and r¢(t), and are completely described by
the appropriate diffusion coefficients. This suggests that the short-rate variables will not
enter the pricing PDE. Note, that this is only the case for models in which the diffusion
coefficient for the interest rate does not depend on the level of the interest rate.

In next section we derive the corresponding pricing PDE and provide model
approximations.



2.3 Approximations and the Forward Characteristic Function

As the dynamics of the forward foreign exchange, FX” (t), under the domestic forward
measure involve only the interest rate diffusions dW7 (¢) and dI/VfT(t)7 a significant
reduction of the pricing problem is achieved.

In order to find the forward ChF we take, as usual, the log-transform of the forward
rate FX” (t), i.e.: 27 (t) := log FX” (t), for which we obtain the following dynamics:

da” ( (t, /o () — 70 )dt+\/ HAWE (8) — na BadWT (£) + 0y BrdWT (8),
(2.27)
with the variance process, o(t), given by:

do(t) = (H(ﬁ —0(t)) + VPo,anaBa \/U(t)) dt +y/a(t)dW,] (#), (2.28)
where we used the notation By := Bq(t,T) and By := By(t,T), and

1
C(t,\/o (pz,anaBa — pz,fnfBr) Vo (t) + pa,fnang BaBy — 5 (’7333 +07BF) .

By applying the Feynman-Kac theorem we can obtain the characteristic function of the
forward FX rate dynamics. The forward characteristic function:

o7 = o7 (w, X(1),,T) = BT (™" D7),

with final condition, ¢ (u,X(T),T,T) = eiwe”(T) {5 the solution of the following
Kolmogorov backward partial differential equation:

09T _ 96T 26T 96T
f% = (k(6 = 0) + poaynav/oBa(t, T)) g)b +<2 C(t,\/g)> < af2 ;;)
92T 1 9267
+ (P2.070 = po.a¥MaVTBa(t, T) + po sy V/o By (¢, T)) a? +57% an~

This PDE contains however non-affine y/o-terms so that it is nontrivial to find the
solution. Recently, in [GO09], we have proposed two methods for linearization of these
non-affine! square-roots of the square root process [CIR85]. The first method is to
project the non-affine square-root terms on their first moments. This is also the approach
followed here.

The approximation of the non-affine terms in the corresponding PDE is then done
as follows. We assume:

o(t) ~E ( J(t)) = (1), (2.29)
with the expectation of the square root of o(t) given by
e 1 W (5L 4 )
E( Jt): 2e()e /237 Z (¢(1)/2 2 : 2.30
) = VED " Y (/2" (2.30)
and 1 45 40 (0)e "t
)= —2(1—e ™), =" ¢t)= 2.31
o) = ot 1= (=27, = O (231)
I According to [DPS00] the n-dimensional system of SDEs:
AX (1) = p(X(1))dt + o (X (1)) AW (2),
is of the affine form if:
WX(H) = ao+aiX(t), for any (a0, a1) € R™ x R™X,
o(X®)o(XENT = (co)ij + (cl)iTjX(t), for arbitrary (cp,c1) € R™"*™ x R™»X"xn
r(X(t) = 7ro+riX(t), for (ro,r1) € R x R™,
fori,j =1,...,n, with r(X(¢)) being an interest rate component.



I'(k) is the gamma function defined by:

L(k) = / th=te~tde.
0

Although the expectation in (2.30) is a closed form expression, its evaluation is rather
expensive. One may prefer to use a proxy, for example,

E(\/o(t)) = 1 + Bae™ ", (2.32)
in which the constant coefficients (1, 02 and (3 can be determined by asymptotic equality
with (2.30) (see [GOO09] for details).

Projection of the non-affine terms on their first moments allows us to derive the
corresponding forward characteristic function, ¢7, which is then of the following form:

T (u, X(t),t,T) = exp(A(u, 7) + B(u, 7)2” (t) + C(u, 7)o (1)),

where 7 = T'—t, and the functions A(7) := A(u,7), B(7) := B(u,7) and C(7) := C(u, T)
are given by:

B'(r) = 0,

C'(7) —kC(7) + (B*(1) = B(7))/2 + paoyB(T)C (1) +7°C*(1) /2,

A1) = wO(T) + po,aynap(T)Ba(T)C(7) = ((7, (7)) (B*(1) — B(7))

+ (=po,anavp(T)Ba(7) + po, yms (1) By (1)) B(T)C(7),
with ¢(t) = E(y/o(t)), and Bi(r) = A" (e —1) for i = {d,f}. The initial
conditions are: B(0) = iu, C'((0) = 0 and A(0) = 0.
With B(7) = iu, the complex-valued function C(7) is of the Heston-type, [Hes93],

and its solution reads:

1— e—dT )
C(r) = W (k — pe.oyiu—d), (2.33)

. . 55— K —Ypgoiu—d
with d = \/(pz,07viu — K)? — y2iu(iu — 1), g = R pe i d
The parameters k, 7y, pg o are given in (2.11).

Function A(7) is given by:

A = [ (504 s ()Bato) ~ poanrro(o) B

+pg,f7nfg0(s)Bf(s)iu)C(s)ds + (u? 4 iu) /OT C(s,0(8))ds, (2.34)

with C(s) in (2.33). It is most convenient to solve A(7) numerically with, for example,
Simpson’s quadrature rule. With correlations p, 4, po,¢ equal to zero, a closed-form
expression for A(7) would be available [GO09].

We denote the approzimation, by means of linearization, of the full-scale FX-HHW
model by FX-HHW1. It is clear that efficient pricing with Fourier-based methods can
be done with FX-HHW1, and not with FX-HHW.

By the projection of \/c(t) on its first moment in (2.29) the corresponding PDE is
affine in its coefficients, and reads:

6¢T _ B 8¢T 1 62¢T 8¢T
- W - (K’(O’_O’)—’—\I’l)aio_—’— §U_C<t7<P(t)) axg - 87
82¢T 1 9 82¢T ]
+ (pz,070 — U3) 9200 T 37 TG, with: (2.35)
o @ X(D),T.T) = BT (e D7) = '),

and C(t, p(1)) = Vs + papnans Balt, TVBy(t,T) = § (m3B3(LT) + B3, T))



The three terms, ¥y, Uy, and U3, in the PDE (2.35) contain the function ¢(¢):

Uy = poaynaBalt, T)p(t),
Uy = (po,aynaBa(t,T) — po.synsBr(t, T)) ¢ (),
Uy (pz,anaBa(t,T) — pz,m By (t, T)) @(t).

When solving the pricing PDE for t — T, the terms By(t,T') and Bf(t,T) tend to zero,
and all terms that contain the approximation vanish. The case ¢ — 0 is furthermore
trivial, since /o tHO E(y/o(0)).

Under the T- forward domestlc FX measure, the projection of the non-affine terms
on their first moments is expected to provide high accuracy. In Section 2.5 we perform
a numerical experiment to validate this.

It is worth mentioning that also an alternative approximation for the non-affine terms

o(t) is available, see [GO09]. This alternative approach guarantees that the first two
moments are exact. In this article we stay, however, with the first representation.

2.4 Pricing a Foreign Stock in the FX-HHW Model

Here, we focus our attention on pricing a foreign stock, S¢(t), in a domestic market.
With this extension we can in principle price equity-FX-interest rate hybrid products.

With an equity smile/skew present in the market, we assume that S¢(t) is given by
the Heston stochastic volatility model:

dSs(t)/Ss(t) = ret)di+ w(t)dWE (2),
dw(t) = R (@ —wt)dt+ v/ w(t)dWE(t), (2.36)
drp(t) = Ap(0p(t) —rs(1)))di+ nrdWE(t),

where Z indicates the foreign-spot measure and the model parameters, k¢, v, Ag, 0¢(t)
and 7¢, are as before.

Before deriving the stock dynamics in domestic currency, the model has to be
calibrated in the foreign market to plain vanilla options. This can be efficiently done
with the help of a fast pricing formula.

With the foreign short-rate process, 7¢(t), established in (2.11) we need to determine
the drifts for Sy (¢) and its variance process, w(t), under the domestic spot measure. The
foreign stock, Sf(t), can be expressed in domestic currency by multiplication with the
FX, &(t), and by discounting with the domestic money savings account, My(t). Such
a stock is a tradable asset, so the price £(t)Sf(t)/Mqa(t) (with &(¢) in (2.11), Sy(t)
from (2.36) and the domestic money-saving account My(¢) in (2.4)) needs to be a
martingale.

By applying It6’s lemma to £(¢)S,(¢)/Ma(t), we find

d (g > ) TS+ /oD e
Md( )

where Q and Z indicate the domestic-spot and foreign-spot measures, respectively. To
make process §(t)Sy(t)/My(t) a martingale we set:

AW§, (t) = AWS, — pes, /o (t)dt,

where o(t) is the variance process of FX defined in (2.11).
Under the change of measure, from foreign to domestic-spot, S;(t) has the following
dynamics:

dSs(t)/Ss(t) = rp(t)dt + /w(t)AWE, (1)
- (rf(t)fpégfw/a(t)w/w(t)) dt + Vo) dWS (1) (2.38)



The variance process is correlated with the stock and by the Cholesky decomposition
we find:

dw(t) = (@ —w(t)dt +5v/(0) (pswdWE () + /1 = o2, LAWEW))
= (5r(@ = w(t)) = ps, s, Ve OVE(D)) dt + 9/ o(BAWE(E).  (2.39)

S¢(t) in (2.38) and w(t) in (2.39) are governed by several non-affine terms. Those,
however, do not matter since the foreign stock is assumed to be already calibrated to the
foreign market data. The Monte Carlo simulation for pricing exotic options is defined
in the domestic market. This implies that the presence of the non-affine terms is not
complicating in this setting.

2.5 Numerical Experiment for the FX-HHW Model

In this section we check the errors resulting from the various approximations of the
FX-HHW1 model. We use the set-up from [Pit06], which means that the interest rate
curves are modeled by ZCBs defined by Py(t = 0,T) = exp(—0.02T) and Ps(t =0,T) =
exp(—0.057). Furthermore,

na =0.7%, ny=12%, A\g=1%, Ay =5%.
We choose?:
k=05, v=0.3, ¢ =0.1, ¢(0)=0.1. (2.40)

The correlation structure, defined in (2.12), is given by:

1 peo ped e 100% —40% —15% —15%
peo 1 pod pes | | —40% 100%  30%  30% (2.41)
Ped  Pod 1 Pd, f B —15%  30% 100% 25% ' '
pe s pog pay 1 —15%  30%  25%  100%

The initial spot FX rate (Dollar, $, per Euro, €) is set to 1.35. For the FX-HHW model
we compute a number of FX option prices with many expiries and strikes, using two
different pricing methods.

The first method is the plain Monte Carlo method, with 50.000 paths and 207; steps,
for the full-scale FX-HHW model, without any approximations.

For the second pricing method, we have used the ChF, based on the approximations
in the FX-HHW1 model in Section 2.3. Efficient pricing of plain vanilla products is then
done by means of the COS method [FO08], based on a Fourier cosine series expansion of
the probability density function, which is recovered by the ChF with 500 Fourier cosine
terms.

We also define the experiments as in [Pit06], with expiries given by T, ..., T1g, and
the strikes are computed by the formula:

Ko(T) = FXT(0)exp (0.15n\/i), with (2.42)
5, = {-15, —1.0, —0.5, 0, 0.5, 1.0, 1.5},

and FX”7(0) as in (2.18) with £(0) = 1.35. This formula for the strikes is convenient,
since for n = 4, strikes K4(T;) with ¢ = 1,...,10 are equal to the forward FX rates for
time T;. The strikes and maturities are presented in Table B.1 in Appendix B.

The option prices resulting from both models are expressed in terms of the implied
Black volatilities. The differences between the volatilities are tabulated in Table 2.1. The
approximation FX-HHW1 appears to be highly accurate for the parameters considered.
We report a maximum error of about 0.1% volatility for at-the-money options with a
maturity of 30 years and less than 0.07% for the other options.

In the next subsection the calibration results to FX market data are presented.

2The model parameters do not satisfy the Feller condition, 42 > 2k&.
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T, || Ki(Ty) | Ko(Ty) | Ks(Ty) || Ka(Ty) || Ks(Th) | Ke(Ty) | Kr(Ty)
6m -0.0003 | -0.0002 0.0000 0.0002 0.0003 0.0004 0.0005
ly -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001
3y 0.0005 0.0004 0.0002 -0.0001 -0.0003 | -0.0006 | -0.0009
Sy 0.0006 0.0004 0.0002 0.0000 -0.0003 | -0.0007 | -0.0010
Ty 0.0008 0.0006 0.0004 0.0003 0.0001 -0.0001 | -0.0003
10y -0.0002 | -0.0003 | -0.0003 -0.0005 -0.0007 | -0.0009 | -0.0012
15y -0.0012 | -0.0010 | -0.0009 -0.0009 -0.0009 | -0.0009 | -0.0010
20y 0.0009 0.0009 0.0009 0.0008 0.0008 0.0007 0.0006
25y -0.0015 -0.0011 -0.0008 -0.0006 -0.0005 -0.0004 | -0.0004
30y 0.0010 0.0011 0.0012 0.0012 0.0012 0.0012 0.0012

Table 2.1: Differences, in implied volatilities, between the FX-HHW and FX-HHW1
models. The corresponding FX option prices and the standard deviations are tabulated
in Table B.4. Strike K4(T;) is the at-the-money strike.

2.5.1 Calibration to Market Data

We discuss the calibration of the FX-HHW model to FX market data. In the
simulation the reference market implied volatilities are taken from [Pit06] and are
presented in Table B.2 in Appendix B. In the calibration routine the approximate model
FX-HHW1 was applied. The correlation structure is as in (2.41). In Figure 2.1 some of
the calibration results are presented.

Calibration results Calibration results Calibration results
0.25 ul
1Y Market 3 10Y Market || 20Y Market
0.13 — 0 — 1Y FX-HHW { — 0 — 10Y FX-HHW 0.24 — O — 20Y FX-HHW |4
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implied Black Volatility

0.09
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11 1.2 13 1.4 15 0.6 0.8 1 12 14 16 0.5 1 15
Strike Strike Strike

Figure 2.1: Comparison of implied volatilities from the market and the FX-HHW1
model for FX European call options for maturities of 1, 10 and 20 years. The strikes
are provided in Table B.1 in Appendix B. £(0) = 1.35.

Our experiments show that the model can be well calibrated to the market data. For
long maturities and for deep-in-the money options some discrepancy is present. This is
however typical when dealing with the Heston model (not related to our approximation),
since the skew/smile pattern in FX does not flatten for long maturities. This was
sometimes improved by adding jumps to the model (Bates’ model). In Appendix B in
Table B.3 the detailed calibration results are tabulated.

Short-rate interest rate models can typically provide a satisfactory fit to at-the-
money interest rate products. They are therefore not used for pricing derivatives that
are sensitive to the interest rate skew. This is a drawback of the short-rate interest rate
models. In the next section an extension of the framework, so that interest rate smiles
and skews can be modeled as well, is presented.

3 Multi-Currency Model with Interest Rate Smile

In this section we discuss a second extension of the multi-currency model, in which
an interest rate smile is incorporated. This hybrid model models two types of smiles, the
smile for the FX rate and the smiles in the domestic and foreign fixed income markets.
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We abbreviate the model by FX-HLMM. It is especially interesting for FX products
that are exposed to interest rate smiles. A description of such FX hybrid products can
be found in the handbook by Hunter [Hun05].

A first attempt to model the FX by stochastic volatility and interest rates driven by
a market model was proposed in [TT08], assuming independence between log-normal-
Libor rates and FX. In our approach we define a model with non-zero correlation between
FX and interest rate processes.

As in the previous sections, the stochastic volatility FX is of the Heston type, which
under domestic risk-neutral measure, Q, follows the following dynamics:

de(t)/€(t) (.)dt+ o) dWE(t), S(0) >0,
do(t) = k(G —a(t)dt+ v/ a(t)dWL(t), o(0) >0,

with the parameters as in (2.11). Since we consider the model under the forward measure
the drift in the first SDE does not need to be specified (the dynamics of domestic-forward
FX &(t)Pf(t,T)/Pa(t,T) do not contain a drift term).

In the model we assume that the domestic and foreign currencies are independently
calibrated to interest rate products available in their own markets. For simplicity, we
also assume that the tenor structure for both currencies is the same, ie., 7y = 7y =
{To,T1,...,Tn =T} and 7, = Ty — T—1 for k = 1...N. For t < T_1 we define the
forward Libor rates Lq (t) := La(t,Tk—1,Tk) and Ly x(t) := L¢(t, T—1,Tk) as

Laa(t) = % (W - 1) L Lpa(t) = % (% - 1) L (32)

(3.1)

For each currency we choose the DD-SV Libor Market Model from [AA02] for the interest
rates, under the T-forward measure generated by the numéraires Py(t,T) and Py (t,T),
given by:

ALan(t) = axdar(t)V/oal®) (nalt)v/ealt)at + W™ 1))

(3.3)
dvg(t) = Aa(va(0) = va(t)dt + nay/va(t)dW T (),
and
ALs(0) = 35210 ONfor ) (s (005 O + T (1) -
du(t) = s (0 (0) = vp(0)dt + npy /o (HAWLT(8),
with
iy == > Ty S menlOon
ioh 1+ Tde,j (t) kg Pl 1+ TijJ' (t) k.
where
dar = BarLart)+ (1—Bak)Lar(0),
e = BrrLlypr(t)+ (1= Brx)Lyr(0).

The Brownian motion, dW,? ’T, corresponds to the k-th domestic Libor rate, Lg (%),
under the T-forward domestic measure, and the Brownian motion, def T relates to the
k-th foreign market Libor rate, Ly x(t) under the terminal foreign measure 7'

In the model o4 (t) and o x(t) determine the level of the interest rate volatility
smile, the parameters Bqx(t) and Gy x(t) control the slope of the volatility smile, and
Ad, Ay determine the speed of mean-reversion for the variance and influence the speed at
which the interest rate volatility smile flattens as the swaption expiry increases [Pit05].
Parameters 74, 17y determine the curvature of the interest rate smile.
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The following correlation structure is imposed, between

FX and its variance process, o(t): de(t)de(t) = peodt,
FX and domestic Libors, Ly ;(t): dVV&T(t)dWJ‘.i’T(t) = pg}jdt,
FX and foreign Libors, Ly ;(t): de(t)dWJf’T(t) = pg,jdt,
Libors in domestic market: dW]g’T(t)de’T(t) = pjdt, (8:6)
Libors in foreign market: aw/ ’T(t)d/V[?jf Tty = pi, ;dt,
Libors in domestic and foreign markets: Awd ’T(t)def T(t) = pzf dt.

We prescribe a zero correlation between the remaining processes, i.e., between

Libors and their variance process,
AwET (aw T (1) =0, dWT (@) awl T (1) = o,
Libors and the FX variance process,
AWt aw?r () =0, AWl ()awl(t) =o,
all variance processes,
AWI®)AWET(t) =0, dWT () dW T () =0, aWET () aw/ T (t) = o0,
FX and the Libor variance processes,

AWI )awdT () =0, awZ()dwiT(t) = o.

The correlation structure is graphically displayed in Figure 3.1.

Domestic
Libor—Market
Model

Foreign
Libor—Market
Model

Foreign
Exchange
Rate

Domesticsv Foreignsv

Foreign
Exchange sv

Figure 3.1: The correlation structure for the FX-HLMM model. Arrows indicate non-
zero correlations. SV is Stochastic Volatility.

Throughout this article we assume that the DD-SV model in (3.3) and (3.4) is
already in the effective parameter framework as developed in [Pit05]. This means
that approximate time-homogeneous parameters are used instead of the time-dependent
parameters, i.e., O;(t) = B and oy (t) = oy.

With this correlation structure, we derive the dynamics for the forward FX, given
by:

FXT(t) = £(¢) 7];;” g g , (3.7)

(see also (2.18)) with £(t) the spot exchange rate and Py(t,T) and P¢(t,T') zero-coupon
bonds. Note that the bonds are not yet specified.
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When deriving the dynamics for (3.7), we need expressions for the zero-coupon bonds,
Py(t,T) and P¢(t,T). With Equation (3.2) the following expression for the final bond
can be obtained:

1 1

N
Pi(t,T) ~ Pilt, Tou(r)) HH(H”L”'“))’ for i = {d. f}, (3.8)

j=m(t

=

with T = Tn and m(t) = min(k : t < Ty) (empty products in (3.8) are defined to
be equal to 1). The bond P;(¢,Tn) in (3.8) is fully determined by the Libor rates
Lix(t), k=1,...,N and the bond P;(t,T,,)). Whereas the Libors L; ;(t) are defined
by System (3.3) and (3.4), the bond P;(t,T,,()) is not yet well-defined in the current
framework.

To define continuous time dynamics for a zero-coupon bond, interpolation techniques
are available (see, for example, [Sch02a; Pit04; DMP09; BJ09]). We consider here the
linear interpolation scheme, proposed in [Sch02a], which reads:

1

sy = 1+ Tnw = O Lim@ (Tnw-1), for Tn1 <t<Tna. (39
Pz(t,Tm(t)) +( m(t) ) z,m(t)( m(t) 1), or Tryiy—1 <t <T@ ( )

In our previous work, [GO10], this basic interpolation technique was very satisfactory
for the calibration. By combining (3.9) with (3.8), we find for the domestic and foreign
bonds:

N
1
= (1+ (T = D Lame Tmew-1)) I O +7La(t, T-1,T))),
Pa(t,T) b
1 N
Pf(t, T) = (1 + (Tm(t) - t)Lfvm(t) (Tm(t)—l)) H (1 + Tij(t7 Tj, T])) :

j=m(t)+1

When deriving the dynamics for FX” (¢) in (3.7) we will not encounter any dt-terms (as
FX™(t) has to be a martingale under the numéraire Py(t,T)).

For each zero-coupon bond, Py(t,T) or Py(t,T'), the dynamics are determined under
the appropriate T-forward measures (for Py(¢,T') the domestic T-forward measure, and
for Pf(t,T) the foreign T-forward measure). The dynamics for the zero-coupon bonds,
driven by the Libor dynamics in (3.3) and (3.4), are given by:

dPy(t.T) ) o 750304 (t) g
my = G \/w(t)j_m%ﬂl ey e LU ROUICAL)

N
UAD) () 3 20U

j=m(t)+1 14 Tij)j(t)

and the coefficients were defined in (3.3) and (3.4).

By changing the numéraire from Pf(t,T) to Py(t,T) for the foreign bond, only the
drift terms will change. Since FX” (t) in (3.7) is a martingale under the Py(t, T) measure,
it is not necessary to determine the appropriate drift correction.

By taking Equation (2.20) for the general dynamics of (3.7) and neglecting all the
dt-terms we get

dEXT() S 700 0ag(t)

N
ENCHOEDS 709559530 gt gy, (3.12)
(41 1+ Tij’j(t) J

Note that the hat in W, disappeared from the Brownian motion def’T(t) in (3.12) which

is an indication for the change of measure from the foreign to the domestic measure for
the foreign Libors.
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Since the stochastic volatility process, o(t), for FX is independent of the domestic
and foreign Libors, Lq 1 (t) and Ly (t), the dynamics under the P;(t,T)-measure do not
change® and are given by:

do(t) = k(G — a(t))dt + /o (t)dWL (1) (3.13)

The model given in (3.12) with the stochastic variance in (3.13) and the correlations
between the main underlying processes is not affine. In the next section we discuss a
linearization.

3.1 Linearization and Forward Characteristic Function

The model in (3.12) is not of the affine form, as it contains terms like ¢, ;(t)/(1 +
Ti,jLi () with ¢; ; = B ;Li j(t) + (1 — Bi;)L; ;(0) for ¢ = {d, f}. In order to derive
a characteristic function, we freeze the Libor rates which is standard practice (see for
example [GZ99; HW00; JRO00)), i.e

La;(t) = La;(0) = ¢a; = La;(0),
Ly;(t) = Ly ;(0) = ¢p; = Ly;(0). (3.14)

This approximation gives the following FXT (t)-dynamics:

T
) o Vo®aWE (1) +v/oul®) 3 was W (1) = [for()) 3 vy, dW (o),

T

FX jeEA JEA
do(¢) k(G —o(t)dt+ v /o(t)dWL(t)
dvz(t) = )‘i(U'L (O) - Ul dt + V Uz dWZ T

with i = {d, f}, A= {m(t) +1,... N}, the correlations are given in (3.6) and

Tj04.5La,;(0) TjofiLy
Ya; = Jodjidig ) b= 3917 fJ‘ )

3.15
1+Tde,j(0) ( )

We derive the dynamics for the logarithmic transformation of FX”(¢), 2T(t) =
log FX”(t), for which we need to calculate the square of the diffusion coefficients®*.
With the notation,

Vo@)dWE (1), b= /vat) Y vadWHT (), = Jvp(t) Y vy ;dWI T (1),
jeA jeA
(3.16)

we find, for the square diffusion coefficient (a +b— ¢)? = a? + b2 + ¢ + 2ab — 2ac — 2bc.
So, the dynamics for the log-forward, 27 (t) = log FX” (t), can be expressed as:

dz"(t) =~ —% (a+b—0)* + o) dWL (1) + Vva(t) Y padW T (t)
A
~Jor ) S g WS T @), (3.17)
A

with the coefficients a, b and ¢ given in (3.16). Since

Zx + Z x;xj, for N >0,

J=1 Jj=1 i,j=1,...N
i#]

3In [GO10] the proof for this statement is given when a single yield curve is considered.
4As in the standard Black-Scholes analysis for dS(t) = oS(t)dW(t), the log-transform gives
dlog S(t) = —Lo%dt + odW (2).
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we find:

a®> = o(t)dt,
= a0 vk Y vatasrl, )a = wOA0a (319
jeA ijEA
1#]
e ’Uf(t)(z'(/)?)j_‘_ Z w.f,iT/Jf,jP{j)dt, =: wvp(t)As(t)dt, (3.19)
jEA ijEA
i5
ab = ot)Vva(t) Y vaip].dt,
jeEA
ac = \/U(t)\/vf(t)wa,jpimdt,
jEA
be = \/vd(f)\/vf(t)ziﬂd,j Zd’f,kﬂi’;{dt,
JEA  keA

with piz, pﬁz the correlation between the FX and j-th domestic and foreign Libor,
respectively. The correlation between the k-th domestic and j-th foreign Libor is Pi’; .

By setting f(¢,/c(t), v/va(t), /vs(t)) := (2ab — 2ac — 2bc) /dt, we can express the

dynamics for dz®'(¢) in (3.17) by:

1

() =~ (000 + AdOuale) + A5 0005(0) + 1 (/o V5alD o) )
Vo AWE () + Vvat) D va dWET () — \Jop(t) Y vy dWiT (@),
A A

The coefficients g j, ¥y,j, Aq and Ay in (3.15), (3.18), and (3.19) are deterministic and
piecewise constant.
In order to make the model affine, we linearize the non-affine terms in the drift in

f(t,\/o(t), \/va(t), \/vs(t)) by a projection on the first moments, i.e.,
F(t, Vo), Va(t),\Jvs(t)) = f(LE( (1), E(vva(t)), E(y/vs (1)) = f(1). (3.20)

The variance processes o(t), v4(t) and v (t) are independent CIR-type processes [CIR85],
so the expectation of their products equals the product of the expectations. Function
f(t) can be determined with the help of the formula in (2.30).

The approximation in (3.20) linearizes all non-affine terms in the corresponding PDE.
As before, the forward characteristic function, ¢? := ¢ (u, X(t),t,T), is defined as the
solution of the following backward PDE:

0 = 27,1 +Ad<t>vd+Af<t>vf+f<t>>(

o2 Oz
0¢T 0T _ 0T
+)\d(Ud(0) — 'Ud)aivd + )\f(’l]f(o) — Uf)TUf + K(O' — J)W
82¢T 1 9 82¢T 1 5 82¢T 62¢T
o3 * PRI 811? * 27 7502 +pz’0708x30’

82¢T 8¢T
ot 2 )

1
+§7731)d (3.21)

with the final condition ¢7 (u, X(T),T) = =™ (T) _ Since all coefficients in this PDE are
linear, the solution is of the following form:

¢T(u, X(t),t,T) = exp (A(u, 7) + B(u, T)xT(t) + C(u,7)o(t)
+Dg(u, T)va(t) + Dy (u, T)vs(t)), (3.22)
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with 7 := T — t. Substitution of (3.22) in (3.21) gives us the following system of ODEs
for the functions A(7) := A(u,7), B(1) := B(u,7), C(7) := C(u,7), D4(7) := Dy(u,T)
and Dy (1) := Dy(u,7):

(7) F®)(B*(7) = B(7))/2 + Aqva(0) D1 (7) + Apv (0) Da(7) + 57C(7),
(1) =0,

C'(r) = (B(r) = B(1))/2+ (ps,07B(7) — ) C(7) +7*C*(7) /2,

(1) = Aa(t)(B(1) = B(7))/2 = X\aDa(7) + 13 D3(7)/2,

(1) = Ap®)(B*(r) = B(r))/2 = \pDy(r) + 17 DF(7) /2,

with initial conditions A(0) = 0, B(0) = tu, C'(0) =0, Dq(0) =0, D;(0) = 0 with Ay(t)
and A (t) from (3.18), (3.19), respectively, and f(t) as in (3.20).

With B(7) = iu, the solution for C(7) is analogous to the solution for the ODE for
the FX-HHW1 model in Equation (2.33). As the remaining ODEs involve the piecewise
constant functions A4(t), As(t) the solution must be determined iteratively, like for the
pure Heston model with piecewise constant parameters in [AA00]. For a given grid
0=1 <7 < -+ <7y = 7, the functions Dg(u,T), Ds(u,7) and A(u,T) can be
expressed as:

2

Dg(u,7;) = Dalu,7j-1) + xa(u, 7)),
Dy(u,m;) = Dy(u,7j-1) + xr(u, 1),

forj=1,...,N, and
1 7
Alu, 1) = Au, 7j-1) + xa(u, 75) — §(u2 + u)/ f(s)ds

with f(s) in (3.20) and analytically known functions xx(u,7;), for & = {d, f} and
xA(u, ;)

Xk (u,75) = (Ak = kg — e Dr(u, 75-1)) (1 — e7%3%) /(R (1 = L je~k9%9)),

and
xa(u,7;) = % ((k = pa,oviu —dj)s; —2log (1 — gje~ %) /(1 — g;)))
+vd(0);\§ (A — 8a)s; — 2log (1 — Laje %)/ (1 — €,)))
+vf<o>2§ ((\r = 675055 — 2og (1 — £7,e7975%)/ (1= £1,)))
where
R R ;m —a oy,
Oy = \/A2 + 2 A () (u? + iu), by = )\k n gij — Z:gzgz :jii’

with s; =7, — 7521, =1,...,N, Ag(t) and Af(t) are from (3.18) and (3.19).
The resulting approximation of the full-scale FX-HLMM model is called FX-LMM1
here.

3.2 Foreign Stock in the FX-HLMM Framework

We also consider a foreign stock, Sy(t), driven by the Heston stochastic volatility
model, with the interest rates driven by the market model. The stochastic processes
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of the stock model are assumed to be of the same form as the FX (with one, foreign,
interest rate curve) with the dynamics, under the forward foreign measure, given by:

O emawtT o+ Y 2ty
ST(t) 5 ! Sl Tl

dw(t) = k(@ —w(t))dt +vp/w()dWST (1), (3.23)

Variance process, w(t), is correlated with forward stock S7(¢).
We move to the domestic-forward measure. The forward stock, Sf, and forward

foreign exchange rate, FX” (t), are defined by

ST(t) = P‘j&%, FXT (1) = §(t)Pf(t’g. (3.24)

The quantity

P, T) _ 5S¢t

~ Pp(t,T)

(), (3.25)

is therefore a tradable asset. So, foreign stock exchanged by a foreign exchange rate and
denominated in the domestic zero-coupon bond is a tradable quantity, which implies
that S;";(t)FXT(t) is a martingale. By It6’s lemma, one finds:

d<5f(t)FXT(t)) _dRXT(p) | dST(®)  (arx"(n) (dST(®)
STHFXT(t) FX"(t) ST FX”(t) CHONA

(3.26)

The two first terms at the RHS of (3.26) do not contribute to the drift. The last term
involves all dt-terms, that, by a change of measure, will enter the drift of the variance
process dw(t) in (3.23).

3.3 Numerical Experiments with the FX-HLMM Model

We here focus on the FX-HLMM model covered in Section 3 and consider the errors
generated by the various approximations that led to the model FX-HLMM]1. We have
performed basically two linearization steps to define FX-HLMMI1: We have frozen
the Libors at their initial values and projected the non-affine covariance terms on a
deterministic function. We check, by a numerical experiment, the size of the errors of
these approximations.

We have chosen the following interest rate curves P;(t = 0,7) =
exp(—0.027), P;(t = 0,T) = exp(—0.05T), and, as before, for the FX stochastic
volatility model we set:

k=05 v=03, 6=01, o(0)=0.1. (3.27)

In the simulation we have chosen the following parameters for the domestic and foreign
markets:

Bak = 95%, oar = 15%, Aa=100%, ng = 10%, (3.28)
ﬁﬁk = 50%, Ofk = 25%, )\f = 70%, ng = 20%. (3.29)

In the correlation matrix a number of correlations need to be specified. For the
correlations between the Libor rates in each market, we prescribe large positive values,
as frequently observed in fixed income markets (see for example [BMO07]), p;{j =
90%, plf’j = T70%, fori,j = 1,...,N (i # j). In order to generate skew for FX, we
prescribe a megative correlation between FXT(t) and its stochastic volatility process,
o(t), i.e., pe,o = —40%. The correlation between the FX and the domestic Libors is
set as pg,k = —15%, for k = 1,..., N, and the correlation between FX and the foreign

18



Libors is pg = —15%. The correlation between the domestic and foreign Libors is

pi’jf =25% fori,5=1,...,N (i # j). The following block correlation matrix results:

Cy Car Cea
T
C= Cgﬂf Cr  Cer |, (3.30)
C ct 1
§,d &
with the domestic Libor correlations given by
1 pf, PN 1 90% 90%
pi, 1 PIN 90% 1 90%
Cq = = . ’ (331)
L P‘f,N Pg,N ] 90%  90% 1 NxN
the foreign Libors correlations given by:
I PN 1 70% 70%
pl, 1 Pl N 0% 1 70%
Ce = ’ = ) (3-32)
ol A - 0%  70% R
the correlation between Libors from the domestic and foreign markets given by:
r d, f d,
1 o plfv 1 25% 25%
ot 1 p3d 25% 1 25%
Car = 7 = . ; (3.33)
ot o2, 1 25%  25% I
and the vectors C¢ ¢ and Cg ¢, given by:
r f
Pe —-15% P;,l —-15%
e, ~15% Pl ~15%
Cea= . = : ,Cep = _ : (3.34)
L P?,N —15% Nx1 pg,N —15% Nx1

Since in both markets the Libor rates are assumed to be independent of their variance

processes, we can neglect these correlations here.

Now we find the prices of plain vanilla options on FX in (3.7). The simulation is
performed in the same spirit as in Section 2.5 where the FX-HHW model was considered.
In Table 3.1 we present the differences, in terms of the implied volatilities between the
models FX-HLMM and FX-HLMM1. While the prices for the FX-HLMM were obtained
by Monte-Carlo simulation (20.000 paths and 20 intermediate points between the dates
T;—1 and T; for i = 1,..., N), the prices for FX-HLMM1 were obtained by the Fourier-

based COS method [FOO08] with 500 Fourier series terms.

T || Ki(Ty) | Ko(Ty) | K3(Th) || Ka(Ty) || Ks5(Ty) | Ke(Ty) | Ke(Th)
2y 0.0019 0.0014 0.0009 0.0005 0.0000 -0.0005 | -0.0010
3y 0.0029 0.0025 0.0021 0.0016 0.0011 0.0006 0.0002
by 0.0032 0.0028 0.0023 0.0017 0.0010 0.0005 0.0000
Ty 0.0030 0.0028 0.0025 0.0021 0.0018 0.0014 0.0010
10y 0.0039 0.0032 0.0025 0.0018 0.0012 0.0005 -0.0003
15y 0.0038 0.0029 0.0021 0.0013 0.0005 -0.0004 | -0.0014
20y 0.0002 -0.0009 | -0.0018 -0.0027 -0.0034 | -0.0040 | -0.0044
25y 0.0008 0.0004 -0.0014 -0.0025 -0.0034 | -0.0040 | -0.0046
30y 0.0011 0.0007 0.0000 -0.0009 -0.0018 | -0.0021 -0.0024

Table 3.1: Differences, in implied Black volatilities, between the FX-HLMM and FX-
LMM1 models. The corresponding strikes K1 (T;), . .., K7(T;) are tabulated in Table B.1.
The prices and associated standard deviations are presented in Table B.5.

The FX-HLMM1 model performs very well, as the maximum difference in terms of
implied volatilities is about 0.2% — 0.5%.
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3.3.1 Sensitivity to the Interest Rate Skew

Approximation FX-HLMM1 was based on freezing the Libor rates. By freezing the
Libors, i.e.: Lg(t) = Lgx(0) and Ly x(t) = Ly x(0) we have

Gak(t) = PBarLlak(t)+ (1= Bak)Lar(0) = Lax(0), (3.35)
b)) = PBrrLlypr(t)+ (1= Brr)Lir(0) = Lyr(0). (3.36)

In the DD-SV models for the Libor rates Ly 1 (t) and Ly (t) for any k, the parameters
Ba,k, By.r control the slope of the interest rate volatility smiles. Freezing the Libors to
L4 (0) and Ly x(0) is equivalent to setting B4 = 0 and Gy, = 0 in (3.35) and (3.36)
in the approximation FX-HLMMI.

By a Monte Carlo simulation, we obtain the FX implied volatilities from the full
scale FX-HLMM model for different values of 8 and by comparing them to those from
FX-HLMM1 iwith 3 = 0 we check the influence of the parameters 34 and By on
the FX. In Table 3.2 the implied volatilities for the FX European call options for FX-
HLMM and FX-HLMM1 are presented. The experiments are performed for different
combinations of the interest rate skew parameters, 34 and 3.

FX-HLMM (Monte Carlo simulation) FX-HLMM!1 (Fourier)
strike Bf =0.5 Bqa=0.5 Ba=0
(242) || Ba=0 | fa=05 | Ba=1 || Br=0 | Br=1 Br=0
0.6224 0.3198 0.3191 0.3198 0.3199 0.3196 0.3156
(0.0020) | (0.0017) | (0.0017) || (0.0015) | (0.0018)

0.7290 0.3149 0.3143 0.3148 0.3151 0.3146 0.3112
(0.0021) | (0.0016) | (0.0019) || (0.0015) | (0.0018)

0.8538 0.3102 0.3096 0.3101 0.3104 0.3097 0.3069
(0.0021) | (0.0017) | (0.0020) || (0.0015) | (0.0018)

1.0001 0.3058 0.3053 0.3056 0.3061 0.3052 0.3030
(0.0021) | (0.0017) | (0.0022) || (0.0015) | (0.0017)

1.1714 0.3016 0.3011 0.3015 0.3020 0.3008 0.2993
(0.0020) | (0.0017) | (0.0024) || (0.0015) | (0.0016)

1.3721 0.2977 0.2973 0.2977 0.2982 0.2968 0.2960
(0.0022) | (0.0016) | (0.0026) || (0.0016) | (0.0017)

1.6071 0.2941 0.2938 0.2943 0.2948 0.2931 0.2930
(0.0024) | (0.0017) | (0.0028) || (0.0017) | (0.0018)

Table 3.2: Implied volatilities of the FX options from the FX-HLMM and FX-HLMM1
models, 7" = 10 and parameters were as in Section 3.3. The numbers in parentheses
correspond to the standard deviations (the experiment was performed 20 times with
20T time steps).

The experiment indicates that there is only a small impact of the different Gy ;—
and (3 —values on the FX implied volatilities, implying that the approximate model,
FX-HLMM1 with 845 = Bfr = 0, is useful for the interest rate modelling, for the
parameters studied. With 4 # 0 and 8¢ # 0 the implied volatilities obtained by the
FX-HLMM model appear to be somewhat higher than those obtained by FX-HLMMI1,
a difference of approximately 0.1% — 0.15%, which is considered highly satisfactory.

4 Conclusion

In this article we have presented two FX models with stochastic volatility and
correlated stochastic interest rates. Both FX models were based on the Heston FX
model and differ with respect to the interest rate processes.

In the first model we considered a model in which the domestic and foreign interest
rates were driven by single factor Hull-White short-rate processes. This model enables
pricing of FX-interest rate hybrid products that are not exposed to the smile in the fixed
income markets.

For hybrid products sensitive to the interest rate skew a second model was presented
in which the interest rates were driven by the stochastic volatility Libor Market Model.
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For both hybrid models we have developed approximate models for the pricing of
European options on the FX. These pricing formulas form the basis for highly efficient
model calibration strategies.

The approximate models are based on the linearization of the non-affine terms in the
corresponding pricing PDE, in a very similar way as in our previous article [GO09] on
equity-interest rate options. The approximate models perform very well in the world of
foreign exchange.

These models can also be used to obtain an initial guess when the full-scale models
are used.

Acknowledgments

The authors would like to thank to Sacha van Weeren and Natalia Borovykh from
Rabobank International for fruitful discussions and helpful comments.

References

[AA00] L.B.G. ANDERSEN, J. ANDREASEN, Volatility Skews and Extensions of the Libor
Market Model. Appl. Math. Finance, 1(7): 1-32, 2000.

[AA02] L.B.G. ANDERSEN, J. ANDREASEN, Volatile Volatilities. Risk, 15(12): 163168, 2002.
[And07] J. ANDREASEN, Closed Form Pricing of FX Options Under Stochastic Rates and
Volatility, Presentation at Global Derivatives Conference 2006, Paris, 9-11 May 2006.
[AMO06] A. ANTONOV, T. MISIRPASHAEV, Efficient Calibration to FX Options by Markovian

Projection in Cross-Currency LIBOR Market Models. SSRN working paper, 2006.

[AAAO8] A. ANTONOV, M. ARNEGUY, N. AUDET, Markovian Projection to a Displaced
Volatility Heston Model. SSRN working paper, 2008.

[BJ09] C. BEVERIDGE, M. JoOsHI, Interpolation Schemes in the Displaced-Diffusion Libor
Market Model and the Efficient Pricing and Greeks for Callable Range Accruals. SSRN
working paper, 2009.

[BMO07] D. Brico, F. MERCURIO, Interest Rate Models- Theory and Practice: With Smile,
Inflation and Credit. Springer Finance, second edition, 2007.

[Cap07] O. Caps, On the Valuation of Power-Reverse Duals and Equity-Rates Hybrids.
Presentation at Frankfurt MathFinance Conference, Derivatives and Risk Management in
Theory and Practice, Frankfurt, 26-27 May 2007.

[CIR85] J.C. Cox, J.E. INGERSOLL, S.A. Ross, A Theory of the Term Structure of Interest
Rates. Econometrica, 53(2): 385-407, 1985.

[DMP09] M.H.A. Davis, V. MATAIX-PASTOR, Arbitrage-Free Interpolation of the Swap
Curve. IJTAF, 12(7): 969-1005, 2009.

[DPS00] D. DurFIE, J. PAN, K. SINGLETON, Transform Analysis and Asset Pricing for Affine
Jump-Diffusions. Econometrica, 68: 1343-1376, 2000.

[FO08] F. FANG, C.W. OOSTERLEE, A Novel Pricing Method for European Options Based on
Fourier-Cosine Series Expansions. SIAM J. Sci. Comput., 31: 826-848, 2008.

[GKR96] H. GEMAN, N. EL Karoul, J.C. RoCHET, Changes of Numéraire, Changes of
Probability Measures and Pricing of Options. J. App. Prob., 32: 443-548, 1996.

[Gie0O4] A. GIESE, On the Pricing of Auto-Callable Equity Securities in the Presence of
Stochastic Volatility and Stochastic Interest Rates. Presentation at MathFinance Workshop:
Derivatives and Risk Management in Theory and Practice, Frankfurt, 2004.

[GZ99] P. GLASSERMAN, X. ZHAO, Fast Greeks by Simulation in Forward LIBOR Models. J.
Comp. Fin., 3(1): 5-39, 1999.

[GO09] L.A. GrzELAK, C.W. OOSTERLEE, On the Heston Model with Stochastic Interest
Rates. Techn. Report 09-05, Delft Univ. Techn., the Netherlands, SSRN working paper,
2009.

[GO10] L.A. GrzZELAK, C.W. OOSTERLEE, An Equity-Interest Rate Hybrid Model With
Stochastic Volatility and Interest Rate Smile. Techn. Report 10-01, Delft Univ. Techn.,
the Netherlands, SSRN working paper, 2010.

[HP09] A.v. HAASTRECHT, A. PELSSER, Generic Pricing of FX, Inflation and Stock Options
Under Stochastic Interest Rates and Stochastic Volatility. SSRN working paper, 2009.
[HIM92] D. HEATH, R.A. JARROW, A. MORTON, Bond Pricing and the Term Structure of
Interest Rates: A New Methodology for Contingent Claims Valuation. Econometrica, 1(60):

77-105, 1992.

21



[Hes93] S. HESTON, A Closed-form Solution for Options with Stochastic Volatility with
Applications to Bond and Currency Options. Rev. Fin. Studies, 6(2): 327-343, 1993.

[HWO96] J. HuLL, A. WHITE, Using Hull-White Interest Rate Trees. J. Derivatives, 3(3): 26—
36, 1996.

[HWO00] J. HuLL, A. WHITE, Forward Rate Volatilities, Swap Rate Volatilities and the
Implementation of the Libor Market Model. J. Fized Income, 10(2): 46-62, 2000.

[Hun05] C. HUNTER, Hybrid Derivatives. The Furomoney Derivatives and Risk Management
Handbook, 2005.

[JROO] P. JACKEL, R. REBONATO, Linking Caplet and Swaption Volatilities in a BGM
Framework: Approximate Solutions. J. Comp. Fin., 6(4): 41-60, 2000.

[KJO7] A. Kawal, P. JACKEL, An Asymptotic FX Option Formula in the Cross Currency
Libor Market Model. Wilmott, 74-84, March 2007.

[Mik01] P. MIKKELSEN, Cross-Currency LIBOR Market Models. Center for Analytica Finance
Aarhus School of Business, working paper no.85. 2001.

[MR97] M. MusiELA, M. RUTKOWSKI, Martingale Methods in Financial Modelling. Springer
Finance, first edition, 1997.

[Pit05] V.V. PITERBARG, Time to Smile, Risk, 18(5): 71-75, 2005.

[Pit04] V.V. PITERBARG, Computing Deltas of Callable Libor Exotics in Forward Libor
Models. J. Comp. Fin., 7(2): 107-144, 2004.

[Pit06] V.V. PITERBARG, Smiling Hybrids, Risk, 19: 66-71, 2006.

[Sch02a] E. SCHLOGL, Arbitrage-Free Interpolation in Models of a Market Observable Interest
Rates. In K. Sandmann and P. Schonbucher, editors, Advances in Finance and Stochastic:
FEssays in Honour of Dieter Sondermann. 197-218. Springer Verlag, Heidelberg, 2002.

[Sch02b] E. ScHLOGL, A Multicurrency Extension of the Lognormal Interest Rate Market
Models. Finance and Stochastics, Springer, 6(2): 173-196, 2002.

[SO02] J. StpPEL, S. OukosHI, All Power to PRDC notes. Risk, 15(11): 531-533, 2002.

[Shr04] S. SHREVE, Stochastic Calculus for Finance II: Continuos-Time Models. New York:
Springer, 2004.

[TTO08] A. TakaHAsHI, K. TAKEHARA, Fourier Transform Method with an Asymptotic
Expansion Approach: an Application to Currency Options. IJTAF, 11(4): 381-401, 2008.

22



A  Proof of Lemma 2.2

Since the domestic short rate process, r4(t), is driven by one source of uncertainty
(only one Brownian motion dWg(t)), it is convenient to change the order of the
state variables, from dX(t) = [dFX”(t)/FXT(t),do(t),dra(t),drs(t)]T to dX*(t) =
[dra(t),drs(t),do(t), dFXT (t)/FXT (¢)]T and express the model in terms of the inde-
pendent Brownian motions dAW®(t) = [de(t),de(t), dWa(t)7dW§(t)]T, ie.

drg Ng 0 0 0 d?%
((112‘  u(X*)d + 8 " %05 8 H 3%9 . (A1)
dFX" /FX” —naBa mfBy 0 /o e
which, equivalently, can be written as:
AX* (1) = p(X*)dt + AHAW (1), (A.2)

where p(X*) represents the drift for system dX*(¢) and H is the Cholesky lower-
triangular matrix of the following form:

1 0 0 0 1 0 0 0
H>1 Ha» 0 0 A Pf.d Hs 2 0 0
H = ) ’ = ) ’ A3
Hs1 Hs2 Hsgs 0 po,a Hsz2 Hsgs 0 (A-3)
Hynp Hyo Haz Haa pe.d Hao Hiz Hag

The representation presented above seems to be favorable, since the short-rate process
rq(t) can be considered independently of the other processes.

The matrix model representation in terms of orthogonal Brownian motions results
in the following dynamics for the domestic short rate r4(¢) under measure Q:

dra(t) = Ag(04(t) — ra(t))dt + () AW (2),

and for the domestic ZCB:

% = ra(t)dt + By(t, T)¢1 (AW (1),

with (i (t) being the k’th row vector resulting from multiplying the matrices A and H.

Note, that for the 1D Hull-White short rate processes (1 (t) = L?Jd, 0,0, O].
Now, we derive the Radon-Nikodym derivative [GKR96], Ag(t),:

)

dQT Py(t,T)
AS() = = y . Ad
o) = 4Q = B0, 1)) (A4)
By calculating the It6 derivative of Equation (A.4) we get:
dAD —
Tg? = Bat, T)G(HdWO(1), (A.5)

which implies that the Girsanov kernel for the transition from Q to QT is given by
By(t, T)¢1(t) which is the T-bond volatility given by ngBq(t,T), i.e.:

Af = exp (—;/0 Bf(s,T)Cf(s)ds—l—/o BT(S7T)<1(S)dWQ(S)> . (A.6)

So,
AWT(t) = —By(t, T)CT (H)dt + dWC(#).

Since the vector (¥ (t) is of scalar form, the Brownian motion under the T-forward
measure is given by:

AWO(t) = [dWT () + naBa(t, T)dt, dWF (¢), dWL (#), d”Wg(t)] '
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Now, from the vector representation (A.2) we get that:

naBa+ awrdt
e | PasmaBadtt pa, s AW, + Ha ydW] A7)
Po,dNdBadt+ po,ddwg + H3,2deT + H3,3deT

pe,dNaBadt+ pg,ddwf + H4,2dwf + H4,3dV~V§T + H4,4de

Returning to the dependent Brownian motions under the T-forward measure, gives us:

T
TRreL = VoW (@)~ naBu(t YW () 40y By (4 T ),
do(t) = (55— o)) + VpoanaBalt, TV (@) ) dt +11/oOAWT (1),
dra(t) = (Ma(Ba(t) — ra(t)) + n3Ba(t,T)) dt + ngdW (t),
drp(t) = ()\f(af(t) = 15(1)) = nppe. sV (1) + nang pa, s Balt, T)) dt +npdWy (1),

with full matrix of correlations given in (2.12).

B Tables

In this appendix we present tables with details for the numerical experiments.

T || Ka(Ty) | Ka(Ty) | K3(Th) || Ka(Ty) || Ks(Th) | Ke(Th) | Ke(T)
6m 1.1961 1.2391 1.2837 1.3299 1.3778 1.4273 1.4787
ly 1.1276 1.1854 1.2462 1.3101 1.3773 1.4479 1.5221
3y 0.9515 1.0376 1.1315 1.2338 1.3454 1.4671 1.5999
b5y 0.8309 0.9291 1.0390 1.1620 1.2994 1.4531 1.6250
Ty 0.7358 0.8399 0.9587 1.0943 1.2491 1.4257 1.6274
10y 0.6224 0.7290 0.8538 1.0001 1.1714 1.3721 1.6071
15y 0.4815 0.5844 0.7093 0.8608 1.0447 1.2680 1.5389
20y 0.3788 0.4737 0.5924 0.7409 0.9265 1.1587 1.4491
25y 0.3012 0.3868 0.4966 0.6377 0.8188 1.0514 1.3500
30y 0.2414 0.3174 0.4174 0.5489 0.7218 0.9492 1.2482

Table B.1: Expiries and strikes of FX options used in the FX-HHW model. Strikes
K, (T;) were calculated as given in (2.42) with £(0) = 1.35.

T || Ki(Ty) | Ko(Ty) | K3(Ty) || Ka(Th) || Ks(Th) | Ke(Ti) | K7(T)
6m || 0.1141 | 0.1049 | 0.0966 || 0.0002 || 0.0872 | 0.0866 | 0.0868
1y 0.1223 0.1098 0.0982 0.0895 0.0859 0.0859 0.0865
3y 0.1294 0.1135 0.0989 0.0878 0.0834 0.0836 0.0846
5y 0.1344 0.1184 0.1038 0.0927 0.0876 0.0871 0.0883
Ty 0.1429 0.1268 0.1123 0.1012 0.0952 0.0937 0.0943
10y 0.1643 0.1479 0.1334 0.1218 0.1143 0.1107 0.1099
15y 0.2093 0.1913 0.1756 0.1627 0.1529 0.1465 0.1429
20y || 0.2296 | 0.2119 | 0.1968 || 0.1844 || 0.1750 | 0.1684 | 0.1646
25y 0.2397 0.2231 0.2092 0.1980 0.1895 0.1837 0.1802
30y || 0.2509 | 0.2348 | 0.2217 || 0.2113 || 0.2035 | 0.1981 | 0.1948

Table B.2: Market implied Black volatilities for FX options as given in [Pit06]. The
strikes K, (T;) were tabulated in Table B.1.
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T; || Ki(Ty) | Ko(Ty) | Ks3(Th) || Ka(Ty) || Ks5(Ty) | Ke(Ty) | K7(Th)
6m 0.0012 -0.0012 -0.0025 -0.0023 -0.0001 0.0020 0.0022
ly 0.0013 -0.0008 | -0.0018 -0.0009 0.0014 0.0016 -0.0014
3y 0.0016 -0.0007 | -0.0017 -0.0008 0.0018 0.0022 -0.0014
by 0.0011 -0.0006 | -0.0012 -0.0007 0.0010 0.0013 -0.0014
Ty 0.0007 -0.0003 | -0.0006 -0.0003 0.0006 0.0010 -0.0008
10y 0.0004 -0.0001 | -0.0001 -0.0002 0.0002 0.0005 -0.0002
15y 0.0011 -0.0005 | -0.0009 -0.0004 0.0003 0.0009 -0.0005
20y 0.0094 0.0039 0.0002 -0.0019 -0.0024 -0.0016 0.0002
25y 0.0143 0.0059 -0.0002 -0.0043 -0.0063 | -0.0064 | -0.0051
30y 0.0165 0.0070 0.0000 -0.0048 -0.0074 | -0.0082 | -0.0074

Table B.3: The calibration results for the FX-HHW model, in terms of the differences
between the market (given in Table B.2) and FX-HHW model implied volatilities.
Strikes K, (T;) are given in Table B.1.

T; | method | Ki(Ty) | Ka(Ty) | K3(Ty) | Ka(Ty) | Ks(Ty) | Ke(Ti) | K7(Th)
6m MC 0.1907 | 0.1636 | 0.1382 [ 0.1148 [ 0.0935 | 0.0748 | 0.0585

std dev | 0.0004 0.0004 0.0005 0.0004 0.0004 0.0004 0.0004
COS 0.1908 0.1637 0.1382 0.1147 0.0934 0.0746 0.0583

ly MC 0.2566 0.2209 0.1870 0.1553 0.1264 0.1008 0.0785
std dev | 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007
COS 0.2567 0.2210 0.1870 0.1554 0.1265 0.1008 0.0786

3y MC 0.3768 0.3281 0.2805 0.2349 0.1923 0.1538 0.1200
std dev | 0.0014 0.0015 0.0015 0.0015 0.0015 0.0015 0.0014
COS 0.3765 0.3279 0.2804 0.2349 0.1926 0.1543 0.1207

5y MC 0.4216 0.3709 0.3205 0.2713 0.2246 0.1816 0.1432
std dev 0.0021 0.0021 0.0021 0.0020 0.0020 0.0019 0.0018
COS 0.4212 0.3706 0.3203 0.2713 0.2249 0.1822 0.1441

Ty MC 0.4368 0.3878 0.3383 0.2895 0.2426 0.1986 0.1587
std dev | 0.0018 0.0018 0.0018 0.0018 0.0018 0.0017 0.0016
COS 0.4362 0.3873 0.3380 0.2893 0.2425 0.1987 0.1590

10y MC 0.4310 0.3871 0.3420 0.2967 0.2521 0.2096 0.1702
std dev | 0.0033 0.0033 0.0033 0.0033 0.0033 0.0031 0.0030
COS 0.4311 0.3873 0.3423 0.2971 0.2528 0.2106 0.1714

15y MC 0.3894 0.3553 0.3195 0.2826 0.2455 0.2092 0.1744
std dev | 0.0038 0.0037 0.0037 0.0036 0.0036 0.0036 0.0035
COS 0.3900 0.3560 0.3202 0.2834 0.2463 0.2100 0.1754

20y MC 0.3362 0.3109 0.2838 0.2553 0.2260 0.1966 0.1677
std dev | 0.0037 0.0037 0.0037 0.0037 0.0037 0.0036 0.0036
COS 0.3358 0.3104 0.2833 0.2548 0.2254 0.1960 0.1672

25y MC 0.2809 0.2626 0.2425 0.2211 0.1987 0.1757 0.1526
std dev | 0.0048 0.0048 0.0048 0.0048 0.0047 0.0046 0.0045
COS 0.2814 0.2630 0.2429 0.2215 0.1990 0.1759 0.1529

30y MC 0.2322 0.2191 0.2046 0.1888 0.1720 0.1545 0.1367
std dev | 0.0050 0.0050 0.0050 0.0050 0.0049 0.0048 0.0048
COS 0.2319 0.2188 0.2042 0.1883 0.1714 0.1539 0.1359

Table B.4: Average FX call option prices obtained by the FX-HHW model with 20
Monte-Carlo simulations, 50.000 paths and 20 x T; steps; MC stands for Monte Carlo
and COS for Fourier Cosine expansion technique ([FO08]) for the FX-HHW1 model with
500 expansion terms. The strikes K,,(T;) are tabulated in Table B.1.
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Ty | method | Ki(Ty) | Ko(Ty) | Ks(Ty) | Ka(Th) | Ks(Ty) | Ke(Ty) | Ko(Ty)
2y MC 0.3336 | 0.2889 | 0.2456 | 0.2046 | 0.1667 | 0.1327 | 0.1030
std dev | 0.0008 | 0.0009 | 0.0010 | 0.0010 | 0.0011 | 0.0011 | 0.0012
COS | 0.3326 | 0.2880 | 0.2450 | 0.2043 | 0.1667 | 0.1330 | 0.1037

3y MC 0.3786 0.3299 0.2823 0.2366 0.1939 0.1553 0.1213
std dev | 0.0006 0.0007 0.0008 0.0009 0.0011 0.0012 0.0013
COS 0.3768 0.3282 0.2808 0.2354 0.1931 0.1548 0.1212

Sy MC 0.4243 0.3738 0.3234 0.2743 0.2274 0.1843 0.1457
std dev | 0.0012 0.0013 0.0014 0.0015 0.0016 0.0016 0.0016
COS 0.4222 0.3717 0.3215 0.2727 0.2265 0.1838 0.1457

Ty MC 0.4399 0.3914 0.3424 0.2938 0.2470 0.2031 0.1631
std dev | 0.0013 0.0014 0.0015 0.0016 0.0018 0.0019 0.0021
COS 0.4379 0.3893 0.3402 0.2918 0.2453 0.2017 0.1621

10y MC 0.4363 0.3928 0.3482 0.3031 0.2587 0.2162 0.1764
std dev | 0.0012 0.0016 0.0019 0.0023 0.0026 0.0027 0.0028
COS 0.4338 0.3905 0.3461 0.3014 0.2576 0.2157 0.1767

15y MC 0.3964 0.3632 0.3280 0.2917 0.2550 0.2186 0.1834
std dev | 0.0008 0.0010 0.0012 0.0014 0.0016 0.0019 0.0023
COS 0.3944 0.3613 0.3265 0.2907 0.2545 0.2190 0.1848

20y MC 0.3417 0.3171 0.2907 0.2629 0.2342 0.2052 0.1768
std dev | 0.0010 0.0013 0.0015 0.0018 0.0021 0.0025 0.0030
COS 0.3416 0.3176 0.2918 0.2647 0.2367 0.2085 0.1806

25y MC 0.2886 0.2715 0.2525 0.2321 0.2107 0.1887 0.1664
std dev | 0.0011 0.0014 0.0016 0.0019 0.0023 0.0027 0.0033
COS 0.2883 0.2715 0.2532 0.2335 0.2127 0.1913 0.1697

30y MC 0.2396 0.2281 0.2152 0.2011 0.1858 0.1699 0.1534
std dev | 0.0012 0.0015 0.0018 0.0021 0.0024 0.0029 0.0035
COS 0.2393 0.2279 0.2152 0.2014 0.1866 0.1710 0.1548

Table B.5: Average FX call option prices obtained by the FX-HLMM model with 20
Monte-Carlo simulations, 50.000 paths and 20 x T; steps; MC stands for Monte Carlo
and COS for the Fourier Cosine expansion technique ([FO08]) for the FX-HLMM1 model
with 500 expansion terms. Values of the strikes K, (7T;) are tabulated in Table B.1.
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