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We analyze the efficiency properties of a numerical pricing method based on Fourier-
cosine expansions for early-exercise options. We focus on variants of Schwartz’ model
based on a mean reverting Ornstein–Uhlenbeck process, which is commonly used for
modeling commodity prices. This process however does not possess favorable properties
for the option pricing method of interest. We therefore propose an approximation of
its characteristic function, so that the Fast Fourier Transform can be applied for highest
efficiency.
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1. Introduction

Computational Finance is one of those mathematical areas in which stochastic modeling and numerical mathematics are
closely intertwined. Efficient numerical pricing methods are for example required for financial derivatives, on stocks, interest
rates, credit or commodities, all governed by stochastic differential equations. In this paper we focus on a numerical pricing
technique for commodity derivatives that can be exercised before the expiration date of the contract.

Movements in the commodity markets expose participants to different types of risks. An obvious way for market players
to control their exposure to price and volume fluctuations is by buying or selling derivatives written on the underlying
products. Bermudan but also swing options, which allow one to buy or sell extra quantities of a commodity, are commonly
sold derivatives with early-exercise features.

Significant contributions have been made in modeling commodity processes by Schwartz and collaborators in [13,16–18]
where the authors used a model of Ornstein–Uhlenbeck type [19], which accounts for the mean reversion of prices, com-
bined with a deterministic seasonality component. Often these processes are combined with independent jump components
(this extension of the models studied here is straightforward). In this paper we deal with the Fourier-cosine expansion-
based COS method [9,10] for pricing early-exercise options under the stochastic processes for commodities. In this method
the transitional probability density function is approximated by a Fourier-cosine series expansion, which has a direct rela-
tion to the analytically available conditional characteristic function. In [10] it was shown that the COS method can price
the early-exercise and barrier options with exponential convergence under various Lévy jump models. The computational

* Corresponding author.
E-mail addresses: Bowen.Zhang@tudelft.nl (B. Zhang), L.A.Grzelak@tudelft.nl (L.A. Grzelak), C.W.Oosterlee@cwi.nl (C.W. Oosterlee).
0168-9274/$36.00 © 2011 IMACS. Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.apnum.2011.10.005

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apnum
mailto:Bowen.Zhang@tudelft.nl
mailto:L.A.Grzelak@tudelft.nl
mailto:C.W.Oosterlee@cwi.nl
http://dx.doi.org/10.1016/j.apnum.2011.10.005


92 B. Zhang et al. / Applied Numerical Mathematics 62 (2012) 91–111
complexity for pricing a Bermudan option with M exercise dates was O ((M − 1)N log2(N)), where N denotes the number
of terms in the Fourier-cosine expansion.

In the present paper we show that this complexity cannot be easily achieved in the case of mean reverting processes of
Ornstein–Uhlenbeck (OU) type. We therefore introduce an approximation of the original characteristic function, so that the COS
pricing algorithm remains highly efficient for early-exercise commodity options under Ornstein–Uhlenbeck processes, but,
at the same time, the error in the option prices is controlled by means of error analysis.

The paper is organized as follows. Details of the OU processes and the COS pricing method are presented in Section 2.
In Section 3 the approximate OU model is introduced. It is followed by a detailed error analysis in Section 4; In Section 5
numerical results are presented. Finally conclusions are summarized in Section 6.

2. Problem definition

2.1. The Ornstein–Uhlenbeck process

Stochastic processes for commodities are characterized by the properties of mean reversion and seasonality. If for any
reason the price of a certain commodity falls significantly due to overproduction, then market participants expect the price
to rise eventually as producers decrease their supply. Moreover, incorporation of seasonality in the model is necessary since
energy consumption (the use of electricity, for example) differs in different seasons of the year.

We first look at the OU process without seasonality. The logarithm of the commodity price, Xt = log St , is modeled
by an Ornstein–Uhlenbeck mean reverting process. We define this process here under a so-called equivalent martingale
measure Q,

dXt = κ
(
x̄Q − Xt

)
dt + σdW Q

t , with X0 = x0, (1)

with a Brownian motion, W Q
t , is under measure Q and the parameters κ and σ represent the speed of mean reversion and

volatility of the underlying process, respectively. Under this measure, the parameter x̄Q := x̄ − λ with λ the market price of
risk, and x̄ the long-term mean value of the underlying process. In the derivations to follow, we will just use x̄ to denote x̄Q .

Xt is normally distributed, i.e.: Xt ∼ N (E(Xt),Var(Xt)), with:

E(Xt |F0) = x0e−κt + x̄
(
1 − e−κt),

Var(Xt |F0) = σ 2

2κ

(
1 − e−2κt).

Modeling energy prices by mean reversion is well supported by empirical studies of the price behavior, as described
in [2]. General diffusion models that incorporate mean reversion go a long way in capturing the nature of energy prices;
notably their tendency to randomly oscillate away from, and over time back towards, a price level determined by the cost
of production. These models have gained a more wide-spread acceptance among market practitioners as progress is made
in the techniques to estimate the mean reversion level and the mean reversion rates.

We are interested in the characteristic function, E(eiu XT |Ft), related to model (1). Based on [8] the characteristic function
is of the form φ(u; x0, τ ) = ex0 B(u,τ )+A(u,τ ) where τ := T − t; A(u, τ ) and B(u, τ ) satisfy the following set of ODEs:{

B ′(u, τ ) = −κ B, B(u,0) = iu,

A′(u, τ ) = κ x̄B + 1

2
σ 2 B2, A(u,0) = 0,

and the prime ′ denotes the derivative w.r.t. τ . For the solution we find:{
B(u, τ ) = iue−κτ ,

A(u, τ ) = 1

4κ

(
e−2κτ − e−κτ

)(
u2σ 2 + ueκτ

(
uσ 2 − 4iκ x̄

))
.

(2)

Then the characteristic function of OU process reads:

φ(u; x0, τ ) = eiux0e−κτ +A(u,τ ). (3)

2.1.1. Incorporation of seasonality component
More realistic stochastic processes modeling commodity prices include a seasonality component.
As presented in [5,13] we choose a commodity price process, St , written as:

St = eg(t)+yt = G(t)eyt , with S0 = G(0), (4)

where G(t) ≡ eg(t) is a deterministic function which describes the seasonality effect and yt is a stochastic zero-level-mean
reverting process given by:
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dyt = −κ yt dt + σ dW y
t , with y0 = 0,

with W y
t a Brownian motion, κ corresponds to the speed of mean reversion and σ determines the volatility. By applying

Itô’s lemma to Eq. (4), and adding and subtracting κ g(t), we obtain the dynamics for St of the form:

dSt =
(

1

2
σ 2 − κ

(
yt + g(t)

) + κ g(t) + g′(t)
)

St dt + σ St dW y
t ,

g′(t) being the derivative of g(t). This equals:

dSt =
(

1

2
σ 2 − κ log St + κ g(t) + g′(t)

)
St dt + σ St dW y

t .

Setting θ(t) = g(t) + ( 1
2 σ 2 + g′(t))/κ , we arrive at the following process:

dSt = κ
(
θ(t) − log St

)
St dt + σ St dW y

t .

By taking the log-transform of the stock price, xt = log St , one recognizes the model to be a mean reverting Hull–White
model [11], i.e.:

dxt = κ
(
θ̃ (t) − xt

)
dt + σ dW y

t , with x0 = log S0, (5)

where θ̃ (t) = θ(t) − σ 2/2κ and θ̃ (t) = x̄ gives the same process as (1). This model is very similar to the model in [3] for
electricity prices. The OU process, xt in (5), admits the solution:

xt = x0e−κt + κ

t∫
0

e−κ(t−s)θ̃ (s)ds + σ

t∫
0

e−κ(t−s) dW y
t ,

and is thus normally distributed, i.e., xt ∼ N (E(xt),Var(xt)), with:

E(xt |F0) = x0e−κt + κ

t∫
0

e−κ(t−s)θ̃ (s)ds,

Var(xt |F0) = σ 2

2κ

(
1 − e−2κt).

For process xt = log St , as given by Eq. (5), we find the following ODEs for the characteristic function:

{
B ′(u, τ ) = −κ B with B(u,0) = iu,

A′(u, τ ) = κθ̃(t)B(u, τ ) + 1

2
B2(u, τ )σ 2 with A(u,0) = 0,

where τ = T − t for European-style derivatives, and τ = tm+1 − t, t ∈ [tm, tm+1], for Bermudan option between any consecu-
tive exercise dates. For the solution we find B(u, τ ) = iue−κτ and A(u, τ ) contains function θ̃ (t), which is given by:

θ̃ (t) = θ(t) − 1

2

σ 2

κ
= 1

κ
g′(t) + g(t).

The ODE for A(u, τ ) admits the following solution:

A(u, τ ) =
τ∫

0

A′(u, s)ds

= iu

τ∫
0

(
g′(T − s) + κ g(T − s)

)
e−κs ds + 1

4κ
u2σ 2(e−2κτ − 1

)
. (6)
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2.2. The Fourier-cosine method (COS)

The Fourier-cosine pricing method, COS [9,10], is based on the risk-neutral option valuation formula (discounted expected
payoff approach):

v(x, t0) = e−r�t

∞∫
−∞

v(y, T ) f (y|x,�t)dy, (7)

where v(x, t0) is the present option value, r the interest rate, �t = T − t0 stands for time to maturity, and x, y can be any
monotone functions of the underlying asset at initial time t0 and the expiration date T , respectively. Function v(y, T ), which
for European option equals the payoff, is known, but the transitional density function, f (y|x,�t), typically is not. Based on
Eq. (7), we approximate the conditional density function on a truncated domain, by a truncated Fourier-cosine expansion,
which recovers the conditional density function from its characteristic function (see [9]) as follows:

f (y|x,�t) ≈ 2

b − a

N−1∑′

k=0

Re

(
φ

(
kπ

b − a
; x,�t

)
exp

(
−i

akπ

b − a

))
cos

(
kπ

y − a

b − a

)
, (8)

with φ(u; x,�t) the characteristic function of f (y|x,�t), a, b determine the truncation interval and Re means taking the
real part of the argument. The prime at the sum symbol indicates that the first term in the expansion is multiplied by
one-half. The appropriate size of the integration interval can be determined with the help of the cumulants [9].1

Replacing f (y|x,�t) by its approximation (8) in Eq. (7) and interchanging integration and summation gives the COS
formula for computing the values of European options:

v(x, t0) = e−r�t
N−1∑′

k=0

Re

(
φ

(
kπ

b − a
; x,�t

)
e−ikπ a

b−a

)
Vk, (9)

where

Vk = 2

b − a

b∫
a

v(y, T ) cos

(
kπ

y − a

b − a

)
dy, (10)

are the Fourier-cosine coefficients of v(y, T ), available in closed form for several payoff functions.
It was found that, with integration interval [a,b] chosen sufficiently wide, the series truncation error dominates the

overall error. For conditional density functions f (y|x,�t) ∈ C∞((a,b) ⊂ R), the method converges exponentially; otherwise
convergence is algebraically [10].

Formula (9) also forms the basis for the pricing of Bermudan options [10].
In the present paper, we focus on Bermudan options based on the OU model. The COS pricing method can however

be used for various kinds of options as long as the Fourier-cosine coefficients of the option value at maturity and at the
early-exercise dates can be determined. This is the case, for instance, for binary, barrier, and swing options.

The pricing method can be used for those underlying processes for which the characteristic function is available, which
includes Lévy and affine jump diffusion processes.

2.2.1. Pricing Bermudan options
A Bermudan option can be exercised at pre-specified dates before maturity. The holder receives the exercise payoff

when he/she exercises the option. Let t0 denote the initial time and {t1, . . . , tM} be the collection of all exercise dates with
�t := (tm+1 − tm), t0 < t1 < · · · < tM = T . The pricing formula for a Bermudan option with M exercise dates then reads, for
m = M − 1, . . . ,1:⎧⎪⎪⎨

⎪⎪⎩
c(x, tm) = e−r�t

∫
R

v(y, tm+1) f (y|x,�t)dy,

v(x, tm) = max
(

g(x, tm), c(x, tm)
)
,

(11)

followed by

v(x, t0) = e−r�t
∫
R

v(y, t1) f (y|x,�t)dy. (12)

1 So that | ∫
R

f (y|x,�t)dy − ∫ b
a f (y|x,�t)dy| < TOL.
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Here x and y are state variables, defined as

x := ln
(

S(tm)
)

and y := ln
(

S(tm+1)
)
,

v(x, t), c(x, t) and g(x, t) are the option value, the continuation value and the payoff at time t , respectively. For call and put
options, g(x, t) ≡ v(x, T ), with

g(x, t) = v(x, T ) = max
[
α

(
ex − K

)
,0

]
, α =

{
1 for a call,
−1 for a put.

(13)

The continuation value in (11) can be calculated by means of the COS formula for different underlying processes:

c(x, tm) := e−r�t
N−1∑′

k=0

Re

{
φ

(
kπ

b − a
; x,�t

)
e−ikπ a

b−a

}
Vk(tm+1). (14)

Here the function c(x, tm) represents the approximation of the continuation value.
The idea of pricing Bermudan options by the COS method is to first determine the Fourier-cosine coefficients of the

option value at t1, Vk(t1), and then insert them into (12). The derivation of an induction formula for Vk(t1) was the basis
of the work in [10]. It is briefly explained here. We start with Vk(tM) which is obtained by substituting (13) into (10). Then
at each time step tm,m = M − 1, . . . ,1, Vk(tm) is recovered in terms of Vk(tm+1).

First, the early-exercise point, x∗
m , at time tm , which is the point where the continuation value equals the payoff, i.e.,

c(x∗
m, tm) = g(x∗

m, tm), is determined for example by Newton’s method.
At time step tm, m = M − 2, . . . ,1, we start with initial guess x0

m := x0
m+1 (and x0

M−1 := log(K )). We iterate as follows

xn+1
m = xn

m − c(xn
m, tm) − g(xn

m, tm)

c′(xn
m, tm) − g′(xn

m, tm)
,

where

c′(x, tm) := e−r�t
N−1∑′

k=0

Re

{
φ

(
kπ

b − a
; x,�t

)
e−ikπ a

b−a
ikπ

b − a
e−κ�t

}
Vk(tm+1),

and g′(x, tm) follows directly from (13). The iteration procedure is continued until error |εn| < TOL and x∗
m := xn

m .
The Newton method converges quadratically, i.e., |εn+1| � P̄ε2

n . With the initial guess we proposed, the error is suf-
ficiently small (O (10−7)) after 4 Newton steps, and O (10−10) after 5 iterations. In our implementation we prescribe 5
iterations.

Based on x∗
m , we can split Vk(tm) into two parts: One on the interval [a, x∗

m] and another on (x∗
m,b], i.e.

Vk(tm) =
{

Ck(a, x∗
m, tm) + Gk(x∗

m,b, tm), for a call,
Gk(a, x∗

m, tm) + Ck(x∗
m,b, tm), for a put,

(15)

for m = M − 1, M − 2, . . . ,1, and

Vk(tM) =
{

Gk(0,b, tM), for a call,
Gk(a,0, tM), for a put,

(16)

whereby

Gk(x1, x2, tm) := 2

b − a

x2∫
x1

g(x, tm) cos

(
kπ

x − a

b − a

)
dx, (17)

and

Ck(x1, x2, tm) := 2

b − a

x2∫
x1

c(x, tm) cos

(
kπ

x − a

b − a

)
dx. (18)

For all k = 0,1, . . . , N − 1 and m = 1,2, . . . , M , Gk(x1, x2, tm) in (17) is found analytically.
The properties a characteristic function should satisfy for the efficient computation of Ck(x1, x2, tm) (18) are given below

and in Lemma 2.1.
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The conditional characteristic function between two time points s < t is defined by

φ(u; x, t − s) := E
(
eiu Xt |Xs

)
=

∫
R

eiuy f (Xt = y|Xs = x, t − s)dy

= eiux
∫
R

eiu(y−x) f
(

Xt = x + (y − x)|Xs = x, t − s
)

dy. (19)

We transform z := y − x, which gives

φ(u; x, t − s) = eiux
∫
R

eiuz f (Xt − Xs = z|Xs = x, t − s)dz. (20)

For underlying processes with independent and stationary increments, like the exponential Lévy processes, the density
f (Xt − Xs = z|Xs = x, t − s) only depends on �t = t − s, and is independent of x. As a result the characteristic function is of
the form

φ(u; x,�t) = eiuxβϕ(u;�t), (21)

with β = 1. Examples of such processes are Geometric Brownian Motion, jump diffusion processes by Kou [12] or Mer-
ton [15], and infinite activity Lévy processes [6], like Variance-Gamma (VG) [14], Normal Inverse Gaussian (NIG) [1] or
CGMY [4].

From Eq. (3) we have seen that the characteristic function of the OU process can also be written in the form (21),
however, with β = e−κ�t and ϕ(u;�t) = exp (A(u,�t)) defined by (2) or (6). However, OU processes are not governed by
the property of independent and stationary increments as the increment does not only depend on �t , but also on x.

In the lemma to follow we will show that a process with independent and stationary increments, i.e. with β = 1 in (21),
is beneficial for pricing Bermudan options by the COS method as the Fast Fourier Transform can be applied.

Lemma 2.1 (Efficient computation). The terms Ck(x1, x2, tm) can be computed in O (N log2 N) operations, if the stochastic process for
the underlying is governed by the general characteristic function (21) with parameter β = 1.

Proof. At time tm , m = 1,2, . . . , M , from Eqs. (9) and (11) we obtain an approximation for c(x, tm), the continuation value
at tm , which is inserted into (18). Interchanging summation and integration gives the following coefficients, Ck(x1, x2, tm):

Ck(x1, x2, tm) := e−r�t
N−1∑′

j=0

Re

(
ϕ

(
jπ

b − a
;�t

)
V j(tm+1) · Hk, j(x1, x2)

)
, (22)

where ϕ(u;τ ) comes from the general expression for the characteristic function (21). To get Ck(x1, x2, tm), the following
integrals need to be computed:

Hk, j(x1, x2) = 2

b − a

x2∫
x1

eijπ βx−a
b−a cos

(
kπ

x − a

b − a

)
dx,

with β defined in (21).
From basic calculus, we can split Hk, j(x1, x2) into two parts as

Hk, j(x1, x2) = − i

π

(
Hs

k, j(x1, x2) + Hc
k, j(x1, x2)

)
,

where

Hc
k, j(x1, x2) =

{
(x2−x1)π i

b−a , if k = j = 0,

1
( jβ+k)

[exp (
(( jβ+k)x2−( j+k)a)π i

b−a ) − exp (
(( jβ+k)x1−( j+k)a)π i

b−a )], otherwise,
(23)

and

Hs
k, j(x1, x2) =

{
(x2−x1)π i

b−a , if k = j = 0,
1 [exp (

(( jβ−k)x2−( j−k)a)π i
) − exp (

(( jβ−k)x1−( j−k)a)π i
)], otherwise.

(24)

( jβ−k) b−a b−a
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Then to determine the value of Ck(x1, x2, tm), we have to compute:

Ck(x1, x2, tm) = −ie−r�t

π

N−1∑′

j=0

Re

(
ϕ

(
jπ

b − a
,�t

)
V j(tm+1) (25)

· (Hc
k, j(x1, x2) + Hs

k, j(x1, x2)
))

, (26)

Matrices Hs := {Hs
k, j(x1, x2)}N−1

k, j=0 and Hc := {Hc
k, j(x1, x2)}N−1

k, j=0 have a Toeplitz or Hankel structure, respectively, if and
only if for all k, j, x1, x2, Hs

k, j(x1, x2) = Hs
k+1, j+1(x1, x2), and Hc

k, j(x1, x2) = Hc
k+1, j−1(x1, x2), which is for β ≡ 1. Then, the

Fast Fourier Transform can be applied directly for highly efficient matrix-vector multiplication [10], and the resulting com-
putational complexity for Ck(x1, x2, tm) is O (N log2 N). �

We obtain however terms of the form jβ − k, jβ + k in the matrix elements in (23) and (24), where β = e−κ�t for the
OU process, instead of terms with j −k, j +k, for the Lévy jump processes in [10]. In particular, the term 1/( jβ ± k) cannot
be decomposed in terms j ± k, j and/or k, so that we cannot formulate Hs, Hc in terms of Hankel and Toeplitz matrices.
This hampers an efficient computation of the matrix-vector products, leading to computations of O (N2) complexity.

In the next section we will therefore introduce an approximate OU model so that the efficient pricing technique with FFT
can be applied.

3. An approximate OU model

In this section we introduce an approximation for the characteristic function of the OU processes from Section 2, so that
the performance of the COS method for Bermudan options can be improved in terms of computational complexity. The aim
is to make use of the FFT algorithm as much as possible with a modified characteristic function. Without loss of generality,
we will focus on Bermudan put options here.

The original characteristic functions of the OU processes with and without seasonality can be written as:

φou(u; x,�t) = eiuxe A(u,�t)−iux(1−e−κ�t ) =: eiuxψ(u; x,�t). (27)

Without seasonality we have:

A(u,�t) = 1

4κ

(
e−2κ�t − e−κ�t)(u2σ 2 + ueκ�t(uσ 2 − 4iκ x̄

))
,

and with seasonality:

A(u, τ ) = iu

τ∫
0

(
g′(T − s) + κ g(T − s)

)
e−κs ds + 1

4κ
u2σ 2(e−2κτ − 1

)
.

The Fast Fourier Transform can be used in the computation of Fourier coefficients Ck(x1, x2, tm), when ψ(u; x,�t) in (27) is
approximated by another function, which does not contain variable x. The (approximate) characteristic function is then of
the form (21) with β = 1. We denote by φapp(u; x,�t) this approximate characteristic function. The approximation suggested
here reads

φapp(u; x,�t) := eiuxψ
(
u;E(x|F0),�t

)
. (28)

In other words, Eq. (20) is replaced by

φapp(u; x, t − s) := eiux
∫
R

eiuz f
(

Xt − Xs = z|Xs = E(x|F0), t − s
)

dz.

This approximation may not be accurate for all model parameters, when pricing Bermudan options. Comparison of the
original characteristic function (27) with this approximation (28) gives us that

φapp(u; x,�t) = φou(u; x,�t)eiuε1 , (29)

where ε1 reads

ε1 = (
x − E(x)

)(
1 − e−κ�t). (30)

Based on (29) the approximation proposed may only be considered accurate for sets of model parameters for which ε1
in (30) is less than a prescribed tolerance level. This tolerance level is defined so that the Bermudan option prices resulting
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from the approximate characteristic function at each time step are accurate up to a basis point compared to the option
prices obtained by the original characteristic function of the OU process.

The tolerance level for ε1, as well as the requirements model parameters should satisfy so that the approximate charac-
teristic function (28) is accurate and thus the Fast Fourier Transform can be used at each time step, are determined by an
error analysis in the next section.

4. Error analysis

Our aim is to keep the error, defined as the difference between Bermudan option values calculated with the original
characteristic function and those obtained with xt approximated by E(xt) in ψ(u; xt ,�t) in (27), less than a basis point,
which is 1/100-th of a percentage point. Here we discuss how the error in the option value can be controlled and the basis
point precision can be achieved.

We first introduce the following notation:

• εc(x, t) is the error in the continuation value c(x, t) at time t .
• εx(t) is the error in early-exercise point x∗ at time t .
• εV (t) is the error in Vk at time t , i.e. the error in the Fourier-cosine coefficients of option value v(x, t).

We focus here on the error in Bermudan option values resulting from our approximate characteristic function. For conver-
gence analysis of the COS pricing method we refer the reader to [9] and [10].

4.1. The first step in the backward recursion

The first step in the backward recursion is from tM ≡ T to tM−1. The error in the characteristic function, due to the
approximation, gives an error in the continuation value, c(x, tM−1), as well as a shift in the early-exercise point, x∗

tM−1
. These

errors contribute to εV (tM−1), the error in Vk(tM−1).
The connection between the error in the continuation value and the error in the characteristic function is presented in

the following lemma.

Lemma 4.1. The error in continuation value reads

εc(x, tM−1) = c
(
x + eκ�tε1, tM−1

) − c(x, tM−1), (31)

with ε1 defined in (30).

Proof. Applying (27) and (29) gives us:

φapp(u; x,�t) = exp
(
iuxe−κ�t + A(u) + iue−κ�t(eκ�tε1

))
= exp

(
iu

(
x + eκ�tε1

)
e−κ�t + A(u)

)
= φou

(
u; x + eκ�tε1,�t

)
. (32)

By substituting (32) in the COS pricing formula (9), we obtain:

ĉ(x, tM−1) = c
(
x + eκ�tε1, tM−1

)
,

which results in:

εc(x, tM−1) = c
(
x + eκ�tε1, tM−1

) − c(x, tM−1). �
Then we have the next corollary.

Corollary 4.1. For put options, if ε1 > 0, then εc(x, tM−1) < 0 ∀x, and subsequently εx(tM−1) > 0, and vice versa if ε1 < 0.

Proof. The continuation value, c(x, t), is a decreasing function for put options. This implies that, for ε1 > 0,

εc(x, tM−1) := c
(
x + eκ�tε1, tM−1

) − c(x, tM−1) < 0.

In this case, we have that at the early-exercise point related to the original characteristic function, x∗
tM−1

:

ĉ
(
x∗

t , tM−1
)
< c

(
x∗

t , tM−1
) = g

(
x∗

t , tM−1
)
.

M−1 M−1 M−1
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So, the continuation value is smaller than the payoff. Therefore, the approximate early-exercise point is larger than the
original x∗

tM−1
and thus εx(tM−1) > 0.

For ε1 < 0, ∀x, the proof that for εc(x, tM−1) > 0 ∀x, and that εx(tM−1) < 0 goes similarly. �
The upper bounds of |εc(x, tM−1)| and |εx(tM−1)| are found in the next lemma.

Lemma 4.2. ∀x in the range of integration [a,b], ∀t, we have that∣∣c(x + eκ�tε1, t
) − c(x, t)

∣∣ � eaeκ�t |ε1| =: ε̂c, (33)

which implies:∣∣εc(x, tM−1)
∣∣ � ε̂c, ∀x ∈ [a,b]. (34)

Error |εx(tM−1)| can furthermore be bounded in terms of ε̂c .

Proof. Application of Lagrange’s mean value theorem, gives

∣∣c(x + eκ�tε1, t
) − c(x, t)

∣∣ = eκ�t |ε1|
∣∣∣∣∂c(x, t)

∂x

∣∣∣∣
x=δ0

∣∣∣∣, (35)

where δ0 ∈ (x, x+eκ�tε1). The function ∂c(x, t)/∂x is a non-positive and non-decreasing2 function for x � log(K ) for Bermu-
dan put options, which goes to zero as x → ∞. Therefore, if a � log(K ), we have

max
x∈[a,b]

∣∣∣∣∂c(x, t)

∂x

∣∣∣∣ =
∣∣∣∣∂c(x, t)

∂x

∣∣∣∣
x=a

∣∣∣∣. (36)

We denote this derivative of the continuation value at a by c′(a, t), and:∣∣c(x + eκ�tε1, t
) − c(x, t)

∣∣ � eκ�t |ε1|
∣∣c′(a, t)

∣∣. (37)

If a < log(K ) Eq. (36) is not valid and the upper bound is |c′(K , t)|. However, it overestimates the error in the option
value (that is, in Eq. (63)). For example, if x is very small then for the complete integration range [a,b] we will deal with
the payoff (not the continuation value) and the error is zero. Therefore we still use |c′(a, t)| for a < log(K ) which works
well in all our numerical experiments. At each time step we have |c′(x, t)| � |g′(x, t)| for x < log(K ). So, if a < log(K ) we
have ∣∣c′(a, t)

∣∣ �
∣∣g′(a, t)

∣∣ = ea. (38)

For deep out-of-the money options where a � log(K ) we find∣∣c′(a, t)
∣∣ �

∣∣c′(log(K ) − 1, t
)∣∣ �

∣∣g′(log(K ) − 1, t
)∣∣ = elog(K )−1 � ea. (39)

Summarizing, we find for all cases:∣∣c′(a, t)
∣∣ � ea. (40)

Substitution of (40) in (37) gives us that for ∀x ∈ [a,b] and for ∀t ,∣∣c(x + eκ�tε1, t
) − c(x, t)

∣∣ � eaeκ�t |ε1| =: ε̂c,

which implies |εc(x, tM−1)| � ε̂c . Now we look at the error in the early-exercise point at tM−1. Assume points x∗
tM−1

and
x∗

tM−1
+ εx(tM−1) are the early-exercise points obtained from the original and the approximate characteristic functions, re-

spectively. It follows that

c
(
x∗

tM−1
, tM−1

) = g
(
x∗

tM−1
, tM−1

)
,

ĉ
(
x∗

tM−1
+ εx(tM−1), tM−1

) = g
(
x∗

tM−1
+ εx(tM−1), tM−1

)
.

Therefore

g
(
x∗

tM−1
+ εx(tM−1), tM−1

) − c
(
x∗

tM−1
+ εx(tM−1), tM−1

)
= ĉ

(
x∗

tM−1
+ εx(tM−1), tM−1

) − c
(
x∗

tM−1
+ εx(tM−1), tM−1

)
=: εc

(
x∗

tM−1
+ εx(tM−1), tM−1

)
.

2 It is non-decreasing is because the payoff of a put option is convex, which implies that the gamma, ∂c2(x, t)/∂x2, is non-negative indicating a non-
decreasing first derivative ∂c(x, t)/∂x. This holds for a long position in the option.
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We introduce a new function h(x, t) := g(x, t) − c(x, t), so that we have

h
(
x∗

tM−1
, tM−1

) = 0,

h
(
x∗

tM−1
+ εx(tM−1), tM−1

) = εc
(
x∗

tM−1
+ εx(tM−1), tM−1

)
.

Application of (34) gives:∣∣h(
x∗

tM−1
+ εx(tM−1), tM−1

) − h
(
x∗

tM−1
, tM−1

)∣∣ = ∣∣εc
(
x∗

tM−1
+ εx(tM−1), tM−1

)∣∣ � ε̂c . (41)

Using Lagrange’s mean value theorem for (41) gives us∣∣εx(tM−1)
∣∣∣∣h′(δ̄, tM−1)

∣∣ � ε̂c,

for some δ̄ ∈ (x∗
tM−1

, x∗
tM−1

+ εx(tM−1)).
The fact that there is one early-exercise point for plain Bermudan put options implies that∣∣h(

x∗
tM−1

+ εx(tM−1), tM−1
) − h

(
x∗

tM−1
, tM−1

)∣∣ > 0.

If there is an error in the early-exercise point, i.e. if εx(tM−1) �= 0, we have that |h′(δ̄, tM−1)| > 0, so that

∣∣εx(tM−1)
∣∣ � ε̂c

|h′(δ̄, tM−1)|
. (42)

Hence |εx(tM−1)| is bounded in terms of ε̂c . If ε̂c tends to zero, then |εx(tM−1)| also tends to zero. �
At the other time points, m = 0, . . . , M − 2, the upper bound for the shift in the early-exercise point can also be deter-

mined in terms of the error in the continuation value. However, unlike time step tM−1, the error in the continuation value
is not only related to the approximate characteristic function, but also to the error in Vk(t),

Vk(t) :=
b∫

a

max
(
c(x, t), g(x, t)

)
cos

(
kπ

x − a

b − a

)
dx.

We first have a look at the error in Vk(tM−1) from (15) in the following lemma. We will need the results in the lemma to
derive upper bounds in the lemmas to follow.

Lemma 4.3. For εx(tM−1) > 0, two points, δ1 ∈ (x∗
tM−1

+ εx(tM−1),b) and δ2 ∈ (x∗
tM−1

, x∗
tM−1

+ εx(tM−1)) exist, so that

εV (tM−1) = εc(δ1, tM−1)Ik
(
x∗

tM−1
+ εx(tM−1),b

) + (
g(δ2, tM−1) − c(δ2, tM−1)

)
Ik

(
x∗

tM−1
, x∗

tM−1
+ εx(tM−1)

)
, (43)

where

Ik(x1, x2) = 2

b − a

x2∫
x1

cos

(
kπ

x − a

b − a

)
dx, (44)

can be viewed as the (analytically available) Fourier-cosine coefficient of an option with value:

v I (x, x1, x2) =
{

1 if x ∈ [x1, x2],
0 otherwise.

(45)

Moreover, we have that |εc(δ1, tM−1)| � ε̂c , and∣∣g(δ2, tM−1) − c(δ2, tM−1)
∣∣ � ε̂c. (46)

Proof. Here we assume that both early-exercise points, for the original and approximate OU processes, lie in the integration
range. If either x∗ or x∗ + εx lies outside range [a,b], it is set equal to the nearest boundary point. Vk can thus be split as
in (15) depending on the early-exercise point.

Let us first analyze the case of a positive error, εx(tM−1), in the early-exercise point at tM−1. Between x∗
tM−1

+ εx(tM−1)

and b, for the original and the approximate OU processes, we use the continuation value. The error in Vk(tM−1) in this
interval originates from the error in the continuation value, εc(x, tM−1). This error, which is denoted by εV 1 (tM−1), reads:

εV 1(tM−1) = 2

b − a

b∫
x∗

t +εx(tM−1)

εc(x, tM−1) cos

(
kπ

x − a

b − a

)
dx.
M−1



B. Zhang et al. / Applied Numerical Mathematics 62 (2012) 91–111 101
By application of the first mean value theorem for integration, there exists a δ1 ∈ (x∗
tM−1

+ εx(tM−1),b), so that

εV 1(tM−1) = 2εc(δ1, tM−1)

b − a

b∫
x∗

tM−1
+εx(tM−1)

cos

(
kπ

x − a

b − a

)
dx

= εc(δ1, tM−1)Ik
(
x∗

tM−1
+ εx(tM−1),b

)
, (47)

with Ik from (44). From (34) we have that |εc(δ1, tM−1)| � ε̂c .
Between a and x∗

tM−1
, for both the original and approximate OU processes, we take the payoff function which for a put

option reads g(x, t) = max(K − ex,0). There is no error in the payoff function, hence no error in Vk(tM−1) along this part of
the x-axis.

Between x∗
tM−1

and x∗
tM−1

+ εx(tM−1), with the original OU process we use continuation value, c(x, tM−1). However, due
to the shift in the early-exercise point we have the payoff g(x, tM−1) instead when using the approximate OU process. This
leads to an error in Vk(tM−1), denoted by εV 2 (tM−1), which reads:

εV 2(tM−1) = 2

b − a

x∗
tM−1

+εx(tM−1)∫
x∗

tM−1

(
g(x, tM−1) − c(x, tM−1)

)
cos

(
kπ

x − a

b − a

)
dx.

By application again of the first mean value theorem for integration, there exists a δ2 ∈ (x∗
tM−1

, x∗
tM−1

+ εx(tM−1)), so that

εV 2(tM−1) = (
g(δ2, tM−1) − c(δ2, tM−1)

) · 2

b − a

x∗
tM−1

+εx(tM−1)∫
x∗

tM−1

cos

(
kπ

x − a

b − a

)
dx

= (
g(δ2, tM−1) − c(δ2, tM−1)

)
Ik

(
x∗

tM−1
, x∗

tM−1
+ εx(tM−1)

)
. (48)

For a put option, ∀t , for all x > x∗
t , c(x, t) − g(x, t) > 0, and function c(x, t) − g(x, t) is non-decreasing3 between x∗

t and
x∗

t + εx(t). This implies:∣∣g(δ2, tM−1) − c(δ2, tM−1)
∣∣ = c(δ2, tM−1) − g(δ2, tM−1)

� c
(
x∗

tM−1
+ εx(tM−1), tM−1

) − g
(
x∗

tM−1
+ εx(tM−1), tM−1

)
= ∣∣εc

(
x∗

tM−1
+ εx(tM−1), tM−1

)∣∣
� ε̂c .

The last step is from (34).
Adding up (47) and (48) gives

εV (tM−1) = εV 1(tM−1) + εV 2(tM−1)

= εc(δ1, tM−1)Ik
(
x∗

tM−1
+ εx(tM−1),b

) + (
g(δ2, tM−1) − c(δ2, tM−1)

)
Ik

(
x∗

tM−1
, x∗

tM−1
+ εx(tM−1)

)
. �

Remark 4.1. The case when εx(tM−1) < 0 goes similarly. It can then be proved that points δ1 ∈ (x∗
tM−1

,b) and δ2 ∈ (x∗
tM−1

+
εx(tM−1), x∗

tM−1
) exist, so that

εV (tM−1) = εc(δ1, tM−1)Ik
(
x∗

tM−1
,b

) + (
ĉ(δ2, tM−1) − g(δ2, tM−1)

)
Ik

(
x∗

tM−1
+ εx(tM−1), x∗

tM−1

)
. (49)

Moreover, |εc(δ1, tM−1)| � ε̂c , and |ĉ(δ2, tM−1) − g(δ2, tM−1)| � ε̂c .

4.2. Further steps in the backward recursion

We analyze the case t = tM−2 in the following lemma.

Lemma 4.4. For ∀x ∈ [a,b], |εc(x, tM−2)| � ε̂c(1 + e−r�t).

3 For put options in log-scale when x � 0, function c(x, t) − g(x, t) is non-decreasing and for x � 0, c(x, t) − g(x, t) is non-increasing. For a put option
early-exercise points are negative. Therefore, between the two early-exercise points, x∗

t and x∗
t + εx(t), c(x, t) − g(x, t) is non-decreasing.
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Proof. At t = tM−2 we have∣∣εc(x, tM−2)
∣∣ := ∣∣ĉ(x, tM−2) − c(x, tM−2)

∣∣
=

∣∣∣∣∣e−r�t
N−1∑′

k=0

Re

(
φapp

(
kπ

b − a
; x,�t

)
e−ikπ a

b−a

)(
Vk(tM−1) + εV (tM−1)

)

− e−r�t
N−1∑′

k=0

Re

(
φou

(
kπ

b − a
; x,�t

)
e−ikπ a

b−a

)
Vk(tM−1)

∣∣∣∣∣. (50)

Application of (32) gives:

∣∣εc(x, tM−2)
∣∣ �

∣∣∣∣∣e−r�t
N−1∑′

k=0

Re

(
φapp

(
kπ

b − a
; x,�t

)
e−ikπ a

b−a

)
εV (tM−1)

∣∣∣∣∣
+

∣∣∣∣∣e−r�t
N−1∑′

k=0

Re

(
φou

(
kπ

b − a
; x + eκ�tε1,�t

)
e−ikπ a

b−a

)
Vk(tM−1)

− e−r�t
N−1∑′

k=0

Re

(
φou

(
kπ

b − a
; x,�t

)
e−ikπ a

b−a

)
Vk(tM−1)

∣∣∣∣∣ (51)

�
∣∣∣∣∣e−r�t

N−1∑′

k=0

Re

(
φapp

(
kπ

b − a
; x,�t

)
e−ikπ a

b−a

)
εV (tM−1)

∣∣∣∣∣ + ε̂c .

The last step is from (33).
By application of Lemma 4.3, Eq. (46) we have that, for εx(tM−1) > 0,∣∣∣∣∣e−r�t

N−1∑′

k=0

Re

(
φapp

(
kπ

b − a
; x,�t

)
e−ikπ a

b−a

)
εV (tM−1)

∣∣∣∣∣
�

∣∣εc(δ1, tM−1)
∣∣ ·

∣∣∣∣∣e−r�t
N−1∑′

k=0

Re

(
φapp

(
kπ

b − a
; x,�t

)
e−ikπ a

b−a

)
Ik

(
x∗

tM−1
+ εx(tM−1),b

)∣∣∣∣∣
+ ∣∣g(δ2, tM−1) − c(δ2, tM−1)

∣∣ ·
∣∣∣∣∣e−r�t

N−1∑′

k=0

Re

(
φapp

(
kπ

b − a
; x,�t

)
e−ikπ a

b−a

)
Ik

(
x∗

tM−1
, x∗

tM−1
+ εx(tM−1)

)∣∣∣∣∣
� ε̂ce−r�t

N−1∑′

k=0

Re

(
φapp

(
kπ

b − a
; x,�t

)
e−ikπ a

b−a

)(
Ik

(
x∗

tM−1
+ εx(tM−1),b

) + Ik
(
x∗

tM−1
, x∗

tM−1
+ εx(tM−1)

))
= ε̂c v I

(
x + eκ�tε1, x∗

tM−1
,b

)
, (52)

where we have used the fact that option values, represented by the cosine series with Ik(·, ·), are positive. From (45) we
have

v I
(
x + eκ�tε1, x∗

tM−1
,b

) = e−r�t
∫
R

f
(

y|x + eκ�tε1,�t
)

I(y)dy

� e−r�t
∫
R

f
(

y|x + eκ�tε1,�t
)

dy = e−r�t . (53)

Substitution of (53) in (52) gives us∣∣∣∣∣e−r�t
N−1∑′

k=0

Re

(
φapp

(
kπ

b − a
; x,�t

)
e−ikπ a

b−a

)
εV (tM−1)

∣∣∣∣∣ � ε̂ce−r�t . (54)

By using (54) in (51), we obtain∣∣εc(x, tM−2)
∣∣ � ε̂c + ε̂ce−r�t = ε̂c

(
1 + e−r�t).
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When εx(tM−1) < 0 it follows similarly, from (51) and Remark 4.1, that

∣∣εc(x, tM−2)
∣∣ � ε̂c +

∣∣∣∣∣e−r�t
N−1∑′

k=0

Re

(
φapp

(
kπ

b − a
; x,�t

)
e−ikπ a

b−a

)
εV (tM−1)

∣∣∣∣∣
� ε̂c + ∣∣εc(δ1, tM−1)

∣∣ · ∣∣v I
(
x + eκ�tε1, x∗

tM−1
,b

)∣∣
+ ∣∣ĉ(δ2, tM−1) − g(δ2, tM−1)

∣∣ · ∣∣v I
(
x + eκ�tε1, x∗

tM−1
+ εx(tM−1), x∗

tM−1

)∣∣
� ε̂c

(
1 + e−r�t). � (55)

The relations in (34) and Lemma 4.4 serve as the first steps in a mathematical induction proof to find an upper bound
for εc(t0), the error in the Bermudan option price at t0, as follows:

Theorem 4.1. For ∀ x ∈ [a,b], j ∈ {1, . . . , M − 1}, we assume that

εc(x, tM− j) � ε̂c

j∑
l=1

e−r(l−1)�t . (56)

Then, it follows that, ∀x,

εc(x, tM−( j+1)) � ε̂c

j+1∑
l=1

e−r(l−1)�t . (57)

Proof. At tM−( j+1) , we have∣∣εc(x, tM−( j+1))
∣∣ = ∣∣ĉ(x, tM−( j+1)) − c(x, tM−( j+1))

∣∣
=

∣∣∣∣∣e−r�t
N−1∑′

k=0

Re

(
φapp

(
kπ

b − a
; x,�t

)
e−ikπ a

b−a

)(
Vk(tM− j) + εV (tM− j)

)

− e−r�t
N−1∑′

k=0

Re

(
φou

(
kπ

b − a
; x,�t

)
e−ikπ a

b−a

)
Vk(tM− j)

∣∣∣∣∣
�

∣∣∣∣∣e−r�t
N−1∑′

k=0

Re

(
φapp

(
kπ

b − a
; x,�t

)
e−ikπ a

b−a

)
εV (tM− j)

∣∣∣∣∣ + ε̂c, (58)

where the last step follows from (33).
With arguments as in Lemma 4.3 and its proof, we have that for εx(tM− j) > 0, values δ1 ∈ (x∗

tM− j
+ εx(tM− j),b) and

δ2 ∈ (x∗
tM− j

, x∗
tM− j

+ εx(tM− j)) exist, so that,

εV (tM− j) = εc(δ1, tM− j)Ik
(
x∗

tM− j
+ εx(tM− j),b

) + (
g(δ2, tM− j) − c(δ2, tM− j)

)
Ik

(
x∗

tM− j
, x∗

tM− j
+ εx(tM− j)

)
.

With the induction assumptions:

∣∣εc(δ1, tM− j)
∣∣ � ε̂c

j∑
l=1

e−r(l−1)�t, (59)

and

∣∣g(δ2, tM− j) − c(δ2, tM− j)
∣∣ �

∣∣εc
(
x∗

tM− j
+ εx(tM− j), tM− j

)∣∣ � ε̂c

j∑
l=1

e−r(l−1)�t, (60)

and by similar arguments as in Lemma 4.4 and its proof, we have that for positive errors in the early-exercise point at tM− j ,∣∣∣∣∣e−r�t
N−1∑′

Re

(
φapp

(
kπ

b − a
; x,�t

)
e−ikπ a

b−a

)
εV (tM− j)

∣∣∣∣∣

k=0
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� ε̂c

j∑
l=1

e−r(l−1)�t v I
(
x + eκ�tε1,min

(
x∗

tM− j
, x∗

tM− j
+ εx(tM− j)

)
,b

)

� ε̂c

j∑
l=1

e−r(l−1)�te−r�t = ε̂c

j+1∑
l=2

e−r(l−1)�t . (61)

Therefore, we find that, for ∀x ∈ [a,b]:
∣∣εc(x, tM−( j+1))

∣∣ � ε̂c

j+1∑
l=2

e−r(l−1)�t + ε̂c = ε̂c

j+1∑
l=1

e−r(l−1)�t . � (62)

Remark 4.2. When εx(tM− j) < 0, the proof goes similarly, and we can find that δ1 ∈ (x∗
tM− j

,b) and δ2 ∈ (x∗
tM− j

+
εx(tM− j), x∗

tM− j
) exist, so that

εV (tM− j) = εc(δ1, tM− j)Ik
(
x∗

tM− j
,b

) + (
ĉ(δ2, tM− j) − g(δ2, tM− j)

)
Ik

(
x∗

tM− j
+ εx(tM− j), x∗

tM− j

)
.

With the induction assumptions,

∣∣εc(δ1, tM− j)
∣∣ � ε̂c

j∑
l=1

e−r(l−1)�t,

and

∣∣ĉ(δ2, tM− j) − g(δ2, tM− j)
∣∣ �

∣∣εc
(
x∗

tM− j
, tM− j

)∣∣ � ε̂c

j∑
l=1

e−r(l−1)�t,

we can then also prove the inequalities (61) and (62) to hold.

It follows directly from (34), Lemma 4.4 and Theorem 4.1 that at t0, for any x, the error in the Bermudan option price
satisfies:

∣∣εc(x, t0)
∣∣ � ε̂c

M∑
l=1

e−r(l−1)�t = ε̂c
1 − e−rT

1 − e−r�t
= |ε1|eκ�tea 1 − e−rT

1 − e−r�t
.

To obtain accuracy up to one basis point4 for Bermudan options, with the approximate OU process, we prescribe that for
all x, ∣∣εc(x, t0)

∣∣ < 4 · 10−5,

which is equivalent to

|ε1| < e−κ�te−a 1 − e−r�t

1 − e−rT
· 4 · 10−5.

Therefore, the approximate characteristic function (28) and thus the Fast Fourier Transform can be applied for pricing
Bermudan options, if

|ε1| :=
∣∣x − E(x)

∣∣(1 − e−κ�t) < e−κ�te−a 1 − e−r�t

1 − e−rT
· 4 · 10−5 =: TOL. (63)

Finally, we need an approximation for |ε1| in practice. Note that

0 �
(
E

∣∣(x − E(x)
)∣∣)2 � E

∣∣x − E(x)
∣∣2 = Var(x) � σ 2

2κ
.

So,

E
(∣∣x − E(x)

∣∣) � σ√
2κ

. (64)

In our implementation we use the upper bound of this expected value to estimate |ε1| and apply the Fast Fourier Transform
with the approximate characteristic function if σ√

2κ
(1 − e−κ�t) is below the tolerance level defined by (63).

4 To ensure the basis point precision the error in the option price should be less than 10−4. We also consider the influence of rounding up errors, and
set therefore 4 · 10−5 here.
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Fig. 1. FFT and non-FFT parameter ranges for different maturities, with �t = 0.1.

5. Numerical results

The FFT can be applied in the parameter range for which

ε̂1 := σ√
2κ

(
1 − e−κ�t) < TOL,

with tolerance level TOL defined in (63). In the so-called “non-FFT range”, where ε̂1 > TOL, we use the characteristic function
of the original OU process to ensure accurate Bermudan option prices.

MATLAB 7.7.0 has been used for all numerical experiments and the CPU is an Intel(R) Core(TM)2 Duo CPU E6550
(@ 2.33 GHz Cache size 4 MB). CPU time is recorded in seconds.

Fig. 1 compares the FFT ranges with a fixed �t , but with different maturities, T . With �t fixed, ε̂1 remains the same for
the same κ and σ for all maturities. However, as T increases, the tolerance level (63) decreases so that we find a tighter
criterion regarding the use of the FFT.

As σ (y-axis in Fig. 1) increases to certain values, we cannot employ the approximate OU model anymore, as ε̂1 increases,
resulting in a large error in the Bermudan option price.

An increase in parameter κ (x-axis in Fig. 1) also leads to a decrease of the size of the FFT range, see Fig. 1, due to an
increase in the value of ε̂1 and a reduction in the tolerance level (63), see Fig. 2, where ε̂1 − TOL is plotted as a function
of κ .

Fig. 3 then presents the FFT and non-FFT ranges, with M = 5 and M = 50 for T = 1.
As parameter M , the number of exercise dates, increases, the range in which the FFT can be applied expands. However,

the influence of M on the error and the tolerance level (63) is different for small and large model parameters. This is
illustrated in Fig. 4. For small κ and σ (example in Fig. 4(a)), ε̂1 − TOL is an increasing function of M , whereas for large
model parameters (see Fig. 4(b)), ε̂1 − TOL decreases as M increases.

This can be detailed by the derivative of ε̂1 − TOL over M (in Fig. 5). In both cases, the quantity goes to zero as M
increases, which implies that function ε̂1 − TOL converges. For small parameters, ε̂1 − TOL converges fast, so that these sets
fall in the FFT range (see Fig. 3). On the other hand, as Fig. 5(b) shows, with large model parameters, ε̂1 −TOL > 0 when M is
small. For large parameter values, the approximate model can thus be used for large values of M . This insight is particularly
helpful for parameter sets at boundary of the FFT and non-FFT ranges which will be illustrated in the next subsection.

In our next tests we randomly choose different model parameters and check whether the numerical experiments are in
accordance with our error analysis. The range of parameters is κ ∈ [0.5,2.5], σ ∈ [0.2,0.8], M ∈ {5, , . . . ,20}, T ∈ [1,2], and
we use seasonality function G(t) = a1 + a2 sin(a3t) with a1 = 3,5,10, a2 ∈ [0.5,2] and a3 ∈ [0.5,2]. Fig. 6(a) presents results
for the OU process without seasonality, whereas Fig. 6(b) shows results for the approximate OU process with seasonality.
The x-axes in the figures represent the logarithms of the error in the Bermudan option price.

In these numerical simulations we only consider the continuation values for the Bermudan options, as there is no error
in the payoff function g(x, t) neither in its Fourier-cosine coefficients Gk . For all parameter sets considered, the error is of
order 10−4 or less, which implies that our approximation is accurate up to one basis point.
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Fig. 2. Value of ε̂1 − TOL over κ , with T = 1, M = 10, σ = 0.8.

Fig. 3. FFT and non-FFT parameter ranges for different numbers of early-exercise dates, with T = 1.

5.1. CPU time and accuracy

We perform some more experiments checking the validity of the error analysis.
We first consider the OU process without seasonality and choose the following four sets of model parameters for the

numerical examples and set T = 1 and M = 10,20,50:

1. κ = 0.301, σ = 0.334. This parameter set originates from commodity price calibration in [7].
2. κ = 1, σ = 0.5. This parameter set lies “in the FFT range” for M = 10,20,50, as in Fig. 3.
3. κ = 2, σ = 0.7. This parameter set is at the boundary of the FFT range (but still inside the FFT range) for M = 10,20,50,

see Fig. 3.
4. κ = 2.5, σ = 1. This parameter set lies outside the FFT parameter range for M = 10,20,50, see Fig. 3.

For each parameter set, the CPU time, in seconds, as well as the error are recorded. We set N = 512 for which we are sure
that convergence is achieved in space when M = 20 and M = 50.
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Fig. 4. Value of ε̂1 − TOL over M , with (a) small value of κ and σ and (b) large value of κ and σ .

Fig. 5. Derivative of ε̂1 − TOL with respective to M .

The numerical results are listed in Table 1, where CPU time 1 and CPU time 2 are the run-times of the Bermudan COS
method with the original and the approximate OU model, respectively.5 Moreover, the log10 (error) quantity in the table
represents the logarithm of the absolute error in the Bermudan option price from the approximate model.

In Table 1 it is shown that for all parameter sets in the FFT range (sets 1 to 3), we can confirm the basis point precision.
Moreover, the CPU time drops from seconds to milli-seconds if the FFT can be applied. As κ and σ increase (from sets 1
to 4), the error increases and the size of the FFT range reduces. This agrees with our analysis. For parameter set 4, for
instance, only the use of the original characteristic function ensures the basis point precision.

Table 2 gives the results of the Delta value, the first derivative of the Bermudan option value with respect of the underly-
ing stock price at t = 0. Here parameter sets 1–3 in the FFT range are used. From Table 2 we see that for these parameters,
where according to our error analysis the approximation can be used, also the Delta value is within basis point precision.

5 The FFT is used with the approximate OU model.
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Fig. 6. Simulation result for OU processes: (a) without seasonality and (b) with seasonality.

Table 1
CPU time and error for the two OU processes and different model parameters.

Parameter Set 1 Set 2 Set 3 Set 4

M = 10 log10 (error) −10.7784 −7.3434 −4.9392 −2.3424
CPU time 1 15.2889 15.2108 15.2691 16.9608
CPU time 2 0.0063 0.0064 0.0065 0.0064

M = 20 log10 (error) −10.9893 −7.0835 −4.4139 −1.9757
CPU time 1 31.8807 32.2614 32.3253 35.6780
CPU time 2 0.0120 0.0122 0.0124 0.0124

M = 50 log10 (error) −11.2600 −6.9289 −4.1043 −1.7612
CPU time 1 81.9564 82.8565 91.6191 91.6244
CPU time 2 0.0287 0.0296 0.0301 0.0300

Table 2
CPU time and error for the two OU processes and different model parameters.

Parameter Set 1 Set 2 Set 3

M = 10 log10 (error) −10.4071 −7.2635 −5.1049
CPU time 1 16.1995 15.5985 15.6600
CPU time 2 0.0065 0.0065 0.0066

M = 20 log10 (error) −10.6045 −6.9894 −4.5673
CPU time 1 32.8128 33.1084 32.8150
CPU time 2 0.0122 0.0125 0.0126

M = 50 log10 (error) −10.4156 −6.8262 −4.2511
CPU time 1 85.3691 84.5079 84.5922
CPU time 2 0.0291 0.0301 0.0306

5.1.1. Probability density function of ε1
In this subsection we take a closer look at the error in the characteristic function, ε1:

φapp(u; x,�t) = φou(u; x,�t)eiuε1 . (65)

We have already seen that ε1 := (x − E(x))(1 − e−κ�t). It is a normally distributed process, with E(ε1) = 0 and Var(ε1) =
σ 2

2κ (1 − e−2κt)(1 − e−κ�t), because the OU process is also normally distributed.
Larger values of parameter t will give rise to larger variance in ε1, with fixed value for �t . Therefore we analyze here

the error ε1 at time point T − �t , which gives us the largest variance in the backward recursion. The probability density
functions for ε1 with T = 1 and T = 2 are shown in Figs. 7 and 8, respectively. We have chosen the parameter sets used
earlier, i.e., parameter set 1 with κ = 0.301 and σ = 0.334 (well in the FFT range) and set 3 with κ = 2 and σ = 0.7 (at the
boundary of the FFT range) with T = 1. For T = 2 we used σ = 0.4 in set 3, so that this set also falls in the FFT range for
this test.
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Fig. 7. Probability density function of ε1 with T = 1.

Fig. 8. Probability density function of ε1 with T = 2.

For the OU processes with and without seasonality, when model parameters are fixed, the density function of ε1 is
essentially the same (with the same variance).

From Figs. 7 and 8 we see that with T fixed, larger values for M result in smaller errors in ε1. Moreover, small values
for κ and σ also bring smaller errors in characteristic function, compared to the larger model parameters.

5.1.2. Early-exercise points
In this subsection we compare the early-exercise points obtained from the original and approximate characteristic func-

tions, φou(u; x,�t) and φapp(u; x,�t), respectively. We present early-exercise point x∗
t=�t , i.e. the value at the last time step

of the backward recursion, with T = 1 and M = 10,20,50.
We use here parameter set 1 (κ = 0.301, σ = 0.334) and parameter set 3 (κ = 2, σ = 0.7, at the boundary of the FFT

parameter range).
The results are shown in Table 3.
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Table 3
Early-exercise points at t = �t for Bermudan put options; parameter sets 1 and 3, T = 1, different values for M
(no seasonality).

M M = 10 M = 20 M = 50

Set 1, φou(u; x,�t) 3.1438 3.1489 3.1516
Set 1, φapp(u; x,�t) 3.1277 3.0742 3.0836
Set 3, φou(u; x,�t) 3.3039 3.2822 3.2684
Set 3, φapp(u; x,�t) 2.8212 2.8271 2.8084

Table 4
CPU time and error with parameter set at boundary of FFT and non-FFT ranges.

Sea. Fun. Parameter Set 1
M = 10

Set 1
M = 50

Set 2
M = 20

Set 2
M = 40

1 log10 (error) −3.2217 −4.0466 −3.6035 −4.1734
CPU time 1 15.7927 84.6543 33.1099 69.5744
CPU time 2 0.0230 0.0769 0.0457 0.0702

2 log10 (error) −3.5567 −4.4686 −3.4631 −4.1343
CPU time 1 15.5535 84.7788 34.7118 74.6010
CPU time 2 0.0232 0.0774 0.0454 0.0690

In Table 3 we see an increasing error in the early-exercise point, especially for parameters near the boundary of the
range of κ- and σ -values for which the FFT can still be applied. With small parameter values for κ and σ , the error is
relatively small (0.08 in Table 3).

Obviously, the Bermudan option prices with the approximate process are much more accurate than the values of the
corresponding early-exercise points. This can be understood from Eq. (42) in our error analysis. There the error in the
continuation value is divided by a small number (as f ′(x, t) is defined as the derivative of the difference of the continuation
value and the payoff), resulting in a bigger error in εx , which is the error in the early-exercise points.

5.1.3. Seasonality experiment
Now we end with some test cases with seasonality. Our aim is to show that the approximation works well for different

seasonality functions. Two seasonality functions are used:

1. Seasonality Function 1: G(t) = 5 + sin(t).
2. Seasonality Function 2: G(t) = 3 + 4 cos(0.25t).

We check two parameter sets at the boundary of the FFT range, see Fig. 1 and Fig. 3.

1. Parameter Set 1: κ = 1.5, σ = 0.8, T = 1.
2. Parameter Set 2: κ = 0.85, σ = 0.7, T = 2.

CPU time as well as the log-absolute error in the option price from our approximate model for different M are presented
in Table 4. For these parameter sets at boundary, we cannot achieve basis point precision for small values of M . However,
the error drops below the tolerance level as M increases, which is in accordance with our analysis.

6. Conclusion

In this paper, we derive a characteristic function for an approximation of the well-known OU process. This approximation
enables us to apply the Fast Fourier Transform when pricing Bermudan options by means of the COS method. The approx-
imate process may be employed if the error generated by the approximation is less than a prescribed tolerance level. We
would like to ensure that the Bermudan option prices are accurate up to a basis point. This tolerance level is determined
by a detailed error analysis. In various numerical experiments it is demonstrated that the characteristic function for the
approximate process, in combination with the tolerance level, predicts well for which model parameter ranges, numbers of
early-exercise dates and seasonality functions the FFT can be safely applied. Moreover also the value of Delta is obtained
with basis point precision in the FFT range. For the model parameter sets for which the error is below the tolerance level
and our approximation can thus be applied, we have reduced the computational time for pricing of Bermudan options under
the OU process from seconds to milliseconds.
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