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Abstract

We present an extension of stochastic volatility equity models by a stochastic Hull-White
interest rate component while assuming non-zero correlations between the underlying pro-
cesses. We place these systems of stochastic differential equations in the class of affine jump
diffusion - linear quadratic jump-diffusion processes (Duffie, Pan and Singleton [13], Cheng
and Scaillet [10]) so that the pricing of European products can be efficiently done within
the Fourier cosine expansion pricing framework [14]. We compare the new stochastic volatil-
ity Schöbel-Zhu-Hull-White hybrid model with a Heston-Hull-White model [3; 19], and also
apply the models to price some hybrid structured derivatives that combine the equity and
interest rate asset classes.
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1 Introduction

In recent years the financial world has focused on accurate pricing of exotic and hybrid products
that are based on a combination of underlyings from different asset classes. In this paper we
therefore present a flexible multi-factor stochastic volatility (SV) model which includes the term
structure of the stochastic interest rates (IR). Our aim is to combine an arbitrage-free Hull-White
IR model in which the parameters are consistent with market prices of caps and swaptions. In
order to perform efficient option valuation we fit this process in the class of affine jump diffusion
(AJD) processes [13] (although jump processes are not included in this work). We specify under
which conditions such a general model can fall in the class of AJD processes.

A major step, away from the assumption of constant volatility in derivatives pricing, was
made by Hull and White [22], Stein and Stein [39] and Heston [21], who defined the volatility as a
diffusion process. This improved the pricing of derivatives under heavy-tailed return distributions
significantly and allowed a trader to quantify the uncertainty in the pricing. The stochastic volatil-
ity models have become popular for derivative pricing and hedging, see, for example, [16], however
financial engineers have developed more complex exotic products, that require additionally the
modeling of a stochastic interest rate component. A derivative pricing tool in which all these
features are explicitly modeled may have the potential of generating more accurate option prices
for hybrid products. These products can be designed to provide capital or income protection,
diversification for portfolios and customized solutions for both institutional and retail markets.

∗Corresponding author. E-mail address: L.A.Grzelak@tudelft.nl.
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In [14] a highly efficient alternative pricing method was developed based on a Fourier-cosine
expansion of the density function, and called COS method. This method can also determine a
whole set of option prices in one computation. The COS algorithm relies heavily on the availability
of the characteristic function of the price process, which is guaranteed if we stay within the AJD
class, see Duffie-Pan-Singleton [13], Lee [25] and Lewis [26]. We examine the effect of correlated
processes for asset, stochastic volatility and interest rate on the option prices through a comparison
with, for example, the Heston model.

The plan of this paper is as follows: In Section 2 we perform analysis of the Schöbel-Zhu-Hull-
White model. In Subsection 2.3, we show that the hybrid model of interest admits a semi-closed
form for the characteristic function. In the successive subsection we derive the Heston-Hull-White
model with non-zero correlation between the stock and the interest rate. In Section 3 we show
how to efficiently price options with a Fourier cosine expansion technique when the characteristic
function with stochastic interest rate of the asset process is available. Further, in Section 4 the two
hybrid models, Schöbel-Zhu-Hull-White, Heston-Hull-White and the stochastic volatility Heston
model are compared in detail with respect to calibration and hybrid product pricing. Section 5
concludes. The lengthy proofs of the lemmas are placed in the appendices.

2 Extension of stochastic volatility equity models

In this section we present a hybrid stochastic volatility equity model which includes a stochastic
interest rate process. In particular, we add to the SV model the well-known Hull-White stochastic
interest rate process [23], which is a generalization of the Vašiček model [40].

So, we consider a three-dimensional system of stochastic differential equations, of the following
form: 

dSt = rtStdt+ σpt StdW
x
t ,

drt = λ(θt − rt)dt+ ηdW r
t ,

dσt = κ (σ − σt) dt+ γσ1−p
t dW σ

t ,

(2.1)

where p is an exponent, κ and λ control the speed of mean reversion, η represents the interest
rate volatility, and γσ1−p determines the variance of the σt process. Parameters σ and θt are the
long-run mean of the volatility and the interest rate processes, respectively. W i are correlated
Wiener processes, also governed by an instantaneous covariance matrix,

Σ =

 1 ρx,σ ρx,r
ρσ,x 1 ρσ,r
ρr,x ρr,σ 1

dt. (2.2)

If we keep rt deterministic and p = 1
2 , we have the Heston model [21],{

dSt = rStdt+
√
σtStdW x

t ,

dσt = κH
(
σH − σt

)
dt+ γH

√
σtdW σ

t .
(2.3)

For p = 1 our model is, in fact, the generalized Stein-Stein [39] model, which is also called the
Schöbel-Zhu [36] model,

dSt = rStdt+
√
vtStdW x

t ,

dvt = −2κ
(
vt + σtσ +

γ2

2κ

)
dt+ 2γ

√
vtdW σ

t ,
(2.4)

in which the squared volatility, vt = σ2
t , represents the variance of the instantaneous stock return.

It was already indicated in [21] and [36] that the plain Schöbel-Zhu model is a particular case
of the original Heston model. We can see that, if σ = 0, the Schöbel-Zhu model equals the Heston
model in which κH = 2κ, σH = γ2/2κ, and γH = 2γ. This relation gives a direct connection
between their discounted characteristic functions (see [28]). Finally, if we set rt constant, p = 0 in
system of Equations (2.1), and zero correlations, the model collapses to the standard Black-Scholes
model.
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We will choose the parameters in the equations (2.1), such that we deal with the Schöbel-
Zhu-Hull-White (SZHW) model in Subsection 2.3, and with the Heston-Hull-White (HHW) in
Subsection 2.4. In [17] and [10] it is was shown that the so-called linear-quadratic jump-diffusion
(LQJD) models are equivalent to the AJD models with an augmented state vector.

2.1 Affine jump-diffusion processes

The AJD class refers to a fixed probability space (Ω,F , P ) and a Markovian n-dimensional affine
process Xt in some space D ⊂ Rn. The model without jumps can be expressed by the following
stochastic differential form:

dXt = µ(Xt)dt+ σ(Xt)dWt,

where Wt is Ft-standard Brownian motion in Rn, µ(Xt) : D → Rn, σ (Xt) : D → Rn×n.
Moreover, for processes in the AJD class it is assumed that drift µ(Xt), volatility σ(Xt)σ(Xt)T

and interest rate component r(Xt) are of the affine form, i.e.

µ(Xt) = a0 + a1Xt, for any (a0, a1) ∈ Rn × Rn×n, (2.5)
σ(Xt)σ(Xt)T = (c0)ij + (c1)TijXt, for arbitrary (c0, c1) ∈ Rn×n × Rn×n×n, (2.6)

r(Xt) = r0 + rT1 Xt, for (r0, r1) ∈ R× Rn. (2.7)

Then, for a state vector, Xt, the discounted characteristic function (CF) is of the following form:

φ(u,Xt, t, T ) = EQ
(
e−

∫ T
t
rsds+iuT XT |Ft

)
= eA(u,τ)+BT(u,τ)Xt ,

where the expectation is taken under the risk-neutral measure, Q. For a time lag, τ := T − t,
the coefficients A(u, τ) and BT (u, τ) have to satisfy certain complex-valued ordinary differential
equations (ODEs) [13]: 

d
dτ
A(u, τ) = −r0 + BTa0+

1
2
BT c0B,

d
dτ

B(u, τ) = −r1 + aT1 B+
1
2
BT c1B.

(2.8)

The dimension of the (complex valued) ODEs for B(u, τ) corresponds to the dimension of the
state vector, Xt. Typically, multi-factor models, like the SZHW or the HHW model, provide a
better fit to the observed market data than the one-factor models. However, as the dimension of
SDE system increases, the ODEs to be solved to get the CF become increasingly complex. If an
analytical solution to the ODEs cannot be obtained, one can apply well-known numerical ODE
techniques instead. This may require substantial computational effort, which essentially makes
the model problematic for practical calibration applications. Therefore, in this paper we will set
up two models for which an analytic solution to most of the ODEs appearing can be obtained.

2.2 The Hull-White model

Here, as a start, we consider the Hull-White, single-factor, no-arbitrage yield curve model in which
the short-term interest rate is driven by an extended Ornstein-Uhlenbeck (OU) mean reverting
process,

drt = λ (θt − rt) dt+ ηdW r
t , (2.9)

where θt > 0, t ∈ R+ is a time-dependent drift term, included to fit the theoretical bond prices
to the yield curve observed in the market. Parameter η determines the overall level of volatility
and the reversion rate parameter λ determines the relative volatilities. A high value of λ causes
short-term rate movements to damp out quickly, so that the long-term volatility is reduced.

In the first part of our analysis we present the derivation for the CF of the interest rate process.
Integrating equation (2.9), we obtain, for t ≥ 0,

rt = r0e−λt + λ

∫ t

0

e−λ(t−s)θsds+ η

∫ t

0

e−λ(t−s)dW r
s .
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It is easy to show that rt is normally distributed with

EQ (rt| F0) = r0e−λt +
∫ t

0

λe−λ(t−s)θsds,

and

VarQ (rt| F0) =
η2

2λ
(
1− e−2λt

)
.

Moreover, it is known that for θt being constant, i.e., θt ≡ θ,

lim
t→∞

EQ (rt|F0) = θ,

which means that for large t the first moment of the process converges to the mean reverting level
θ.

In order to simplify the derivations to follow we use the following proposition (see Arnold [4],
Oksendal [33]).

Proposition 2.1 (Hull-White decomposition). The Hull-White stochastic interest rate process (2.9)
can be decomposed into rt = r̃t + ψt, where

ψt = e−λtr0 + λ

∫ t

0

e−λ(t−s)θsds,

and
dr̃t = −λr̃tdt+ ηdWQ

t ,with r̃0 = 0.

Proof. The proof is straightforward by Itô’s lemma.

The advantage of this transformation is that the stochastic process r̃t is now a basic OU mean
reverting process, determined only by λ and η, independent of function ψt. It is easier to analyze
than the original Hull and White model [22].

We investigate the discounted conditional characteristic function (CF) of spot interest rate rt,

φHW(u, rt, t, T ) = EQ
(
e−

∫ T
t
rsds+iurT |Ft

)
= EQ

(
e−

∫ T
t
ψsds+iuψT · e−

∫ T
t
r̃sds+iur̃T |Ft

)
= e−

∫ T
t
ψsds+iuψT · φHW(u, r̃t, t, T ),

(2.10)

and see that process r̃t is affine. Hence according to [13] the discounted CF for the affine interest
rate model for u ∈ C is of the following form:

φHW(u, r̃t, τ) = EQ
(
e−

∫ T
t
r̃sds+iur̃T |Ft

)
= eA(u,τ)+B(u,τ)r̃t , (2.11)

with τ = T − t. The necessary boundary condition accompanying (2.11) is φHW(u, r̃t, 0) = eiur̃t ,
so that, A(u, 0) = 0 and B(u, 0) = iu. The solutions for A(u, τ) and B(u, τ) are provided by the
following lemma:

Lemma 2.2 (Coefficients for discounted CF for the Hull-White model). The functions A(u, τ)
and B(u, τ) in (2.11) are given by:

A(u, τ) =
η2

2λ3

(
λτ − 2

(
1− e−λτ

)
+

1
2
(
1− e−2λτ

))
− iu

η2

2λ2

(
1− e−λτ

)2
−1

2
u2 η

2

2λ
(
1− e−2λτ

)
,

B(u, τ) = iue−λτ − 1
λ

(
1− e−λτ

)
.

(2.12)
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Proof. The proof can be found in [7] pp. 75.

By simply taking u = 0, we obtain the risk-free pricing formula for a zero coupon bond P (t, T ):

φHW(0, rt, τ) = EQ
(
e−

∫ T
t
rsds · 1|Ft

)
= exp

(
−
∫ T

t

ψsds+A(0, τ) +B(0, τ)r̃t

)
. (2.13)

Moreover, we see that a zero coupon bond can be written as the product of a deterministic
factor and the bond price in an ordinary Vašiček model with zero mean, under the risk-neutral
measure Q. We recall that process r̃t at time t = 0 is equal to 0, so

P (0, T ) = exp

(
−
∫ T

0

ψsds+A(0, T )

)
, (2.14)

which gives

ψT = − ∂

∂T
logP (0, T ) +

∂

∂T
A(0, T ) = f(0, T ) +

η2

2λ2

(
1− e−λT

)2
, (2.15)

where f(t, T ) is an instantaneous forward rate.
This result shows that ψT can be obtained from the initial forward curve, f(0, T ). The other

time-invariant parameters, λ and η, have to be estimated using market prices of, in particular,
interest rate caps. Now from Proposition 2.1 we have θt = 1

λ
∂
∂tψt + ψt which reads,

θt = f(0, t) +
1
λ

∂

∂t
f(0, t) +

η2

2λ2

(
1− e−2λt

)
. (2.16)

Moreover, the CF, φHW(u, rt, τ), for the Hull-White model can be simply obtained by integration
of ψs over the interval [t, T ].

2.3 Schöbel-Zhu-Hull-White hybrid model

In this section we derive an analytic pricing formula in (semi-)closed form for European call options
under the Schöbel-Zhu-Hull-White (SZHW) asset pricing model with a full matrix of correlations,
defined by (2.2). The work on the SZHW hybrid model was initiated by Pelsser [30] and resulted
(later) in a working paper [20].

For the state vector Xt = [St, rt, σt]
T let us fix a probability space (Ω,F , P ) and a filtration

F = {Ft : t ≥ 0}, which satisfies the usual conditions. Furthermore, Xt is assumed to be
Markovian relative to Ft. The Schöbel-Zhu-Hull-White hybrid model can be expressed by the
following 3D system of SDEs 

dSt = rtStdt+ σtStdW x
t ,

drt = λ (θt − rt) dt+ ηdW r
t ,

dσt = κ(σ − σt)dt+ γdW σ
t ,

(2.17)

with the parameters as in Equations (2.1), for p = 1, and the correlations: dW x
t · dW σ

t = ρx,σdt,
dW x

t · dW r
t = ρx,rdt,

dW r
t · dW σ

t = ρr,σdt.
(2.18)

By extending the space vector (as in [10]) with another stochastic process, defined by

vt := σ2
t ,
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and choosing xt = logSt, we obtain the following 4D system of SDEs,

dxt =
(
r̃t + ψt −

1
2
vt

)
dt+

√
vtdW x

t ,

dr̃t = −λr̃tdt+ ηdW r
t ,

dvt =
(
−2vtκ+ 2κσtσ + γ2

)
dt+ 2γ

√
vtdW σ

t ,

dσt = κ(σ − σt)dt+ γdW σ
t ,

(2.19)

where we also used rt = r̃t +ψt, as in Subsection 2.2. Note that θt is now included in ψt. We see
that model (2.19) is indeed affine in the state vector Xt = [xt, r̃t, vt, σt]

T . By the extension of the
vector space we have obtained an affine model which enables us to apply the results from [13]. In
order to simplify the calculations, we introduce a variable xt := x̃t + Ψt where Ψt =

∫ t
0
ψsds and

dx̃t =
(
r̃t −

1
2
vt

)
dt+

√
vtdW x

t . (2.20)

According [13] the discounted CF for u ∈ C4 is of the following form,

φSZHW(u,Xt, t, T ) = EQ
(
e−

∫ T
t
rsdseiu

T XT |Ft
)

(2.21)

= e−
∫ T

t
ψsds+iuT [ΨT ,ψT ,0,0]

T

· EQ
(
e−

∫ T
t
r̃sds+iuT X∗

T |Ft
)

(2.22)

= e−
∫ T

t
ψsds+iuT [ΨT ,ψT ,0,0]

T

· eA(u,τ)+BT (u,τ)X∗
t (2.23)

where X∗
t = [x̃t, r̃t, vt, σt]T and B(u, τ) = [Bx(u, τ), Br(u, τ), Bv(u, τ), Bσ(u, τ)]

T . Now we set
u = [u, 0, 0, 0]T , so that at time T we obtain the obvious boundary condition:

φSZHW(u,X∗
T , T, T ) = EQ

(
eiu

T X∗
T |FT

)
= eiu

T X∗
T = eiux̃T ,

(as the price at time T is known deterministically). This boundary condition for τ = 0 gives
Bx(u, 0) = iu, A(u, 0) = 0, Br(u, 0) = 0, Bσ(u, 0) = 0, Bv(u, 0) = 0. The following lemmas
define the ODEs, from (2.8), and detail their solution.

Lemma 2.3 (Schöbel-Zhu-Hull-White ODEs). The functions A(u, τ), Bx(u, τ), Bσ(u, τ), Bv(u, τ),
Br(u, τ), u ∈ R, in (2.23) satisfy the following system of ODEs:

dBx
dτ

= 0,

dBr
dτ

= −1 +Bx − λBr,

dBv
dτ

=
1
2
Bx(Bx − 1) + 2 (γρx,vBx − κ)Bv + 2γ2B2

v ,

dBσ
dτ

= (2κσ̄Bv + ηρx,rBxBr + 2γηρr,vBrBv) +
(
2γ2Bv − κ+ γρx,σBx

)
Bσ,

dA
dτ

= γ2Bv +
1
2
η2B2

r +
(
κσ̄ +

1
2
γ2Bσ + γηρrσBr

)
Bσ.

Proof. The proof can be found in Appendix A.1.

Lemma 2.4. The solution to the system of ODEs, specified in Lemma 2.3 is given by:

Bx(u, τ) = iu,

Br(u, τ) =
1
λ

(iu− 1) (1−Θ(−2λ)) ,

Bv(u, τ) =
1

4γ2
·
(

1−Θ(−2d)
1− gΘ(−2d)

)
(β − d) ,

Bσ(u, τ) = f0

(
f1 +

1
λ

(iu− 1)
(
ηρx,riu · (f2 − f3) +

ηρr,v
2γ

(β − d) · (f4 + f5)
))

,

A(u, τ) = f6 −
1

2γ2
log
(
gΘ(−2d)− 1

g − 1

)
− 1

2λ3
· f7 + Γ(u, τ),
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where:

Γ(u, τ) =
∫ τ

0

Bσ(u, s)
(
κσ̄ +

1
2
γ2Bσ(u, s) + ηρr,σγBr(u, s)

)
ds, (2.24)

with

f0 =
Θ(d)

Θ(2d)− g
,

f1 =
16κσ̄
4γ2d

(β − d) · sinh2

(
τd

4

)
,

f2 =
2
d

((Θ(d)− 1) + g(Θ(−d)− 1)) ,

f3 =
2 (Θ(d− 2λ)− 1)

d− 2λ
− 2g (1−Θ(2λ− d))

d+ 2λ
,

f4 =
2

d− 2λ
− 4
d

+
2

d+ 2λ
,

f5 = Θ(−2λ− d)
(

2
d
Θ(2λ)(1 + Θ(2d))− 2Θ(2d)

d− 2λ
− 2
d+ 2λ

)
,

f6 =
1

4γ2
(β − d)τ,

f7 = (iu− 1)2(3 + Θ(−4λ)− 4Θ(−2λ)− 2τλ),

and β = 2 (κ− ρx,vγui), d =
√
β2 − 8αγ2, with α = −1

2
u(i+ u), g =

β − d

β + d
, Θ(x) = exp

(xτ
2

)
.

Proof. The proof is presented in Appendix A.2.

Now, since we have found expressions for the coefficients A(u, τ) and BT (u, τ) we return to
equation (2.21) and derive a representation in which the term structure is included. It is known
that the price of a zero coupon bond can be obtained from the characteristic function by taking
u = [0, 0, 0, 0]T . So,

φSZHW(0,Xt, τ) = exp

(
−
∫ T

t

ψsds

)
· φSZHW(0,X∗

t , τ). (2.25)

Since r̃0 = 0 we find,

P (0, T ) = exp

(
−
∫ T

0

ψsds+A(0, τ) +Bx(0, τ)x0 +Bv(0, τ)v0 +Bσ(0, τ)σ0

)
,

with boundary conditions Bx(0, T ) = 0, Bv(0, T ) = 0, Bσ(0, T ) = 0 and

A(0, T ) =
1
2
η2

∫ T

0

Br(0, s)2ds =
η2

4λ3

(
1 + 2λT −

(
e−λT − 2

)2)
. (2.26)

We thus find,

P (0, T ) = exp

(
−
∫ T

0

ψsds+A(0, T )

)
.

By combining the results from the previous lemmas, we can prove the following lemma.

Lemma 2.5. In the Schöbel-Zhu-Hull-White model, the discounted characteristic function,
φSZHW(u,Xt, t, T ) for logST , is given by

φSZHW(u,Xt, t, T ) = exp
(
Ã(u, τ) +Bx(u, τ)xt +Br(u, τ)r̃t +Bv(u, τ)vt +Bσ(u, τ)σt

)
,
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where Bx(u, τ), Br(u, τ), Bv(u, τ), Bσ(u, τ) and A(u, τ) are given in Lemma 2.4, and

Ã(u, τ) = A(u, τ) + (iu− 1)
∫ T

t

ψsds = A(u, τ) + Υ(u, t, T ), (2.27)

with

Υ(u, t, T ) = (1− iu)
{

log
(
P (0, T )
P (0, t)

)
+

η2

2λ2

(
τ +

2
λ

(
e−λT − e−λt

)
− 1

2λ
(
e−2λT − e−2λt

))}
.

(2.28)

Proof. The proof is straightforward from the definition of the discounted CF.

2.3.1 Numerical integration for the SZHW hybrid model

Lemma 2.4 indicates that many terms in the CF for the SZHW hybrid model can be obtained
analytically, except the Γ(u, τ)-term (2.24), which requires numerical integration of the hyper-
geometric function 2F1 [31]. For a given partitioning

0 = s1 ≤ s2 ≤ . . . sN ′−1 ≤ sN ′ = τ,

we calculate following integral approximation of (2.24):

Γ(u, τ) ≈
N ′∑
i=0

Bσ(u, si)
(
κσ̄ +

1
2
γ2Bσ(u, si) + ηρr,σγBr(u, si)

)
δsi
, (2.29)

with the functions Br(u, si) and Bσ(u, si) as in (2.24). In Table 1 we present the numerical conver-
gence results for two basic quadrature rules for one particular (representative) example of (2.29).
It shows that both integration routines – the composite trapezoidal and the composite Simpson
rule – converge very satisfactory with only a small number of grid points, N ′. Convergence with
the trapezoidal rule is of second order, and with Simpson’s rule of fourth order, as expected.
Simpson’s rule is superior in terms of the ratio between time and absolute error. We therefore
continue with the Simpson rule, setting N ′ = 26.

Table 1: CPU time, absolute error, and the convergence rate for different numbers of integration
points N ′ for evaluating function Γ(u, τ). The time to maturity is set to τ = 1 and u = 5 and the
remaining parameters for the model are λ = 0.5, κ = 1, η = 0.1, σ̄ = 0.3, γ = 0.5, ρx,v = −0.5,
ρx,r = 0.3, r0 = 0.05, σ0 = 0.256 and ρr,v = −0.9.

(N ′ = 2n
′
) Trapezoidal rule Simpson’s rule

n′ time (sec) |error| time (sec) |error|
2 1.5e-4 1.5e-4 1.5e-4 7.3e-6
4 2.6e-4 6.0e-6 2.7e-4 2.3e-8
6 3.4e-4 3.4e-7 3.5e-4 1.3e-10
8 6.6e-4 2.1e-8 6.7e-4 6.0e-13

2.4 Heston-Hull-White hybrid model

It is known, for example from [32], that it is not possible to formulate the so-called Heston-Hull-
White (HHW) hybrid process, with a full matrix of correlations, so that it belongs to the class of
AJD processes. For this, restrictions regarding the parameters or the correlation structure have
to be introduced. One possible restriction is to assume that the interest rate process, rt, evolves
independently of the stock price, St, and the volatility process, σt, while the other correlation
is not equal to zero, i.e., dW x

t · dW r
t = 0, dW σ

t · dW r
t = 0 and dW x

t · dW σ
t = ρx,σdt. Another

option is to solve the problem under the assumption that dW σ
t · dW r

t = 0 and additionally that

8



γ2/4 = κσ, see [32]. It may, however, be difficult to apply this latter model in practice, as the
economical meaning of the parameter relationship is difficult to interpret.

Since for the HHW model with a full matrix of correlations between the processes, the affinity
of the model is lost, the aim is to reformulate the HHW model, so that affinity is preserved while
the correlations are included to some extent. Giese in [19] has introduced the following HHW-type
model: 

dSt = rtStdt+
√
σtStdW x

t + ∆S,rStdW r
t ,

drt = λ(θt − rt)dt+ ηdW r
t ,

dσt = κ(σ̄ − σt)dt+ γ
√
σtdW σ

t ,

(2.30)

with  dW x
t · dW σ

t = ρx,σdt,
dW x

t · dW r
t = 0,

dW r
t · dW σ

t = 0.
(2.31)

Since the interest rate, rt, is uncorrelated with the other driving processes, the reformulated HHW
model stays (in the log-space for equity) in the class of affine processes. By taking ∆S,r = 0 the
model collapses to well-known Heston-Hull-White model with independent interest rate. We see
that by ∆S,r 6= 0 one controls, indirectly, the correlation between the equity and interest rate
processes.

Now, by log-transform of the stock process, xt = logSt, and using rt = r̃t+ψt, and xt = x̃t+Ψt,
we obtain: 

dx̃t =
(
r̃t −

1
2
(
σt + ∆2

S,r

))
dt+

√
σtdW x

t + ∆S,rdW r
t ,

dr̃t = −λr̃tdt+ ηdW r
t ,

dσt = κ(σ̄ − σt)dt+ γ
√
σtdW σ

t .

(2.32)

As in the case of the SZHW hybrid model, the next step of the analysis is to find the corre-
sponding discounted CF. Since for constant ∆S,r the system is already affine the CF for u ∈ C3

is of the following form:

φHHW(u,Xt, t, T ) = EQ
(
e−

∫ T
t
rsds · eiu

T XT |Ft
)

(2.33)

= e−
∫ T

t
ψsds+iuT [ΨT ,ψT ,0]

T

· eA(u,τ)+BT (u,τ)X∗
t , (2.34)

where X∗
t = [x̃t, r̃t, σt]T and B(u, τ) = [Bx(u, τ), Br(u, τ), Bσ(u, τ)]

T . As before by setting
u = [u, 0, 0]T , we find the corresponding ODEs and their solutions.

Lemma 2.6 (Heston-Hull-White ODEs). The functions A(u, τ), Bx(u, τ), Br(u, τ), and Bσ(u, τ),
u ∈ R, in (2.33) satisfy the following system of ODEs:

dBx
dτ

= 0,

dBr
dτ

= −1 +Bx − λBr,

dBσ
dτ

=
1
2
Bx (Bx − 1) + (γρx,σBx − κ)Bσ +

1
2
γ2B2

σ,

dA
dτ

=
1
2
∆2
S,rBx (Bx − 1) + ∆S,rηBxBr +

1
2
η2B2

r + κσ̄Bσ,

with boundary conditions: Bx(u, 0) = iu, Bσ(u, 0) = 0, Br(u, 0) = 0 and A(u, 0) = 0.

Proof. The proof can be found in Appendix A.3.
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Lemma 2.7 (CF coefficients for the HHW model). The solution to the system of ODEs, specified
in Lemma 2.6 is given by:

Bx(u, τ) = iu,

Br(u, τ) =
1
λ

(iu− 1) (1−Θ(−2λ)) ,

Bσ(u, τ) =
1
γ2
· 1−Θ(−2d)
1− gΘ(−2d)

(β − d) ,

A(u, τ) =
Θ(−4λ)
2dgλ

(
dg (Γ1(τ) + Θ(4λ)Γ2(τ)) + Γ3(τ) log

(
gΘ(−2d)− 1

g − 1

))
,

where

Γ1(τ) = −f4f2
6 + 2f6(f3 + 2f4f6)Θ(2λ),

Γ2(τ) = (−f6(2f3 + 3f4f6) + 2(f1 + f2f5 + f6(f3 + f4f6))λτ),
Γ3(τ) = 2f2f5Θ(4λ)(g − 1)λ,

with: f1 = −1
2
∆2
S,ru(i+ u), f2 = κσ̄, f3 = ∆S,rηiu, f4 =

1
2
η2, f5 =

1
γ2

(β − d) , f6 =
1
λ

(iu− 1),

d =
√
β2 + (iu+ u2)γ2, g =

β − d

β + d
, β = κ− γρx,σiu, and Θ(x) = exp

(xτ
2

)
.

Proof. The proof requires solving Riccati-type ODEs which are analogous to ones for the SZHW
hybrid model.

Now, by the lemma above the CF for the HHW hybrid model in (2.33) for logSt is given by:

ΦHHW(u,Xt, t, T ) = exp
(
Ã(u, τ) +Bx(u, τ)xt +Br(u, τ)r̃t +Bσ(u, τ)σt

)
, (2.35)

where
Ã(u, τ) = A(u, τ) + Υ(u, t, T ),

where Bx(u, τ), Br(u, τ), Bσ(u, τ) and A(u, τ) are given in Lemma 2.7, and Υ(u, t, T ) is given in
Equation (2.28).

As already mentioned, the HHW model defined in (2.30) assumes a zero correlation between
the equity process St and the short-term rt, i.e., dW x

t · dW r
t = 0, as these two processes are

indirectly linked via ∆S,r. Now, we discuss the relation between ∆S,r and the instantaneous
correlation ρx,r.

By Itô’s lemma and dW x
t · dW r

t = 0 we have the instantaneous correlation:

ρx,r =
Cov(dSt,drt)√

Var(dSt) ·
√

Var(drt)
=

η∆S,rSt dt√
σtS2

t dt+ ∆2
s,rS

2
t dt ·

√
η2 dt

=
∆S,r√
σt + ∆2

S,r

. (2.36)

From (2.36) we find ∆S,r as a function of ρx,r:

∆S,r(t) =
ρx,r

√
σt√

1− ρ2
x,r

.

Since ∆S,r is defined in terms of the stochastic process σt it is stochastic as well. The first
approach to deal with state-dependent ∆S,r is to include it in the original system (2.30); however
then the system’s affinity may become problematic. In this article we therefore adopt the basic
approximation for ∆S,r, proposed in [19], i.e.:

∆S,r ≈

ρx,rE

√ 1
T

∫ T

0

σtdt


√

1− ρ2
x,r

, (2.37)
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which further can be simplified 1 via:

E

√ 1
T

∫ T

0

σtds

 ≈

E

(
1
T

∫ T

0

σtds

)
− 1

4T

Var

(∫ T

0

σtds

)

E

(∫ T

0

σtds

)


1
2

. (2.38)

Since σt is a Cox-Ingersoll-Ross (CIR) type process the expectations and variance on the RHS
in (2.38) can be found analytically.

2.4.1 Limits for the HHW hybrid model

We analyze here the accuracy of the approximation for ∆S,r introduced in (2.37). With a pre-
scribed correlation, ρx,r, we approximate the effective ∆S,r in Equation (2.37) and compare it with
the correlation, ρ̃S,r, obtained by a Monte Carlo simulation of (2.30). The results are generated
by 50.000 Monte Carlo paths with step-size of 0.01.

Table 2: The error for instantaneous correlation, by a Monte Carlo simulation. The simulation is
performed with: κ = 0.35, σ̄ = 0.05, γ = 0.4, λ = 0.15, η = 0.07, ρx,σ = −0.7,S0 = 1, v0 = 0.0625
and r0 = 0.02.

maturity ρx,r ∆S,r ρ̃S,r ρx,r − ρ̃x,r
30% 0.0646 29.90% 0.100%

τ = 2 50% 0.1187 48.84% 1.160%
70% 0.2016 66.90% 3.100%
90% 0.4247 79.23% 10.77%
30% 0.0587 25.25% 4.750%

τ = 12 50% 0.1078 38.85% 11.15%
70% 0.1831 45.89% 24.11%
90% 0.3857 41.16% 48.81%

Table 2 shows that, although the instantaneous correlation between the equity process and the
interest rate can be indirectly included in the HHW model via ∆S,r, some extreme correlations
cannot be generated. Moreover, we also see that this effect is more pronounced for long maturities.
Thus, with the HHW model we cannot fully control as accurate calibration and pricing especially
for high correlations and long maturities is not guaranteed. Often in practice, however we hardly
encounter such high correlations. However, since this model admits closed form for the CF, we
do not need a numerical integration procedure as in Section 2.3.1 for SZHW.

3 Pricing Methodology

The pricing of plain vanilla options is common practice in the Fourier domain when the CF of
the logarithm of the stock price is available.

Recently, an effective pricing method, the COS method, based on Fourier-cosine expansion,
has been developed in [14]. This method can also, as the Carr-Madan method [9], compute the
option prices for a whole strip of strikes in one computation and also depends on the availability
of the CF. Implementation is straightforward. The COS method can achieve an exponential
convergence rate for European, Bermudan and barrier options for affine models whose probability
density function is in C∞[a, b], with nonzero derivatives [14; 15].

Here, we extend the COS method to include the stochastic interest rate process.
1

Var(f(X)) ≈
(
f ′(E(X))

)2
Var(X)
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We start the description of the pricing method with the general risk-neutral pricing formula:

V (t, St) = EQ
(
e−

∫ T
t
rsdsV (T, ST )|Ft

)
=
∫

R
V (T, y)f̂Y (y|x)dy, (3.1)

where f̂Y (y|x) =
∫

R
ezfY,Z(y, z|x)dz, with z = −

∫ T
t
rsds.

The claim V (t, St) under EQ(·) is defined in St which may be correlated to rt. As we assume
a fast decay of the density function, the following approximation can be made,

V (t, St) ≈
∫

Ω

V (T, y)f̂Y (y|x)dy, (3.2)

where: Ω = [δ1, δ2], and |Ω| = δ2 − δ1, δ2 > δ1. The discounted CF is now given by:

φ(u,Xt, t, T ) = EQ
(
e−

∫ T
t
rsds+iuTXT |Ft

)
, (3.3)

which, for u = [u, 0, . . . , 0]T and XT = [ST , rT , . . . ]T , reads

φ(u,Xt, t, T ) =
∫∫

R
ez+iuyfY,Z(y, z|x)dzdy =

∫
R

eiuy f̂Y (y|x)dy. (3.4)

Note that the integration in (3.4) is simply the Fourier transform of f̂Y (y|x), which can be
approximated on a bounded domain Ω,

φ(u,Xt, t, T ) ≈
∫

Ω

eiuy · f̂Y (y|x)dy =: φ̃(u,Xt, t, T ). (3.5)

Since we are interested in the pricing of claims of the form (3.2), we link f̂Y (y|x) with its CF, via
the following result:

Result 3.1. For a given bounded domain Ω = [δ1, δ2], and N a number of terms in the expansion,
the probability density function f̂Y (y|x) given by (3.2) can be approximated by,

f̂Y (y|x) ≈
N∑
n=0

θn cos
(
nπ

(y − δ1)
|Ω|

)
, where θn =

2ωn
|Ω|

<
{
φ̃

(
nπ

|Ω|

)
exp

(
−nπ iδ1

|Ω|

)}
,

where < denotes taking the real part, ω0 = 1
2 and ωn = 1, n ∈ N+.

For a proof we refer to the original paper on the COS method [14].
Using the lemma above, we replace the probability density function f̂Y (y|x) in (3.2),

V (t, St) ≈
∫

Ω

V (T, y)
N∑
n=0

θn cos
(
nπ

(y − δ1)
|Ω|

)
dy =

|Ω|
2

N∑
n=0

θnΓΩ
n

ωn
, (3.6)

where,

ΓΩ
n =

2ωn
|Ω|

∫
Ω

V (T, y) cos
(
nπ

(y − δ1)
|Ω|

)
dy. (3.7)

The equation above provides us with the pricing formula for any stochastically discounted payoff,
V (T, ST ), for which the CF is available. We note that, depending on the payoff, the ΓΩ

n in (3.7)
change, but a closed form expression is available for the most common payoffs. As the hybrid
products will be calibrated to plain vanilla options, we provide the gamma coefficients for the
European call options:
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Result 3.2. The ΓΩ
n coefficients in (3.7) for pricing a call option defined by

V (T, y) = max (K(ey − 1), 0) ,

with y = log
(
S
K

)
for a given strike K, is given by

ΓΩ
n =

2K
|Ω|

(κn − ψn) , (3.8)

where,

κn =
|Ω|2

|Ω|2 + (nπ)2

{
cos(nπ)eδ2 − cos

(
−δ1nπ
|Ω|

)
+
nπ

|Ω|

[
sin(nπ)eδ2 − sin

(
−δ1nπ
|Ω|

)]}
, (3.9)

and,

ψn =


|Ω|
nπ

[
sin(nπ)− sin

(
−δ1nπ
|Ω|

)]
for n 6= 0

δ2 for n = 0.
(3.10)

Proof. The proof is straightforward by calculating the integral in (3.7) with the transformed payoff
function V (T, y).

Since the coefficients ΓΩ
n are available in closed form, the expression in (3.6) can easily be

implemented. The availability of such a pricing formula is particularly useful in a calibration
procedure, in which the parameters of the stochastic processes need to be approximated. In
practice, option pricing models are calibrated to a number of market observed call option prices.
It is therefore necessary for such a procedure to be highly efficient and a (semi-)closed form for
an option pricing formula is desirable.

The COS method’s accuracy is related to the size of the integration domain, Ω. If the domain
is chosen too small, we expect a significant loss of accuracy, see [14]. On the other hand if
the domain is too wide, a large number of terms in the Fourier expansion, N , has to be used
for satisfactory accuracy. In [14] the truncation range was defined in terms of the moments of
log
(
ST

K

)
of the form:

δ1,2 = µ1 ± L
√
µ2 +

√
µ4, (3.11)

with the minus sign for δ1, and the plus sign for δ2, the µi are the corresponding i-th moments,
and L is an appropriate constant. In our work, with the moments not directly available, we apply
a simplified approximation for the integration range, and use:

δ1,2 = 0± L
√
τ , (3.12)

with τ , the time to maturity. As in [14], we fix L = 8 in (3.12).

4 Calibration and pricing under the hybrid model

For exotic financial products that involve more than one asset class, the pricing engine should be
based on a stochastic model which takes into account the interactions between the asset classes,
like the SZHW or the HHW models presented above. It is therefore interesting to evaluate price
differences between the classical models and these hybrid models. For this purpose we consider
several hybrid products, treated in subsequent subsections. The pricing is done using a Monte
Carlo method.

Before we can price these products, however, we need to calibrate the models, i.e., to find
the model parameters so that the models recover the market prices of plain vanilla options. This
calibration procedure relies heavily on the characteristic function derived in the previous section
and the appendices.
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4.1 Calibration of the models

In this section we examine the extended stochastic volatility models and compare their perfor-
mance to the Heston model. We use financial market data to estimate the model parameters and
discuss the effect of the correlation between the equity and interest rate on the estimated param-
eters. For this purpose we have chosen the CAC40 call option implied volatilities of 17.10.2007.
We perform the calibration of the models in two stages. Firstly, we calibrate the parameters for
the interest rate process by using caplets and swaptions. Secondly, the remaining parameters, for
the underlying asset, the volatility and the correlations, are calibrated to the plain vanilla option
market prices. Standard procedures for the Hull-White calibration are employed [7]. Tables 3
and 4 present the estimated parameters and the associated squared sum errors (SSE) defines as,

SSE =
n∑
i=1

m∑
j=1

(
C (Ti,Kj)− Ĉ (Ti, Tj)

)2

, (4.1)

where C(Ti,Ki) and Ĉ (Ti, Tj) are the market and the model prices, respectively, Ti is the ith
time to maturity and Kj is the jth strike. We have 32 strikes, (m = 32), and 20 time points
(n = 20).

Table 4 shows the calibration results for the Heston, Heston-Hull-White and Schöbel-Zhu-
Hull-White models. We see that all the models are reasonably well calibrated with approximately
the same error. We have used a two level calibration routine: a global search algorithm (simulated
annealing) combined with a local search (Nelder-Mead) algorithm. In order to reduce parameter
risk we set the speed of mean reversion of the volatility process, κ, to 0.5 and we have performed
the simulation for a number of correlations, ρx,r. For both hybrid models some patterns in the
calibrated parameters can be observed (see Table 4). For the SZHW and the HHW models two
parameters, σ̄ and σ0, are unaffected by changing the correlation ρx,r. For the SZHW model
we found σ̄ ≈ 0.2, σ0 ≈ 0.1 and for the HHW model σ̄ ≈ 0.035, σ0 ≈ 0.01. Another pattern
we observed is that the the vol-vol parameter γ decreases from 0.08 to 0.02 for the SZHW and
from 0.29 to 0.05 for the HHW model with increasing correlation ρx,r from −70% to 0%. The
reverse effect was obtained for positive correlation ρx,r. The correlation ρx,σ between stock St
and the volatility σt remains relatively stable for the HHW model, oscillating around −0.98. For
the SZHW model it decreased from −0.31 to −0.99 for ρx,r varying from −70% to −10% and
increased from −0.72 to −0.38 for ρx,r from 10% to 70%. The correlation ρr,σ in the SZHW model
does not show any regularity.

In the next section we use obtained the calibration results and check the impact of the corre-
lation between the equity and interest rate on pricing exotic products.

For the pricing of financial derivatives, Monte Carlo methods are commonly used tools, espe-
cially for products like hybrid derivatives for which a closed-form pricing formula is not available.
Because of discretization techniques like the Euler-Maruyama or Milstein schemes (see, for exam-
ple, [37]) a Monte Carlo technique may sometimes give a negative or imaginary variance in the SV
models. This is not acceptable. In the literature, improved techniques to perform a simulation of
the AJD processes have been developed, see [2],[8]. An analysis of the possible ways to overcome
the negative variance problem can be found in [29]. We have chosen the so-called absorption
scheme, from [29], where at each iteration step max(σt+∆t , 0) is taken.

Table 3: Parameters estimated from the market data (Hull-White model), r0 is assumed to be
the earliest forward rate. The interest rate term structure θt was found via Equation (2.16).

model r0 λ η SSE
Hull-White 0.01733 1.12 0.001 1e-3

4.2 Cliquet options

Cliquet options are very popular in the world of equity derivatives [43]. The contracts are con-
structed to give a protection against downside risk combined with a significant upside potential.
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Table 4: Calibration results for the Schöbel-Zhu-Hull-White, Heston-Hull-White and Heston mod-
els defined in (2.17) and (2.30). The experiment was done with a priori defined speed of reversion
for the volatility κ = 0.5, and correlation ρx,r (SZHW and HHW). In the simulation for the Heston
model a constant interest rate of r = 0.0327 was chosen.

model ρx,r σ̄ γ ρx,v ρr,σ σ0 SSE
−70% 0.1929 0.0787 -0.3116 0.4000 0.1000 9.5e-3
−50% 0.2000 0.0539 -0.3967 0.1190 0.0990 9.1e-3
−30% 0.2030 0.0400 -0.5699 0.3238 0.1000 9.0e-3

SZHW −10% 0.2049 0.0189 -0.9888 0.3173 0.1002 9.2e-3
10% 0.2039 0.0315 -0.7167 0.0634 0.0998 9.2e-3
30% 0.2029 0.0376 -0.6039 0.2407 0.1001 9.0e-3
50% 0.2018 0.0429 -0.5335 0.2505 0.0980 9.0e-3
70% 0.1981 0.0576 -0.3822 -0.0776 0.0990 9.2e-3
−70% 0.0242 0.2905 -0.4157 − 0.0129 7.9e-3
−50% 0.0309 0.0732 -0.9900 − 0.0104 8.3e-3
−30% 0.0372 0.0596 -0.9899 − 0.0124 8.3e-3

HHW −10% 0.0403 0.0543 -0.9900 − 0.0134 8.3e-3
10% 0.0402 0.0545 -0.9899 − 0.0134 8.3e-3
30% 0.0370 0.0600 -0.9899 − 0.0123 8.3e-3
50% 0.0306 0.0740 -0.9900 − 0.0103 8.3e-3
70% 0.0215 0.1327 -0.8641 − 0.0078 8.3e-3

Heston − 0.0770 0.3500 -0.6622 − 0.0107 7.8e-3

A cliquet option can be interpreted as a series of forward-starting European options, for which
the total premium is determined in advance. The payout on each option can either be paid at
the final maturity date, or at the end of a reset period. One of the cliquet type structures is a
Globally Floored Cliquet with the following payoff:

Π(t0 = 0, T ) = EQ

(
e−

∫ T
0 rsds ·max

(
M∑
i=1

min (Ati ,LocalCap) ,MinCoupon

)
|F0

)
. (4.2)

Here Ati = max
(

LocalFloor,
Sti
Sti−1

− 1
)

, ti = i TM , with maturity T . M indicates the number

of reset periods. We notice that the term Ati can be recognized as an ATM forward starting
option, which is driven by a forward skew. It has been shown in [18] that the cliquet structures
are significantly underpriced under a local volatility model for which forward skews are basically
too flat.

Since the forward prices are not known a-priori, we derive the values from the so-called forward
characteristic function. If we define XT as a state vector at time T then the forward characteristic
function, φF , can be found as

φF (u,XT , t
∗, T ) = EQ

(
e−

∫ T
0 rsdseiu

T (XT−Xt∗ )|F0

)
= EQ

(
e−

∫ t∗
0 rsds−iuT Xt∗φ (u,XT , t

∗, T ) |F0

)
= eA(u,t∗,T )EQ

(
e−

∫ t∗
0 rsds−iuT Xt∗+BT (u,t∗,T )Xt∗ |F0

)
.

(4.3)

In the case of the plain Heston model, the forward characteristic function, φFH , reads:

φFH(u,XT , t
∗, T ) = eA(u,τ∗)EQ

(
eBσ(u,τ∗)vt∗ |F0

)
, (4.4)

where τ∗ = T − t∗ and AH(u, τ∗), Bσ(u, τ∗) are the Heston functions as introduced in [21]. The
expectation under the risk neutral measure in (4.4) can be recognized as the Laplace transform
of the transitional probability density function of a Cox-Ingersoll-Ross model [11], which is given
by the following lemma:
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Lemma 4.1 (Laplace transform of for Heston volatility process). The Laplace transform of the
equation given by (4.4) for Heston stochastic volatility process has the following form

EQ
(
eBσ(u,t∗,T )vt∗ |F0

)
=

 1

1− γ2

2κ
(
1− e−κτ

)
Bσ(u, t∗, T )


2κσ̄
γ2

exp

 eκτBσ(u, t∗, T )σ0

1− γ2

2κ
(
1− e−κτ

)
Bσ(u, t∗, T )

.
Proof. A detailed proof can be found in [38] or [1].

Figure 1 shows the performance of all three models applied to the pricing of the cliquet option
defined in (4.2). We choose here T = 3, LocalCap = 0.01, LocalFloor = −0.01 and M = 36 (the
contract measures the monthly performance). For large values of the MinCoupon the values of the
hybrid under the three models are identical, which is expected since a large MinCoupon dominates
the max operator in (4.2) and the expectation becomes simply the price of a zero coupon bond
at time t = 0 multiplied by the deterministic MinCoupon. Figure 1 shows the pricing results for
two correlations ρx,r = −0.7 and ρx,r = 0.7. In both cases the HHW model generates lower prices
than other models. Moreover, the cliquet is priced significantly lower by the SZHW model than
by the Heston model for ρx,r = 0.7 and it is priced higher than the Heston model for ρx,r = −0.7.
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Figure 1: Pricing a cliquet product under the SZHW, the HHW and the Heston models. Both
figures present the price of a globally floored cliquet as a function of MinCoupon given by (4.2)
for T = 3 years and M = 36. The remaining parameters are as in Table 4. Left: Pricing with
ρx,r = −0.7, Right: Pricing with ρx,r = 0.7.

4.3 A diversification product (performance basket)

Other hybrid products that an investor may use in strategic trading are so-called diversification
products. These products, also known as ‘performace baskets’, are based on sets of assets with
different expected returns and risk levels. Proper construction of such products may give reduced
risk compared to any single asset, and an expected return that is greater than that of the least
risky asset [24]. A simple example is a portfolio with two assets: a stock with a high risk and
high return and a bond with a low risk and low return. If one introduces an equity component
in a pure bond portfolio the expected return will increase. However, because of a non-perfect
correlation between these two assets also a risk reduction is expected. If the percentage of the
equity in the portfolio is increased, it eventually starts to dominate the structure and the risk
may increase with a higher impact for a low or negative correlation [24]. An example is a financial
product, defined in the following way:

Π(t0 = 0, T ) = EQ
(

e−
∫ T
0 rsds ·max

(
0, ω · ST

S0
+ (1− ω) · BT

B0

)
|F0

)
, (4.5)
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where ST is the underlying asset at time T , BT is a bond, ω represents a percentage ratio. Figure 2
shows the pricing results for the models discussed. The product pricing is performed with the
Monte Carlo method and the parameters calibrated from the market data. For ω ∈ [0%, 100%]
the max disappears from the payoff and only a sum of discounted expectations remains. The
figure shows that the Heston model generates a significantly higher price, whereas the HHW and
the SZHW prices are relatively close. The absolute difference between the models increases with
percentage ω.
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Figure 2: Pricing of a diversification hybrid product under different models. The simulations
performed with τ = 10. The remaining parameters are as in Table 4. Left: Pricing with ρx,r =
−0.7, Right: Pricing with ρx,r = 0.7,

4.4 Strategic investment hybrid (best-of-strategy)

Suppose that an investor believes that if the price of an asset, S1
t , goes up, then the equity markets

under-perform relative to the interest rate yields, whereas, if S1
t drops down, the equity markets

over-perform relative to the interest rate [24]. If the prices of S1
t are high, the market may expect

an increase of the inflation and hence of the interest rates and low S1
t prices could have the

opposite effect. In order to include such a feature in a hybrid product we define a contract in
which an investor is allowed to buy a weighted performance coupon depending on the performance
of another underlying. Such a product can be defined as follows,

Π(t0 = 0, T ) = EQ
(
e−

∫ T
0 rsds · VT |F0

)
, with (4.6)

VT = max
(

0, ω · L0

LT
+ (1− ω)

ST
S0

)
1S1

T>S
1
0

+ max
(

0, (1− ω)
L0

LT
+ ω · ST

S0

)
1S1

T<S
1
0
,

where ω ≥ 0 is a weighting factor related to a percentage, LT =
∑M
i=1 P (T, ti) with t1 = T is the

T -value of projected liabilities for certain time tM , with ω > 100%− ω.
Figure 3 shows the prices obtained from Monte Carlo simulation of the contract at time t0 = 0

for maturity T = t1 = 3 and time horizon tM = 12 with one year spacing. Since we did not model
the second underlying process, S1

T , we assume that S1
T > S1

0 . We see that for ω ∈ [0%, 100%] the
max over the sum of performances disappears and the hybrid can be relatively easily priced, i.e.,
separately for both underlyings (L0/LT and ST /S0). The difference between the stochastic models
becomes more pronounced for ω > 0% since then the correlation plays a more important role.
The simulations performed for ρx,r = −70% and ρx,r = 70% show that the absolute difference
between the SZHW and the HHW models becomes significant for ω > 200%. The figure shows
that for small ω the prices of the SZHW and the HHW models are relatively close, whereas the
Heston model gives lower prices for ω > 50%.
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Figure 3: Discounted payoffs of the strategic investment hybrid priced with the SZHW, the HHW
and the Heston models in dependence of ω. The remaining parameters are as in Table 4. Left:
Pricing with ρx,r = −0.7, Right: Pricing with ρx,r = 0.7

5 Conclusions

In this paper we have presented an extension of the Schöbel-Zhu stochastic volatility model with a
Hull-White interest rate process and evaluated it by means of pricing structured hybrid derivative
products.

The aim was to define a hybrid stochastic process which belongs to the class of affine jump-
diffusion models, as this may lead to efficient calibration of the model. We have shown that the
so-called Schöbel-Zhu-Hull-White model belongs to the category of affine jump diffusion processes.
No restrictions regarding the choice of correlation structure between the different Wiener processes
appearing need to be made.

We also compared the model to the Heston-Hull-White hybrid model with an indirectly implied
correlation between the equity and the interest rate. We have found that although the model is
very attractive, because of its square root volatility structure it is unable to generate extreme
correlations.

Due to the resulting semi-closed (for Schöbel-Zhu-Hull-White) and closed (Heston-Hull-White)
characteristic functions we were able to calibrate models in an efficient way by means of the Fourier
cosine expansion pricing technique, adapted to stochastic interest rate.

It has been shown by numerical experiments for different hybrid products that under the same
plain vanilla prices the extended stochastic volatility models give different prices than the Heston
model.

The present hybrid model cannot model a skew in the interest rates, which will be part of our
future work.
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A Proofs of various lemmas

In this appendix we have placed the proofs of the various lemmas.

A.1 Proof of Lemma 2.3

Proof.
We need to find the solution of:

d
dτ
A(u, τ) = −r0 + BTa0 +

1
2
BT c0B, (A.1)

d
dτ

B(u, τ) = −r1 + aT1 B +
1
2
BT c1B. (A.2)

For the space vector X∗
t = [x̃t, r̃t, vt, σt]

T we have

a0 = [0, 0, γ2, κσ]T , a1 =


0 1 − 1

2 0
0 −λ 0 0
0 0 −2κ 2κσ
0 0 0 −κ

 , r0 = 0, r1 =


0
1
0
0

 ,
and

Σ := σ(Xt)σ(Xt)T =


v σηρx,r 2vγρx,v σγρx,σ

η2 2ησγρr,v ηγρr,σ
4vγ2 2σγ2

γ2

 .
This leads to

c0 =


0 0 0 0

η2 0 ηγρr,σ
0 0

γ2

 , c1 =


(0, 0, 1, 0) (0, 0, 0, ηρx,r) (0, 0, 2γρx,v, 0) (0, 0, 0, γρx,σ)

(0, 0, 0, 0) (0, 0, 0, 2ηγρr,v) (0, 0, 0, 0)
(0, 0, 4γ2, 0) (0, 0, 0, 2γ2)

(0, 0, 0, 0)

 .
With

1
2
BT c1B =

1
2


∑4
i=1

∑4
j=1Bi[s1(1)]i,jBj∑4

i=1

∑4
j=1Bi[s1(2)]i,jBj∑4

i=1

∑4
j=1Bi[s1(3)]i,jBj∑4

i=1

∑4
j=1Bi[s1(4)]i,jBj

 ,
(with i = 1, . . . , 4 representing x, v, r, σ) we obtain the following system

dA
dτ

= [Bx, Br, Bv, Bσ]


0
0
γ2

κσ

+
1
2
[Bx, Br, Bv, Bσ]


0 0 0 0

η2 0 ηγρr,σ
0 0

γ2



Bx
Br
Bv
Bσ

 , (A.3)

dB
dτ

=


dBx

dτ

dBr

dτ

dBv

dτ

dBσ

dτ

 =


0
−1
0
0

+


0 0 0 0
1 −λ 0 0
− 1

2 0 −2κ 0
0 0 2κσ −κ



Bx
Br
Bv
Bσ

+
1
2


0
0
S1

S2

 , (A.4)

where

S1 = B2
x + 4γρx,vBxBv + 4γ2B2

v , (A.5)
S2 = 2ηρx,rBxBr + 2γρx,σBxBσ + 4ηγρr,vBrBv + 4γ2BvBσ. (A.6)

Now, simplification of the equations (A.3) and (A.4) finishes the proof.
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A.2 Proof of Lemma 2.4

Proof.
In the 1D case, i.e., u = [u, 0, 0, 0]T we start by solving the ODE for dBr,

d
dτ
Br + λBr = iu− 1.

Standard calculations give∫ τ

0

d
(
eλsBr(u, s)

)
= (iu− 1)

∫ τ

0

eλsds, i.e.,

eλτBr(u, τ)− e0Br(u, 0) = (iu− 1)
(

1
λ

eλτ − 1
λ

)
.

Using the boundary condition, Br(u, 0) = 0, gives, Br(u, τ) = 1
λ (iu− 1)

(
1− e−λt

)
.

The ODE for Bv now reads (using Bx = iu):

d
dτ
Bv = −1

2
u(i+ u) + 2γ2B2

v − 2(κ− γρx,viu)Bv. (A.7)

In order to simplify this equation we introduce the variables α = − 1
2u(i+u) and β = 2(κ−γρx,viu).

The ODE can then be presented in the following form:

d
dτ
Bv = α− βBv + 2γ2B2

v . (A.8)

Following the calculations for the Heston model the solution of (A.8) reads,

Bv(u, τ) =
β − d

4γ2

(
1− e−τd

1− e−τd
(
b
a

)) ,
where a = β + d/4γ2, b = (β − d)/(4γ2) and d =

√
β2 − 8αγ2. This solution can be simplified to

Bv(u, τ) = b

(
1− e−τd

1− ge−τd

)
,

with g = (β − d)/(β + d).
Next, we solve the ODE for Bσ,

d
dτ
Bσ = (2κσBv + ηρx,rBxBr + 2ηγρr,vBrBv) +

(
γρx,σBx + 2γ2Bv − κ

)
Bσ. (A.9)

We introduce the following functions,

ζ(τ) = 2κσBv + ηρx,rBxBr + 2ηγρr,vBrBv, (A.10)
ξ(τ) = γρx,σBx + 2γ2Bv − κ. (A.11)

This leads to the following ODE

d
dτ
Bσ − ξ(τ)Bσ = ζ(τ),

whose solution follows from,

d
dτ

(
e−

∫ τ
0 ξ(s)dsBσ

)
= ζ(τ) exp

(
−
∫ τ

0

ξ(s)ds
)
,

or

exp
(
−
∫ τ

0

ξ(s)ds
)
Bσ =

∫ τ

0

ζ(s) exp
(
−
∫ s

0

ξ(k)dk
)

ds.
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So, finally, we need to calculateBσ(u, τ) = exp
(∫ τ

0

ξ(s)ds
)∫ τ

0

ζ(s) exp
(
−
∫ s

0

ξ(k)dk
)

ds.

Bσ(u, 0) = 0.
(A.12)

For this, we start with the integral for ξ(k):∫ s
0
ξ(k)dk =

∫ s
0

(
γρx,σiu+ 2γ2Bv − κ

)
dk

=
(
γρx,σiu− κ+ β−d

2g

)
s+ (β−d)(g−1)

2dg log
(

esd−g
1−g

)
= C1s+ C2 log( esd−g

1−g )

(A.13)

where C1 =
(
γρx,σiu− κ+ β−d

2g

)
, C2 = (β−d)(g−1)

2dg , β = 2(κ−γρx,viu), d =
√
β2 − 8αγ2 and

g = β−d
β+d . After substitution of these quantities, we find that C1 = D/2 and C2 = −1.

Next, we need to calculate the exponent of the integral of ξ:

exp
(∫ s

0

ξ(k)dk
)

= exp
(
C1s+ C2 log

(
esd − g

1− g

))
= exp

(
sd

2

)(
1− g

esd − g

)
, (A.14)

and we can include ζ in the integral,∫ τ
0
ζ(s) exp

(
−
∫ s
0
ξ(k)dk

)
ds =

∫ τ
0

(2κσBv + ηρx,rBxBr + 2ηγρr,vBrBv) exp
(
−d

2s
) (

esd−g
1−g

)
ds.

(A.15)
This integral is split into three parts. The first part can be solved analytically,∫ τ

0
2κσBve−

d
2 s
(

esd−g
1−g

)
ds = 2κσb

∫ τ
0

(
1−e−sd

1−e−sdg

)
e−

d
2 s
(

esd−g
1−g

)
ds

= 2κσb
1−g

∫ τ
0

e−
sd
2
(
esd − 1

)
ds

=
16κσb sinh2( τd

4 )
(1−g)d ≡ f1

1− g
.

(A.16)

The second part can be solved analytically as well,∫ τ
0
ηρx,rBxBre−

d
2 s
(

esd−g
1−g

)
ds =

∫ τ
0
ηρx,r

1
λ iu(iu− 1)(1− e−λs)e−

sd
2

(
esd−g
1−g

)
ds

= ηρx,riu(iu−1)
(1−g)λ

∫ τ
0

e−
sd
2 (1− e−λs)(esd − g)ds

= ηρx,riu(iu−1)
(1−g)λ (f2 − f3),

(A.17)

where

f2 =
2
d
(e

τd
2 − 1) +

2g
d

(e−
τd
2 − 1), (A.18)

f3 =
2
(
e

τ
2 (d−2λ) − 1

)
d− 2λ

−
2g
(
1− e−

τ
2 (d+2λ)

)
d+ 2λ

, (A.19)

and the third part reads,∫ τ
0

2ηγρr,vBrBve−
d
2 s
(

esd−g
1−g

)
ds = 2ηγρr,v

1−g
∫ τ
0
BrBve−

d
2 s
(
esd − g

)
ds

= 2ηγρr,v(iu−1)b
(1−g)λ

∫ τ
0

e−
1
2 s(d+2λ)(esd − 1)(esλ − 1)ds

= 2ηγρr,v(iu−1)b
(1−g)λ (f4 + f5),

(A.20)
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where

f4 =
2

d− 2λ
− 4
d

+
2

d+ 2λ
, (A.21)

f5 =
(
e−

1
2 τ(d+2λ)

)(2eτλ(1 + edτ )
d

− 2edτ

d− 2λ
− 2
d+ 2λ

)
. (A.22)

So, finally, we have:

Bσ(u, τ) = exp
(∫ τ

0
ξ(s)ds

) ∫ τ
0
ζ(s) exp

(
−
∫ s
0
ξ(k)dk

)
ds

= f0
(
f1 + 1

ληρx,riu(iu− 1)(f2 − f3) + 1
λ2ηγρr,vb(iu− 1)(f4 + f5)

)
,

(A.23)

with f0 = e
d
2 τ/(eτd − g), f2, f3 from (A.18) and (A.19) respectively , f4 from (A.21) and f5

from (A.22).
Now, we solve the ODE for A(u, τ):

d
dτ
A = γ2Bv + κσBσ +

1
2
η2B2

r +
1
2
γ2B2

σ + ηγρr,σBσBr, (A.24)

with solution,

A(u, τ)−A(u, 0) = γ2
∫ τ
0
Bvds+ κσ

∫ τ
0
Bσds+ 1

2η
2
∫ τ
0
B2
rds+ 1

2γ
2
∫ τ
0
B2
σds+ ηγρr,σ

∫ τ
0
BσBrds.

(A.25)
Or,

A(u, τ) =
∫ τ

0

(
γ2Bv +

1
2
η2B2

r

)
ds︸ ︷︷ ︸

A1(u,τ)

+
∫ τ

0

Bσ

(
κσ̄ +

1
2
γ2Bσ + ηρr,σγBr

)
ds︸ ︷︷ ︸

Γ(u,τ)

(A.26)

In order to find A(u, τ) we have to evaluate the integrals A1(u, τ) and Γ(u, τ). Integral Γ(u, τ)
involves a hyper-geometric function (called the 2F1 function or simply Gaussian function), which
is computed numerically here. For integral A1(u, τ) we have two representations,

A1(u, τ) = − 1
2γ2

log
(
ge−sd − 1
g − 1

)
+ f6 −

1
2λ3

· f7, or (A.27)

A1(u, τ) = − 1
2γ2

log
(

esd − g

1− g

)
+ f6 −

1
2λ3

· f7, where (A.28)

f6 =
1

4γ2
(β − d)τ (A.29)

f7 = (iu− 1)2(3 + e−2τλ − 4e−τλ − 2τλ). (A.30)

Since in A1(u, τ) a complex-valued logarithm appears, it should be treated with some care. It
turns out that the second formulation gives rise to discontinuities which may cause inaccuracies.
According to [28], an easy way to avoid any errors due to complex-valued discontinuities is to
apply numerical integration.

We know that the price of a zero coupon bond can be obtained from the characteristic function,
φSZHW(u,Xt, t, T ), by setting u = [0, 0, 0, 0]T . So,

P (t, T ) = φ(0,Xt, τ)
= exp

(
−
∫ T
t
ψsds

)
exp (A(0, τ) +Bx(0, τ)xt +Br(0, τ)r̃t +Bv(0, τ)vt +Bσ(0, τ)σt).

(A.31)
Since r̃0 = 0, we have P (0, T ) = exp

(
−
∫ T
0
ψsds

)
exp (A(0, τ) +Bx(0, τ)x0 +Bv(0, τ)v0 +Bσ(0, τ)σ0)

and it is easy to check that Bx(0, T ) = 0, Bv(0, T ) = 0, Bσ(0, T ) = 0, and,

A(0, T ) =
1
2
η2

∫ T

0

Br(0, s)2ds =
η2

2λ3

(
−3

2
− 1

2
e−2λT + 2e−λT + λT

)
. (A.32)
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Therefore, P (0, T ) = exp
(
−
∫ T
0
ψsds+A(0, T )

)
, or, log (P (0, T )) = −

∫ T
0
ψsds+ A(0, T ), which

finally gives us:

ψT = − ∂

∂T
logP (0, T ) +

∂

∂T
A(0, T ) = f(0, T ) +

η2

2λ2

(
1− e−λT

)2
. (A.33)

Since ψ0 = f(0, 0) ≡ r0, where r0 is the initial value of the interest rate process rt. With
u = [u, 0, 0, 0]T , we find:

φSZHW(u,Xt, t, T ) = exp
(
Ã(u, τ) +Bx(u, τ)xt +Br(u, τ)r̃t +Bv(u, τ)vt +Bσ(u, τ)σt

)
, (A.34)

with

Ã(u, τ) = −
∫ T
t
ψsds+ iu

∫ T
t
ψsds+A(u, τ)

= (iu− 1)
∫ T
t

(
f(0, s) + η2

2λ2

(
1− e−λs

)2) ds+A(u, τ)

= (1− iu)
∫ T
t
d (log(P (0, s))) + (1− iu) η

2

2λ2

∫ T
t

(
1− e−λs

)2 ds+A(u, τ)

= (1− iu) log
(
P (0,T )
P (0,t)

)
+ (1− iu) η

2

2λ2

(
(T − t) + 2

λ

(
e−λT − e−λt

)
− 1

2λ

(
e−2λT − e−2λt

))
+A(u, τ),

(A.35)
and A(u, τ) as in (A.26). Now, by setting Θ(x) = exp

(
xτ
2

)
the discounted CF for the Schöbel-

Zhu-Hull-White hybrid process is determined and the proof is finished.

A.3 Proof of Lemma 2.6

Proof.
As in case of the SZHW hybrid model we need to find the solution of:

d
dτ
A(u, τ) = −r0 + BTa0 +

1
2
BT c0B, (A.36)

d
dτ

B(u, τ) = −r1 + aT1 B +
1
2
BT c1B. (A.37)

For the space vector X∗
t = [x̃t, r̃t, σt]

T we have

a0 = [−1
2
∆2
S,r, 0, κσ̄]T , a1 =

 0 1 − 1
2

0 −λ 0
0 0 −κ

 , r0 = 0, r1 =

 0
1
0

 ,
and

Σ := σ(Xt)σ(Xt)T =

 σt + ∆2
S,r ∆S,rη ρx,σγσt

η2 0
γ2σt

 .
This leads to

c0 =

 ∆2
S,r η∆S,r 0

η∆S,r η2 0
0 0 0

 , c1 =

 (0, 0, 1) (0, 0, 0) (0, 0, ρx,σγ)
(0, 0, 0) (0, 0, 0) (0, 0, 0)
(0, 0, ρx,σγ) (0, 0, 0) (0, 0, γ2)

 .
With

1
2
BT c1B =

1
2


∑3
i=1

∑4
j=1Bi[s1(1)]i,jBj∑3

i=1

∑4
j=1Bi[s1(2)]i,jBj∑3

i=1

∑4
j=1Bi[s1(3)]i,jBj

 ,
(with i = 1, . . . , 3 representing x, r, σ) we obtain the following system

dA
dτ

= [Bx, Br, Bσ]

 − 1
2∆2

S,r

0
κσ̄

+
1
2
[Bx, Br, Bσ]

 ∆2
S,r η∆S,r 0

η∆S,r η2 0
0 0 0

 Bx
Br
Bσ

 , (A.38)

25



dB
dτ

=


dBx

dτ

dBr

dτ

dBσ

dτ

 =

 0
−1
0

+

 0 0 0
1 −λ 0
− 1

2 0 −κ

 Bx
Br
Bσ

+
1
2

 0
0
S1

 , (A.39)

where

S1 = B2
x + 2ρxσγBxBσ + γ2B2

σ. (A.40)
(A.41)

Now, simplification of the equations (A.38) and (A.39) finishes the proof.
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