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The Stochastic Alpha Beta Rho Stochastic Volatility (SABR-SV) model is widely used in
the financial industry for the pricing of fixed income instruments. In this paper we develop
a low-bias simulation scheme for the SABR-SV model, which deals efficiently with (unde-
sired) possible negative values in the asset price process, the martingale property of
the discrete scheme and the discretization bias of commonly used Euler discretization
schemes. The proposed algorithm is based the analytic properties of the governing dis-
tribution. Experiments with realistic model parameters show that this scheme is robust
for interest rate valuation.
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1. Introduction

The Stochastic Alpha Beta Rho (SABR) model by Hagan [12] is a popular model in
the financial industry because of the availability of an analytic asymptotic implied
volatility formula. Practical applications of the SABR model include interpolation of
volatility surfaces and the hedging of volatility risk. In the context of pricing interest
rate derivatives, the combination of the SABR model and the market standard Libor
Market Models (LMM) [27] is of particular interest. Other references on this topic
include Morini and Mercurio [26], Hagan and Lesniewski [13] or Labordere [21].
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The constant elasticity of variance (CEV) process, introduced by Cox [9], is an
important ingredient of the SABR model. The CEV process has appeared in several
other models in finance, including the CEV LMM by Andersen and Andreasen [2].

Pricing and hedging of path-dependent securities are applications that typically
require the use of Monte Carlo methods. Despite the fact that the CEV model has
been introduced more than 30 years ago and that various researchers have shown
evidence of significant bias in the basic Euler scheme for the CEV model, only a
few references devising efficient unbiased Monte Carlo schemes were found in the
literature.

It was shown by Schroder [30] that the CEV process, representing the asset price
dynamics of the SABR model, equals a space transformed squared Bessel process.
As the volatility process in the SABR model is driven by a geometric Brownian
motion, a close relation between the SABR model and the Heston model [14] exists:
In the Heston model the asset price dynamics follow geometric Brownian motion,
whereas the volatility is governed by a squared Bessel process. Due to this, it seems
natural to generalize the unbiased simulation schemes for the Heston stochastic
volatility model to the SABR case. Broadie and Kaya [6]’s so-called exact simu-
lation scheme (the BK scheme) is based on the insight in Willard [31] that the
conditional distribution, given the terminal volatility and the integrated variance
in a time interval, is log-normal. In their scheme, an acceptance-rejection technique
is employed to sample the variance process, and a Fourier inversion technique is
applied to recover the variance process. Although the BK scheme is free of bias
by construction, its practical application is hampered by its computational speed.
Andersen [1] developed two efficient low-bias variants of the BK scheme, the trun-
cated Gaussian (TG) and the quadratic exponential (QE) schemes, that are both
based on the moment matching technique. Essentially, the noncentral chi-square
distribution is approximated by a distribution whose moments are matched with
those of the exact distribution. Since the QE scheme is based on transformations
to uniform and normal random numbers, it can be implemented efficiently [11].

A direct application of the QE scheme to the SABR model does not work well,
because the QE scheme is based on a squared Bessel process with a reflecting bound-
ary at zero volatility, which gives rise to a sub-martingale process. It is therefore
not suited to model SABR’s asset price dynamics. Instead, a squared Bessel pro-
cess with an absorbing boundary is the specification which is in agreement with the
arbitrage-free constraints (and thus produces a true martingale process). Accurate
handling of the absorbing boundary behavior is nontrivial, as the transition density
of the absorbed process does not integrate to unity and the moments are not known
in closed form.

Some simulation algorithms for the squared Bessel processes exist in the lit-
erature. Andersen and Andreasen [2] investigated basic Euler as well as log-
Euler schemes for the CEV model in a Monte Carlo setting and mentioned that
“the simulated prices of caps, floors and swaptions exhibit a bias relative to the
continuous-time prices. . . even for an infinite number of Monte Carlo trials”. Kahl
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and Jäckel [19] proposed a higher-order Monte Carlo scheme based on an implicit
Milstein discretization for the CEV process. This scheme does not perform well
when zero is attainable, due to the discontinuity of the first derivative of the diffusion
coefficient. Campolieti and Makarov [7] developed a scheme based on an acceptance-
rejection sampling of the Bessel bridge process. The Bessel bridge scheme is however
quite complex and its computational time is relatively high. Lord et al. [24] consider
an Euler scheme in combination with certain rules to deal with negative paths pro-
duced by the Euler scheme. The authors conclude that the computational efficiency
of the Euler scheme with these fixes is superior to the more complicated schemes.
For certain relevant parameter configurations the scheme may produce a significant
bias for practical sizes of the time steps.

In this paper we propose a low-bias path simulation scheme for the continuous-
time CEV and SABR models, also based on Willard’s [31] idea of mixing the condi-
tional distributions [23] of a stochastic volatility model (given the terminal volatility
and integrated variance). Our contribution is threefold. First of all, we derive the
conditional distribution of the SABR model over a discrete time step and show
that, conditioned on the terminal volatility and the integrated variance, it is a
space transformed squared Bessel process with a shifted initial condition. Secondly,
we propose an efficient easy-to-implement algorithm to simulate the squared Bessel
process with an absorbing boundary at zero. Thirdly, we provide a simple approx-
imation formula for the conditional moments of the integrated variance by means
of the small disturbance expansion method (see Kunitomo and Takahashi [20] and
Chen [8]), which facilitates effective sampling from the joint distribution of the
terminal volatility and the integrated variance.

The paper is organized as follows. In Sec. 2 we describe the basic SABR model
and summarize some analytic properties that are relevant for simulation. In Sec. 3,
we review some existing discretization schemes, for later comparison. In Sec. 3.3 we
present the low-bias discretization scheme to simulate the asset and the variance
processes. Section 4 discusses the performance of the whole algorithm. Section 5
concludes.

2. Some Analytic Features of the SABR Model

Given a time interval ∆ and an arbitrary set T of discrete times s < s + ∆ · · · <
s+N∆ and a stochastic process X = {Xt; t > 0}, a discretized simulation scheme
generates a skeleton Xs, Xs+∆, . . . of a sample path of the stochastic process X . To
device such a scheme, we start sampling from the marginal distribution of Xs+∆.
A repetition of such a one-period scheme may produce the full time-discrete paths
for X . Since here we consider the discrete scheme generating paths for a stochastic
volatility model, Xt = (St, σt), for all t ∈ T , the asset price process St itself is not
a Markov process. The fundamental question, as argued by Andersen [1], is how to
generate a random sample of Ss+∆ from the conditional distribution of Ss+∆, given
(Ss, σs, σs+∆,

∫ s+∆

s
σ2

udu).
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In this section, we focus on the analysis of the conditional distribution function;
the sampling technique is discussed in the next section. For notational convenience,
we do not use the notation s and s + ∆ for the initial and terminal time points,
respectively, but use simply 0 for the initial time point, t, s represent the running
time and ∆ is the terminal time for each discrete time interval.

The Stochastic Alpha Beta Rho Stochastic Volatility (SABR SV) model [12]
is given by the following system of stochastic differential equations (SDEs) with
constant parameters α and β:

dSt = σtS
β
t dW1,t,

dσt = ασtdW2,t,
(2.1)

where E[dW1,tdW2,t] = ρdt. Since the asset price St itself follows a CEV process,
one can expect that the conditional SABR process, given σ∆ and

∫∆

0
σ2

sds, is a CEV
process as well. The next step will be to “mix” the conditional CEV process with
the joint distribution of σ∆ and

∫∆

0
σ2

sds.
We will show, in the subsequent section, that, conditional on σ∆ and

∫ ∆

0
σ2

sds,
the coordinate transformed asset price process defined by the invertible trans-
formation X(S) = S1−β/(1 − β) is a time-changed Bessel process of dimension
(1 − 2β − ρ2(1 − β))/((1 − β)(1 − ρ2)), starting at S1−β

0 /(1 − β). Based on this, the
analytic distribution function for S∆ will be derived. After that we show that we
can sample this conditional distribution efficiently by a direct inversion scheme.

2.1. The distribution of the CEV process

Let (Ω,F ,Ft, P ) be a filtered probability space generated by {Wt}, a one-
dimensional Brownian motion. For all 0 ≤ t ≤ T , the CEV process can be described
by the following stochastic differential equation:

dSt = σtS
β
t dWt (2.2)

with initial condition S0 = ξ0 which we assume to be F0-measurable.
Here we simply choose σt to be a constant, i.e., σt ≡ σ. Following Schroder [30],

we consider an invertible transformation Xt = S1−β
t /(1 − β) for β �= 1. Application

of Itô’s lemma gives us the following SDE for Xt which we recognize as a time-
changed Bessel process:

dXt = (1 − β)
S−β

t

1 − β
σSβ

t dW1,t −
1
2
β(1 − β)

S−1−β
t

1 − β
σ2S2β

t dt

= σdWt −
βσ2

(2 − 2β)Xt
dt. (2.3)

Then we define a second transformation, Yt = X2
t , which results in a time-

changed squared Bessel process of dimension δ := (1 − 2β)/(1 − β), that thus
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satisfies the following SDE:

dYt = 2
√
|Yt|σdWt + δσ2dt. (2.4)

Let ν(t) be a time-change function, so that ν(t) = σ2t. Then, Yt = Zν(t), where
{Zt} is a δ-dimensional squared Bessel process, i.e., the strong solution of the SDE:

dZt = 2
√
|Zt|dWt + δdt (2.5)

with degree of freedom, δ. The squared Bessel process is a Markov process and its
transition density is known explicitly.

The next step is to sample random numbers from the analytic transition density
in Z-space and to apply an inverse variable transformation to obtain the random
numbers in the original coordinates.

First, a few technical details need to be discussed. They are presented in the
form of results and propositions below.

Result 2.1 ([2]). For a standard squared Bessel process, as defined by SDE (2.5),
the following statements hold true:

(1) All solutions to SDE (2.5) are non-explosive.
(2) For δ < 2, Z = 0 is an attainable boundary for Process (2.5).
(3) For δ ≥ 2 SDE (2.5) has a unique solution and zero is not attainable.
(4) For 0 < δ < 2 the SDE (2.5) does not have a unique solution, unless the

boundary condition is specified for the solution at Z = 0.
(5) For δ ≤ 0, there is a unique strong solution to the SDE (2.5), and boundary

condition zero is absorbing.

Proof. The results have been proved in [2, Appendix A] based on the theory pre-
sented in [5].

For the latter two cases, the transition densities are known:

Result 2.2 (Transition density for squared Bessel process). The transition
density, qδ(t, x, y), for the squared Bessel process reads:

(1) For δ ≤ 0 and for 0 < δ < 2 in Eq. (2.5) but only when the boundary is
absorbing at y = 0:

qδ(t, x, y) =
1
2t

(y
x

) δ−2
4

exp
(
−x+ y

2t

)
I| δ−2

2 |

(√
xy

t

)
, y ≥ 0, t > 0. (2.6)

(2) For 0 < δ < 2 when y = 0 is a reflecting boundary:

qδ(t, x, y) =
1
2t

(y
x

) δ−2
4

exp
(
−x+ y

2t

)
I δ−2

2

(√
xy

t

)
, y ≥ 0, t > 0. (2.7)

1250016-5



March 8, 2012 16:36 WSPC/S0219-0249 104-IJTAF SPI-J071
1250016

B. Chen, C. W. Oosterlee & H. van der Weide

Here we denote by Ia(x) the Bessel function, defined by

Ia(x) :=
∞∑

j=0

(x/2)2j+a

j!Γ(a+ j + 1)
,

and by Γ(x) the Gamma function, Γ(x) :=
∫∞
0 ux−1e−udu.

Proof. See Borodin [5, p. 136] for squared Bessel process transition densities.

By solving a series of inequalities (see the results in Table 1), we find essentially
three different parameter ranges which determine the behavior of the CEV process
at the boundary and the form of the transition densities:

(1) For β > 1, SDE (2.2) has a unique solution and boundary condition zero is
not attainable. The density function integrates to unity over S ∈ (0,∞) for all
t ≥ 0 and the process St is a strict local martingale.

(2) For β < 1
2 , SDE (2.2) does not have a unique solution, unless a separate bound-

ary condition is specified for the boundary behavior at S = 0.

• The density integrates to unity, if the boundary is reflecting and process St

is a strict sub-martingale.
• The density will not integrate to unity if the boundary at S = 0 is absorbing1

and process St is a true martingale.

(3) For 1
2 ≤ β < 1, a unique strong solution to SDE (2.2) exists, and boundary

value zero is absorbing. The density function does not integrate to unity for
t > 0 and process St is a true martingale.

For most financial applications, parameter β ranges between 0 to 1, which is included
in Cases 2 and 3 in the list above. We therefore focus on these two cases, and,
correspondingly, on the Items 4 and 5 in Result 2.1.

Based on the transition density of the squared Bessel diffusions in X-space given
in Result 2.2, one can easily obtain the transition density for the CEV process (2.2)

Table 1. The mapping of three
parameter ranges.

CEV Exponent Squared Bessel δ

−∞ < β < 1
2

0 < δ < 2

1
2
≤ β < 1 −∞ < δ ≤ 0

β > 1 2 < δ < ∞

1There is a degenerate part with an atom in the boundary and an absolutely continuous part over
(0,∞).

1250016-6



March 8, 2012 16:36 WSPC/S0219-0249 104-IJTAF SPI-J071
1250016

A Low-Bias Simulation Scheme for the SABR Stochastic Volatility Model

in S-space. Note first of all that

S∆ =
(
(1 − β)

√
|Zν(∆)|

) 1
1−β , β �= 1.

Let us define a map

h : s→ ((1 − β)
√
s)

1
1−β , s ≥ 0, β �= 1

with inverse

h−1 : y → y2(1−β)

(1 − β)2
, y ≥ 0, β �= 1.

So, S∆ = h(Zν(∆)) and Z0 = h−1(S0) = S
2(1−β)
0 /(1 − β)2. Then Zν(∆) has density

qδ(ν(∆), Z0, y) and it follows that the density for S∆ is given by

p(S|S0) = qδ(ν(∆), Z0, h
−1(S))

dh−1(S)
dS

,

where we use p(S|S0) to denote the conditional transition density for the CEV
process. By combining the two cases considered in Result 2.2, the related transition
densities for the CEV process, St, in Eq. (2.2) are of the following form:

(1) For 0 < β < 1
2 with absorption at zero and for 1

2 ≤ β < 1:

p(S∆|S0) =
1

ν(∆)

(
S∆

S0

)− 1
2

exp

(
−S

2(1−β)
∆ + S

2(1−β)
0

2(1 − β)2ν(∆)

)
I| δ−2

2 |

(
(S0S∆)1−β

ν(∆)(1 − β)2

)
S1−2β

∆

1 − β
,

where ν(∆) = σ2∆ and δ = 1−2β
1−β .

(2) For 0 < β < 1
2 with a reflecting boundary at S = 0:

p(S∆|S0) =
1

ν(∆)

(
S∆

S0

)− 1
2

exp

(
−S

2(1−β)
∆ + S

2(1−β)
0

2(1 − β)2ν(∆)

)
I δ−2

2

(
(S0S∆)1−β

ν(∆)(1 − β)2

)
S1−2β

∆

1 − β
.

By integrating these identities, we find the cumulative distribution functions:

Result 2.3. The cumulative distribution function of the CEV price process as in
Eq. (2.2) is given by the following formulas:

(1) For 0 < β < 1
2 with absorption at zero and for 1

2 ≤ β < 1:

Pr(S∆ ≤ x|S0) = 1 − χ2(a; b, c). (2.8)

(2) For 0 < β < 1
2 with a reflecting boundary at S = 0:

Pr(S∆ ≤ x|S0) = χ2(c; 2 − b, a), (2.9)
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with the following parameters:

a =
S

2(1−β)
0

(1 − β)2ν(∆)
, b =

1
1 − β

, c =
x2(1−β)

(1 − β)2ν(∆)
, ν(∆) = σ2∆,

and χ2(x; δ, λ) is the noncentral chi-square cumulative distribution function for
random variable x with non-centrality parameter λ and degree of freedom δ.

Proof. The proofs of these results can be found in Schroder [30] using classic results
for Bessel processes. An alternative proof based on Green function theory can be
found in Lesniewski [22].

As stated in Result 2.1, the density will not integrate to unity when the boundary
is absorbing. The shortage in the total probability mass is the probability absorbed
at S = 0. Following the result of Result 2.3, a formula for the absorption probability
can be obtained:

Corollary 2.1. For 0 < β < 1, the probability of S∆, given by SDE (2.2) and
initial condition S0, reads

Pr(S∆ = 0|S0) = 1 − γ

(
1

2(1 − β)
,

S
2(1−β)
0

2(1 − β)2ν(∆)

)/
Γ
(

1
2(1 − β)

)
, (2.10)

where γ(α, β) is the lower incomplete Gamma function and Γ(α) is the Gamma
function.

Proof. Choosing x in Eq. (2.8) to be zero, we find that

Pr(S∆ = 0|S0) = 1 − χ2

(
S

2(1−β)
0

(1 − β)2ν(∆)
;

1
1 − β

, 0

)

= 1 − Chi2
(

S
2(1−β)
0

(1 − β)2ν(∆)
;

1
1 − β

)
, (2.11)

where the last equality sign is because the noncentral chi-square distribution with
a zero non-centrality parameter reduces to a chi-square distribution. A chi-square
distribution has an explicit cumulative function in terms of gamma functions:

Chi2(x; δ) =
γ(δ/2, x/2)

Γ(δ/2)
, (2.12)

where γ(α, β) is again the lower incomplete Gamma function. We substitute
Eq. (2.12) into Eq. (2.11) and prove the claim.

In interest rate derivative pricing, initial value, S0, is often very small, hence it
is likely for St to reach zero. The specification of the boundary condition for process
St at zero may have a significant impact on the distribution, as is evident from the
distributions in Fig. 1. The two plots show a comparison of the exact cumulative
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Fig. 1. Comparison of the exact cumulative distribution of the CEV process versus the log-normal
and normal distributions at T = 0.25 for S∆ given different levels of S0.

distribution of the CEV process versus the log-normal and normal distributions at
T = 0.25 for S∆, given two different levels of S0, i.e. S0 = 6% in left-hand plot and
S0 = 2% in the right-hand plot. The model parameters chosen were σ = 0.3 and
β = 0.4. We have included the normal and log-normal distributions by matching
the first two moments of S∆. The labels “absorbing” and “reflecting” distinguish
the distributions of the CEV process with an absorption and a reflection boundary
condition, respectively. The two matched distributions do not represent accurate
approximations for the true distributions of S∆.

Andersen and Andreasen [2] and Rebonato [27], p. 48, argue that if the asset
price follows a CEV process under a certain measure, there is only one acceptable
boundary condition at zero to ensure the arbitrage-free conditions, which is the
absorption condition. If there were a reflecting boundary at zero, then for an initially
worthless portfolio, one would take a long position in the asset once the price zero
is reached (which would happen with a strictly positive probability) and sell it
immediately when the 0 boundary has reflected the price process to obtain risk-less
profit.

We therefore will assume that the boundary is absorbing at St = 0 in the
following sections and develop a method to sample from distribution function (2.8).
The strategy of sampling will be discussed in full detail in the sections to follow.

2.2. SABR conditional distribution

Let (Ω,F ,Ft,Pr) be a filtered probability space generated by two Brownian motions
{Ut,W2,t}. We denote the probability space as the product of two filtered probability
spaces generated by two independent Brownian motions, i.e. Ω = Ω1 × Ω2,F =
F1 ×F2, {Ft} = {F1

t × F2
t },Pr = Pr1 × Pr2.

Based on the closed-form distribution function of the CEV process, Islah [15]
shows that, conditional on the levels of σ∆ and

∫∆

0
σ2

sds, the transformed asset price

1250016-9
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process S2−2β
t /(1 − β)2 is a shifted squared Bessel process with initial condition

(S1−β
0 /(1 − β) + ρ

α (σ∆ − σ0))2. Here we recall the following results from [15]:

Result 2.4 (SABR Conditional Distribution [15]). In the context of SABR
model (2.1), and conditional on the level of terminal volatility, σ∆, and integrated
variance,

∫ ∆

0 σ2
sds, let ω2 ∈ Ω2, t → σt(ω2) be a volatility path. The followings

statements hold:

(1) For an invertible variable transformation, X(S) = S1−β/(1 − β), application of
Itô’s lemma gives us

X∆ = X0 +
ρ

α
(σ∆ − σ0) +

√
1 − ρ2

∫ ∆

0

σsdUs −
∫ ∆

0

βσ2
s

(2 − 2β)Xs
ds, (2.13)

where Us is a standard Brownian motion, independent of W2,s in System (2.1).
(2) With Y (S) = S2−2β/(1 − β)2 and application of a time-change, ν(t) = (1 −

ρ2)
∫ t

0 σ
2
sds, Yt is a squared Bessel process of dimension 1−2β−ρ2(1−β)

(1−β)(1−ρ2) solving
the SDE:

dYν(t) = 2
√
|Yν(t)|dUν(t) +

1 − 2β − ρ2(1 − β)
(1 − β)(1 − ρ2)

dν(t), (2.14)

with initial condition Y0 = (S1−β
0

1−β + ρ
α (σ∆ − σ0))2.

(3) Let τ be the stopping time for which process Y hits zero, i.e. τ =
inf{ν(s)|Yν(s) = 0}, the “stopped” process Y reads

Yν(t)∧τ = Y0 + 2
∫ ν(t)∧τ

0

√
|Yν(s)|dUν(s) +

1 − 2β − ρ2(1 − β)
(1 − β)(1 − ρ2)

(ν(t) ∧ τ) .

(2.15)

Proof. In order to derive the conditional dynamics of the SABR model in Eq. (2.1),
we first integrate the SDE for the volatility σt:

∫ ∆

0

dσs = α

∫ ∆

0

σsdW2,s ⇒
∫ ∆

0

σsdW2,s =
1
α

(σ∆ − σ0). (2.16)

When conditioning on the volatility level, σ∆, the above identity becomes a con-
stant. It plays an important role in the following derivation.

Based on arguments in Sec. 2.1, the application of Itô’s lemma to X =
S1−β/(1 − β) results in

X∆ = X0 +
∫ ∆

0

σsdW1,s −
∫ ∆

0

βσ2
s

(2 − 2β)Xs
ds. (2.17)
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We now employ Cholesky decomposition of the two correlated Brownian
motions,

dW1,t = ρdW2,t +
√

1 − ρ2dUt, dW2,t = dW2,t.

After substitution of the Cholesky decomposition into Eq. (2.17), we arrive at

X∆ = X0 +
ρ

α
(σ∆ − σ0) +

√
1 − ρ2

∫ ∆

0

σsdUs −
∫ ∆

0

βσ2
s

(2 − 2β)Xs
ds, (2.18)

where we used Identity (2.16).
In order to prove the second claim in the Result, we write Eq. (2.18) as,

dX̃t =
√

1 − ρ2σtdUt −
βσ2

t

(2 − 2β)X̃t

dt, with X̃0 = X0 +
ρ

α
(σ∆ − σ0),

where the notation X̃t denotes process Xt with a shifted initial condition. Despite
the difference in notation, X̃t and Xt represent the same process.

We define the variable transformation Y = X̃2, which, after applying Itô’s
lemma, gives

dYt = 2X̃tdX̃t + dX̃2
t

= 2
√
Yt

√
1 − ρ2σtdUt +

1 − 2β − ρ2(1 − β)
(1 − β)(1 − ρ2)

(1 − ρ2)σ2
t dt. (2.19)

Due to the independence of the Brownian motions Ut andW2,t, the integral
∫ t

0
σsdUs

is a Gaussian distribution with mean zero and variance
∫ t

0
σ2

sds.
We now consider the time-change ν(t) = (1 − ρ2)

∫ t

0
σ2

sds. A Brownian motion
under this “clock” will have the same distribution as

√
1 − ρ2

∫ t

0
σsdUs, i.e.

Uν(t) =
∫ ν(t)

0

dUs =
√

1 − ρ2

∫ t

0

σsdUs.

We substitute the time-changed Brownian motion into Eq. (2.19), which gives us

dYν(t) = 2
√
|Yν(t)|dUν(t) +

1 − 2β − ρ2(1 − β)
(1 − β)(1 − ρ2)

dν(t),

i.e. a time-changed squared Bessel process of dimension δ = 1−2β−ρ2(1−β)
(1−β)(1−ρ2) , starting

at

Y0 = X̃2
0 =

(
X0 +

ρ

α
(σ∆ − σ0)

)2

.

Inclusion of a stopping time, τ = inf{ν(s)|Yν(s) = 0}, to the second result will prove
the third claim.
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Proposition 2.1 (Cumulative Distribution for Conditional SABR
Process). For some S0, strictly larger than 0, the conditional cumulative distribu-
tion of S∆ with an absorbing boundary at St = 0 given σ∆ and

∫∆

0
σ2

sds reads

Pr

(
S∆ ≤ K|S0 > 0, σ′

∆

∫ ∆

0

σ2
sds

)
= 1 − χ2(a; b, c), (2.20)

where

a =
1

ν(∆)

(
S1−β

0

(1 − β)
+
ρ

α
(σ∆ − σ0)

)2

, b = 2 − 1 − 2β − ρ2(1 − β)
(1 − β)(1 − ρ2)

,

c =
K2(1−β)

(1 − β)2ν(∆)
, ν(∆) = (1 − ρ2)

∫ ∆

0

σ2
sds.

(2.21)

χ2(x; δ, λ) is again the noncentral chi-square cumulative distribution function.

Proof. Given that Yν(t) is a time-changed Bessel process, we substitute parameter
δ and the non-centrality parameter Y0 into the distribution function presented in
Result 2.3.

Note that the condition S0 > 0 is crucial, because the paths that reach zero
should stay in zero, due to the stopping time τ defined in Result 2.4.

Remark. It was argued by Andersen [4] that the continuous time process, St, will
be a martingale with

E[St+∆ |St] = St <∞.

The equivalent discrete-time process, Ŝt, generated by the low-bias simulation
scheme may not satisfy the martingale condition,

E[Ŝt+∆ | Ŝt] �= Ŝt.

The net drift, away from the martingale, is visible for parameter sets with small β
and close-to-zero rates. However, this combination of parameters does not appear
in practical applications as it gives rise impractical implied volatility levels. For
practical SABR parameters, the martingale bias is very small and can be controlled
by reducing the size of the time step.

3. The Discretization Scheme for the SABR Model

In this section we will present the low-bias simulation scheme for the SABR model.
Before that, we review some existing path simulation schemes for the stochastic
volatility model. We will denote time discrete approximations to St and σt by Ŝt

and σ̂t, respectively.
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3.1. Taylor based time discrete approximation schemes

The basic first-order Taylor approximation scheme for (2.1) takes the following form:

Ŝ∆ = Ŝ0 + σ̂0Ŝ
β
0Z1

√
∆,

σ̂∆ = σ̂0 exp
(
−1

2
α2∆ + αZ2

√
∆
)
,

(3.1)

with Z1 and Z2 two correlated standard normal random variables, i.e. E[Z1Z2] =
ρdt.

This Euler scheme represents an O(
√

∆)-accurate Taylor approximation for the
asset price process, St. To reduce the bias introduced by the first-order approxima-
tion, Elerian [10] suggests using a transition density derived from the scheme due to
Milstein [25]. Including higher-order expansion terms gives us the Milstein scheme:

Ŝ∆ = Ŝ0 + σ̂0Ŝ
β
0Z1

√
∆ +

1
2
βσ̂2

0 Ŝ
2β−1
0 (Z2

1∆ − ∆),

σ̂∆ = σ̂0 exp
(
−1

2
α2∆ + αZ2

√
∆
)
.

(3.2)

A common problem shared by the Taylor-based approximation schemes is the
possibility of generating negative asset prices, Ŝt, that give rise to financially mean-
ingless solutions. A remedy for the negative prices is to transform the SDE to
logarithmic coordinates using Itô’s lemma [3]. For the CEV asset price process the
log-Euler scheme is defined as:

Ŝ∆ = Ŝ0 exp
(
−1

2
σ̂2

0S
2β−2
0 ∆ + σ̂0Ŝ

β−1
0 Z1

√
∆
)
,

σ̂∆ = σ̂0 exp
(
−1

2
α2∆ + αZ2

√
∆
)
.

(3.3)

Whereas the log-Euler scheme preserves positivity of the asset price process, numer-
ical experiments show that the scheme may become unstable for specific time-step
sizes [3]. The instabilities occur because the diffusion terms in Eq. (3.3) approach
infinity quickly, when Ŝt reaches zero (see some results in Table 2).

Table 2. Percentages of Taylor-based simulation experiments with
failure for the CEV model, with different step-sizes over a 5 years
interval. The parameters are β = 0.3, σ = 0.3 and S0 = 4%.

Issue Stepsize Euler(%) Milstein(%) Log-Euler(%)

Negativity ∆ = 0.5 85 49 0
∆ = 0.25 88 56 0
∆ = 0.125 94 59 0

Infinity ∆ = 0.5 0 34 96
∆ = 0.25 0 31 96
∆ = 0.125 0 37 95
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3.2. Exact scheme of Broadie and Kaya

Broadie and Kaya [6] proposed the BK scheme, an exact simulation for the Heston
model. Although the Heston dynamics are different from the SABR dynamics, the
exact simulation concept serves as the basis to construct the discrete approximation
schemes for the SABR model here.

The BK scheme is based on sampling σ∆ from its distribution function. Given
σ∆ (and σ0), a sample from

∫ ∆

0 σ2
sds is drawn. Conditional on σ∆ and

∫ ∆

0 σ2
sds,

process lnS∆ is from a Gaussian distribution in the Heston model.
In some more detail, with Vt = σ2

t the Heston stochastic volatility [14] process
can be described as:

dSt =
√
VtStdW1,t,

dVt = κ(θ − Vt)dt+ η
√
VtdW2,t

(3.4)

with correlation E[dW1,tdW2,t] = ρdt, κ as speed of mean reversion, long run mean
θ and volatility of volatility η. To obtain a bias-free scheme, first the SDE for the
volatility is integrated, i.e.,∫ ∆

0

√
VsdW2,s =

1
η

(
V∆ − V0 − κθ∆ + κ

∫ ∆

0

Vsds

)
. (3.5)

Application of the Cholesky decomposition, i.e.,

dW1,t = ρdW2,t +
√

1 − ρ2dUt, dW2,t = dW2,t,

gives us for lnSt:

d lnSt = −1
2
Vtdt+ ρ

√
VtdW2,t +

√
1 − ρ2

√
VtdUt,

with Brownian motion Ut, independent of W2,t. In integral form, we then obtain

lnS∆ = lnS0 −
1
2

∫ ∆

0

Vsds+ ρ

∫ ∆

0

√
VsdW2,s +

√
1 − ρ2

∫ ∆

0

√
VsdUs

= lnS0 +
ρ

η
(V∆ − V0 − κθ∆) +

(
ρκ

η
− 1

2

)∫ ∆

0

Vsds+
√

1 − ρ2

∫ ∆

0

√
VsdUs.

(3.6)

Due to the independence of Ut and W2,t, the Itô integral
∫∆

0 VsdUs, conditional on
the realized variance, is Gaussian with mean zero and variance

∫ ∆

0 Vsds. It is easy
to see from Eq. (3.6) that lnS∆ is normally distributed, conditional on V∆ and∫∆

0 Vsds. By aggregation of all conditional Gaussian distributed samples, we obtain
the desired distribution for the stochastic volatility model.

For the Heston model, the distribution of V∆ is known in closed form, but the
conditional distribution of

∫∆

0
Vsds is not known explicitly. Broadie and Kaya [6]

derive the characteristic function, which is based on two modified Bessel functions
that contain infinite series expansions. A numerical Fourier-inversion step is then
necessary to generate the desired conditional cumulative distribution function. The
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evaluation of the characteristic function for
∫∆

0
Vsds as well as the required Fourier

inversions require significant computational effort. The implementation of these
steps has to be done with great care to avoid bias from the numerical inversion.

3.3. A low-bias scheme for SABR simulation

By utilizing the analytic results for the conditional SABR process presented in
Proposition 2.1, and the above mentioned technique of “mixing conditional distri-
butions”, we present a low-bias discretization scheme for the SABR model. We start
to simulate the conditional SABR process, which is a space-transformed squared
Bessel process with an absorbing boundary at zero, and then mix the conditional
process by the joint dynamics of the terminal volatility and integrated variance.

Despite the fact that the volatility σ∆ can easily be sampled from a log-normal
distribution, it is not straightforward to sample the integrated variance. It is also
challenging to simulate a CEV process exactly. Hence, we devote the following two
subsections to these issues.

3.3.1. Sampling the conditional CEV process

As discussed in Sec. 2.2, the CEV process is a space-transformed squared Bessel
process, whose distribution function is known in closed-form as the noncentral chi-
square distribution. For initial asset prices far away from zero, i.e. S0 � 0, the
probability of hitting zero is almost zero, i.e. Pr(inf{t|St = 0} < ∆) → 0, and the
distribution function approaches an ordinary noncentral chi-square distribution:

Pr(S∆ ≤ K) = 1 − χ2(a; b, c) = χ2(c; 2 − b, a) + Pr(inf{t |St = 0} < ∆)

≈ χ2(c; 2 − b, a). (3.7)

where a, b and c are as defined in Proposition 2.1.
It is well-known (see Johnson et al. [17], p. 450) that the noncentral chi-square

distribution approaches a Gaussian distribution as the non-centrality parameter
goes to infinity. In [1] it was stated that the noncentral chi-square distribution with
a sufficiently large non-centrality parameter can be accurately approximated by a
quadratic function of Gaussian variables.

Andersen’s Quadratic Exponential (QE) scheme does not perform satisfactory
for small values of S0, as the moment-matching method then becomes inaccurate.
This is due to the fact that for small values of S0, the probability of reaching zero is
high, so that the approximation in Eq. (3.7) does not hold and the analytic moments
for the distribution 1 − χ2(a; b, c) are not known. For these small values, we there-
fore propose to use a Newton-type root finding method to invert the distribution
function (2.20) directly.

More specifically, we determine a value, c∗, which solves the equation 1 −
χ2(a; b, c∗) − U = 0 with a high accuracy. To compute the noncentral chi-square
distribution, we use Schroder’s [30] recurrence formula, in which the evaluation of
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an infinite double sum of gamma functions is required. This computation takes only
a small fraction of the costs for the computation of the original series [30].

The partial derivative of the cumulative distribution is the probability density
function (PDF) which is known analytically as the transition density for a squared
Bessel process, given in Eq. (2.6). Using this derivative information gives a substan-
tial enhancement of the computational performance.2

Moment-matched quadratic Gaussian approximation

The mean and the variance of the noncentral chi-square distribution, χ2(x; k, λ),
are k+λ and 2(k+ 2λ), respectively. Here we determine, as in Proposition 5 in [1],
the values of the relevant parameters by moment matching.

Result 3.1 (Moment-Matched Quadratic Gaussian Approximation [1]).
We denote the mean and variance of a noncentral chi-square distribution, χ2(x; k, λ),
by m := k + λ and s2 := 2(k + 2λ), and we define ψ := s2/m2. With

e2 = 2ψ−1 − 1 +
√

2ψ−1
√

2ψ−1 − 1 ≥ 0 and d =
m

1 + e2
.

A non-central chi-square distributed random variable Y is accurately approximated
by

Y = d (e+ Z)2 Z ∼ N(0, 1),

where E[Y ] = m and Var[Y ] = s2.

In our case, we have

k =
1 − 2β − ρ2(1 − β)

(1 − β)(1 − ρ2)
, λ =

1
ν(∆)

(
S1−β

0

(1 − β)
+
ρ

α
(σ∆ − σ0)

)2

,

with ν(∆) = (1 − ρ2)
∫∆

0
σ2

sds. We then compute S
2(1−β)
∆ /(1 − β)2ν(∆) by the

quadratic normal approximation:

S
2(1−β)
∆

(1 − β)2ν(∆)
= d(e+ Z)2 ⇒ S∆ = ((1 − β)2ν(∆) · d(e+ Z)2)

1
2(1−β) ,

with Z ∼ N(0, 1). (3.8)

The constants d and e are as in Result 3.1.

Direct inversion scheme

As mentioned earlier, the quadratic Gaussian approximation is accurate only if S0

is sufficiently large, or, equivalently, when the probability of absorption is small. For
small values of S0, we invert the distribution function (2.20) directly by a Newton-
type method. As in Andersen [1], variable ψ = s2/m2, defined in Result 3.1, is used

2When the gradient information is not supplied, the algorithm requires many extra function evalu-
ations of the noncentral chi-square distribution function, which is generally expensive to compute.
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as the threshold level to determine which algorithm (either the moment-matched
Quadratic Gaussian or the direct inversion) is to be employed.

We first assume that the integrated variance, ν(∆) = (1−ρ2)
∫ ∆

0
σ2

sds, has been
determined. An algorithm to sample the conditional CEV process in terms of the
transformed squared Bessel process with an absorbing boundary at zero, starting
at time 0 until ∆, then reads:

(1) Compute a = 1
ν(∆) (

S1−β
0

(1−β) + ρ
α (σ∆ − σ0))2 and b = 2 − 1−2β−ρ2(1−β)

(1−β)(1−ρ2)

by Result 2.1;
(2) Draw a (vector of) uniform random numbers, U ;
(3) Compute the absorption probability Pr(S∆ = 0|S0) by Eq. (2.10);

(a) If S0 = 0: S∆ = 0 and return;
(b) Else if U < Pr(S∆ = 0|S0): S∆ = 0 and return;
(c) Otherwise: Go to the next step;

(4) Compute ψ := s2/m2 with m := k + λ and s2 := 2(k + 2λ);
(5) Select a threshold value, ψthres ∈ [1, 2], as in [1]. Here we set ψthres = 2 for

numerical efficiency;
(6) If {0 < ψ ≤ ψthres}

⋂
{m ≥ 0}: We sample S∆ by Eq. (3.8);

(7) Otherwise if ψ > ψthres or {m < 0}
⋂
{0 < ψ <= ψthres}: We determine

the root c∗ of the equation H(a, b, c) := 1 − χ2(a; b, c) − U = 0 with initial
guess c0 = a, and repeat the Newton method until the prescribed tolerance ε is
reached:

cn+1 = cn − H(a, b, cn)
q(a, b, cn)

,

where

q(a, b, c) =
1
2

( c
a

) b−2
4

exp
(
−a+ c

2

)
I| b−2

2 |(
√
ac).

The desired random number, c∗, is from a squared Bessel distribution with an
absorbing boundary at zero.

(8) We apply the inverse coordinate transform to recover the random numbers in
asset price (or physical) space:

S∆ = (c∗(1 − β)2ν(∆))
1

2−2β .

This root finding method consists of only basic operations, so that the whole proce-
dure can be vectorized and a vector of uniform random numbers can be processed
simultaneously.

Enhanced direct inversion procedure

Although the above method is accurate, it appears to be rather slow, due to a
significant number of evaluations of the (expensive) noncentral chi-square CDF.
In order to speed up the procedure, we determine an accurate initial solution by
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a cheap numerical procedure. With an accurate initial solution, this root finding
procedure will converge in only a few iterations.

Yuan [32] gives numerical evidence for the fact that the noncentral chi-square
distribution “converges” to a normal distribution when non-centrality parameter c
or random number a increase in value. A number of normal approximations to the
noncentral chi-square distribution have been developed, see Johnson and Kotz [16]
for a review. A particular accurate approximation is derived by Sankaran [28]:

χ2(a; b, c) ∼ N

(
1 − hp(1 − h+ 1

2 (2 − h)mp) − ( a
b+c )h

h
√

2p(1 +mp)

)
(3.9)

where N denotes the normal cumulative density function and

h = 1 − 2(b+ c)(b+ 3c)
3(b+ 2c)2

,

p =
b+ 2c

(b+ c)2
,

m = (h− 1)(1 − 3h).

(3.10)

This approximation consists of basic functions only, e.g. square roots, powers and
normal distribution functions, that can be executed quickly on modern hardware.
The approximation is sufficiently accurate for a wide range of parameters, but it
varies across different sets of parameters. Especially for small values of parameter
a in Eq. (2.20), this approximation is less accurate.

To illustrate the performance of Sankaran’s approximation, we consider two dif-
ferent test cases with different values for parameter a (keeping the other parameters
the same). Figure 2 presents the results. In both plots, the difference between the
exact curve and Sankaran’s approximation is visible, but for the larger value of a the
discrepancy is substantially smaller. For the purpose of generating an initial solu-
tion for the second stage of the root finding method, however, the approximation
quality is fully satisfactory.

After the inversion of a vector of uniform variables, U , into normal variables,
X = N−1(U), we find a vector of roots, c, which solve the following equation

G(a, b, c) :=
1 − hp(1 − h+ 1

2 (2 − h)mp) −
(

a
b+c

)h

h
√

2p(1 +mp)
−X = 0, (3.11)

with h, p and m as defined in Eq. (3.10). This can be performed very efficiently by
Newton’s method with analytic derivative information.

In the next stage, we choose the c0 in Step 7 of the direct inversion scheme
to be the solution of Eq. (3.11) and execute that step. The result is a significant
improvement in the number of function evaluations required for Newton’s root find-
ing algorithm to converge.
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Fig. 2. Comparison of the quality of Sankaran’s approximation for two sets of parameters. Degree
of freedom parameter b is set to 0.423 for both cases, but parameter a is lower in the left-side plot,
a = 0.416 than in the right-side plot, a = 2.416.

3.4. The integrated variance

The sampling of the conditionally integrated variance process may be an expensive
procedure. There are several methods in the literature to approximate the integrated
variance process,

∫∆

0 Vsds |V0, V∆, or, equivalently,
∫∆

0 σ2
sds |σ0, σ∆. Notable exam-

ples include the Fourier inversion technique in [6] and the drift interpolation in [1]. In
the present paper, we propose to use an approximation based on a moment-matched
drift interpolation technique. Instead of dealing with the distribution of the quantity∫∆

0
σ2

sds |σ0, σ∆, we match the first two conditional moments of
∫ ∆

0
σ2

sds given σ0

(and σ∆) in a log-normal distribution, and sample the distribution of
∫∆

0
σ2

sds from
the moment-matched log-normal distribution.

3.4.1. Small disturbance expansion

In a first step, we derive the conditional moments of
∫∆

0 σ2
sds, given σ∆ (and σ0),

by the small disturbance expansion, proposed by Kunitomo [20]. The small distur-
bance expansion method is closely related to the stochastic Taylor expansion, which
is especially accurate when the quantity α2∆ is small. In order to apply the small
disturbance expansion technique, we first reformulate the log-normal volatility pro-
cess by introducing a small parameter 0 < ε� 1 in the diffusion coefficient, so that
α = εα̃:

σ
(ε)
t = σ0 + εα̃

∫ t

0

σ(ε)
s dW2,s. (3.12)

We construct an expansion of σ(ε)
t around σ0 by ε→ 0.
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Proposition 3.1. For stochastic integral (3.12), we have the formal small distur-
bance expansion

σ
(ε)
t = σ0 + ε

∂σ
(ε)
t

∂ε

∣∣∣∣∣
ε=0

+
1
2
ε2
∂2σ

(ε)
t

∂ε2

∣∣∣∣∣
ε=0

+
1
6
ε3
∂3σ

(ε)
t

∂ε3

∣∣∣∣∣
ε=0

+
1
24
ε4
∂4σ

(ε)
t

∂ε4

∣∣∣∣∣
ε=0

+O(ε5),

where

∂σ
(ε)
t

∂ε

∣∣∣∣∣
ε=0

= σ0α̃

∫ t

0

dW2,s = σ0α̃W2,t,

∂2σ
(ε)
t

∂ε2

∣∣∣∣∣
ε=0

= 2σ0α̃
2

∫ t

0

∫ s1

0

dW2,s2dW2,s1 = σ0α̃
2(W 2

2,t − t),

∂3σ
(ε)
t

∂ε3

∣∣∣∣∣
ε=0

= 6σ0α̃
3

∫ t

0

∫ s1

0

∫ s2

0

dW2,s3dW2,s2dW2,s1 = σ0α̃
3(W 3

2,t − 3W2,tt),

∂4σ
(ε)
t

∂ε4

∣∣∣∣∣
ε=0

= 24σ0α̃
3

∫ t

0

∫ s1

0

∫ s2

0

∫ s3

0

dW2,s4dW2,s3dW2,s2dW2,s1

= σ0α̃
3(W 4

2,t − 6W 2
2,tt+ 3t2).

(3.13)

Proof. It is easy to see from Eq. (3.12) that σ(0)
s = σ0. Straightforward application

of the deterministic calculus rules gives us

∂σ
(ε)
t

∂ε
= α̃

∫ t

0

σ(ε)
s dW2,s + εα̃

∫ t

0

∂σ
(ε)
t

∂ε
dW2,s.

We take the limit ε → 0, and get the expression for the first-order expansion
term:

∂σ
(ε)
t

∂ε

∣∣∣∣∣
ε=0

= α̃

∫ t

0

σ(0)
s dW2,s = σ0α̃

∫ t

0

dW2,s.

The higher-order expansion terms follow by repeating these rules.

Corollary 3.1. The formal small disturbance expansion of the integrated volatility
A

(ε)
∆ =

∫∆

0
(σ(ε)

t )2dt is now given by

A
(ε)
∆ = A

(0)
∆ + εA

(1)
∆ + ε2A

(2)
∆ + ε3A

(3)
∆ + ε4A

(4)
∆ +O(ε5) (3.14)
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where

A
(0)
∆ = σ2

0∆,

A
(1)
∆ =

∂A
(ε)
∆

∂ε

∣∣∣∣∣
ε=0

= 2σ0

∫ ∆

0

∂σ
(0)
t

∂ε
dt,

A
(2)
∆ =

∂2A
(ε)
∆

∂ε2

∣∣∣∣∣
ε=0

=
∫ ∆

0


(∂σ(0)

t

∂ε

)2

+ σ0
∂2σ

(0)
t

∂ε2


 dt,

A
(3)
∆ =

∂3A
(ε)
∆

∂ε3

∣∣∣∣∣
ε=0

=
∫ ∆

0

(
∂σ

(0)
t

∂ε

∂2σ
(0)
t

∂ε2
+

1
3
σ0
∂3σ

(0)
t

∂ε3

)
dt,

A
(4)
∆ =

∂4A
(ε)
∆

∂ε4

∣∣∣∣∣
ε=0

=
∫ ∆

0


1

4

(
∂2σ

(0)
t

∂ε2

)2

+
1
3
∂σ

(0)
t

∂ε

∂3σ
(0)
t

∂ε3
+

1
12
σ0
∂4σ

(0)
t

∂ε4


 dt.

Proof. The above result is a natural extension of Proposition 3.1. One can easily
check the validity of the above expression by a derivation from a different point-of-
departure, i.e.,

A
(ε)
∆ =

∫ ∆

0

(σ(ε)
t )2dt =

∫ ∆

0

(
σ0 + ε

∂σ
(ε)
t

∂ε

∣∣∣∣∣
ε=0

+
1
2
ε2
∂2σ

(ε)
t

∂ε2

∣∣∣∣∣
ε=0

+
1
6
ε3
∂3σ

(ε)
t

∂ε3

∣∣∣∣∣
ε=0

+
1
24
ε4
∂4σ

(ε)
t

∂ε4

∣∣∣∣∣
ε=0

+O(ε5)

)2

dt.

Expand the inner quadratic expression and collect the terms up to order O(ε4) gives
us the expansion above.

Based on the expressions above, the first conditional moment ofA(ε)
∆ , givenW2(·)

at terminal time ∆, can be computed by substituting the expansion terms (3.13) in
Identity (3.14):

E[A(ε)
∆ |W2,∆] = E[A(0)

∆ + εA
(1)
∆ + ε2A

(2)
∆ + ε3A

(3)
∆ + ε4A

(4)
∆ +O(ε5)|W2,∆]

= E

[
σ2

0∆ + 2εσ2
0α̃

∫ ∆

0

W2,tdt

+ ε2σ2
0α̃

2

∫ ∆

0

(2W 2
2,t − t)dt+ ε3σ2

0α̃
3

∫ ∆

0

(
4
3
W 3

2,t − 2W2,tt

)
dt

+ ε4σ2
0α̃

4

∫ ∆

0

(
2
3
W 4

2,t − 2W 2
2,tt+

t2

2

)
dt+O(ε5)|W2,∆

]
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= σ2
0∆ + 2εσ2

0α̃
1
2
W2,∆∆ +

1
3
ε2σ2

0α̃
2

(
2W 2

2,∆∆ − ∆2

2

)

+
1
3
ε3σ2

0α̃
3(W 3

2,∆∆ −W2,∆∆2)

+ ε4σ2
0α̃

4

(
2
15
W 4

2,∆∆ − 3
10
W 2

2,∆∆2 +
2
5
∆3

)
+O(ε5)

= σ2
0∆
{
1 + εα̃W2,∆+

1
3
ε2α̃2

(
2W 2

2,∆ − ∆
2

)
+

1
3
ε3α̃3(W 3

2,∆ −W2,∆∆)

+
1
5
ε4α̃4

(
2
3
W 4

2,∆ − 3
2
W 2

2,∆∆ + 2∆2

)}
+O(ε5), (3.15)

where the derivations involving the computation of the time integral of the
Wiener processes can be found in Kahl [18] (Table 4.1). The expressions for
E[
∫ ∆

0 W 4
2,tdt|W2,∆] and E[

∫∆

0 W 2
2,ttdt|W2,∆] have not been provided in [18], but

have been derived by ourselves as a straightforward (but tedious) extension of the
derivations in [18].

Finally, we substitute α = εα̃ back in the expressions, collect the first three
terms of the expansion to approximate the solution of the original model.

Remark. The expansion for the conditional mean (3.15) has to be performed up
to fourth order, because the third-order solution gives rise to negative values (for
negative values of W2,∆), see Fig. 3. However the variance should be non-negative,
and the same holds for the integrated variance.

The computation of the conditional variance is however involved. Nevertheless,
we identify the leading term as E[ε2(A(1)

∆ − E[A(1)
∆ |W2,∆])2|W2,∆]:

Var[A(ε)
∆ |W2,∆] = E[(A(ε)

∆ − E[A(ε)
∆ |W2,∆])2|W2,∆]

= E

[(
A

(0)
∆ + εA

(1)
∆ +

1
2
ε2A

(2)
∆ +O(ε3)

− E

[
A

(0)
∆ + εA

(1)
∆ +

1
2
ε2A

(2)
∆ +O(ε3)|W2,∆

])2

|W2,∆




= E

[(
ε(A(1)

∆ − E[A(1)
∆ |W2,∆]) +

1
2
ε2(A(2)

∆ − E[A(2)
∆ |W2,∆])

+ O(ε3)
)2

|W2,∆

]

= E[ε2(A(1)
∆ − E[A(1)

∆ |W2,∆])2|W2,∆] +O(ε3).
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Fig. 3. Illustration of formula (3.15) for the conditional mean E[A∆|W2,∆]; including the first three
expansion terms versus the first four terms.

So, we find:
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= 4σ4
0α

2

(
1
4
W 2

2,∆∆2 +
1
12

∆3 − 1
4
W 2

2,∆∆2

)

=
1
3
σ4

0α
2∆3, (3.16)

In the derivation above we have used the relation d(Wt · t) = Wtdt+ tdWt.
The conditional variance does not depend on W2,∆, which suggests that the con-

ditional distribution of the integrated variance is ‘shifted by the time ∆ realization
of the Brownian motion W2’, but its variance is not affected by W2,∆.

3.4.2. Conditional moment-matched log-normal sampling scheme

Under common market conditions, i.e. σ0 < 1 and α < 1, the conditional vari-
ance is a very small value, for small ∆. In other words, the randomness of the
conditional distribution of A(ε)

∆ is low in this situation. This suggests that one can
accurately reproduce the conditional distribution of the integrated variance, A(ε)

∆ ,
by an approximate distribution having the same mean and variance. One could
choose a Gaussian distribution for this purpose, however, a disadvantage is that in
that case large weights are assigned to the negative part of the real axis (whereas
A∆ cannot be negative). Therefore, we choose a (conditional) moment-matched log-
normally distributed random variable to approximate the conditional distribution
of A(ε)

∆ .
More precisely, we denote the conditional mean and variance of A(ε)

∆ obtained
from formula (3.15) and (3.16) by:

m = σ2
0∆
(

1 + αW2,∆ +
1
3
α2

(
2W 2

2,∆ − ∆
2

)
+

1
3
α3(W 3

2,∆ −W2,∆∆)

+
1
5
α4

(
2
3
W 4

2,∆ − 3
2
W 2

2,∆∆ + 2∆2

))
(3.17)

v =
1
3
σ4

0α
2∆3,

respectively. Then, we define a log-normal random variable, log(X) ∼ N(µ, σ),
with mean and variance m and v, respectively, i.e., E[X ] = m and Var[X ] = v.
Parameters µ and σ can be easily obtained if the values of mean and variance are
known:

µ = ln(m) − 1
2

ln
(
1 +

v

m2

)
, σ2 = ln

(
1 +

v

m2

)
.

The quality of this approximation is compared with simulation results for two time
intervals, ∆ = 1 and ∆ = 2, in Fig. 4. The shape of the density function for X is
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Fig. 4. Quality of the approximation of the conditional moment-matched log-normal density com-
pared to the true density of integrated variance, A∆. The parameters chosen are σ0 = 0.4, α = 0.5.
In the LHS plot, T = 1; in the RHS plot T = 2.

“flatter” for larger values of ∆ which reflects a higher uncertainty in the realizations
of integrated variance A∆.

As W2,∆ is normally distributed with variance ∆, it is straightforward to com-
pute the joint density of W2,∆ and A(ε)

∆ by recalling:

Pr(A∆,W2,∆) ≈ Pr(A(ε)
∆ ,W2,∆) = Pr(A(ε)

∆ |W2,∆)Pr(W2,∆).

The above formula suggests that if we first draw normal random numbers,W2,∆, and
then sample the integrated variance from the conditional distribution, A∆ given one
realization of W2,∆, the joint realization of A∆ and W2,∆ reconstructs the desired
joint density.

3.5. Discretization scheme for a full SABR model

We combine the two components described above and arrive at the low-bias scheme
for the SABR model with a correlation structure. We start from the SABR model as
in Eq. (2.1) with calibrated parameters α, β and ρ. With an initial asset price and
volatility at time 0, i.e. S0 and σ0, we simulate the discrete paths with an absorbing
boundary at zero for the next time point, ∆, as follows:

(1) Draw samples from a normal distribution, W2,∆ ∼ N(0,
√

∆), The volatility at
time step ∆ reads:

σ∆ = σ0 exp
(
αW2,∆ − 1

2
α2∆

)
.
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(2) Compute the asymptotic conditional mean, m, and variance, v, for the inte-
grated variance, A(ε)

∆ , by

m = σ2
0∆
(

1 + αW2,∆ +
1
3
α2

(
2W 2

2,∆ − ∆
2

)
+

1
3
α3(W 3

2,∆ −W2,∆∆)

+
1
5
α4

(
2
3
W 4

2,∆ − 3
2
W 2

2,∆∆ + 2∆2

))
,

v =
1
3
σ4

0α
2∆3.

(3) Compute the parameters of the moment-matched log-normal distribution by

µ = ln(m) − 1
2

ln
(
1 +

v

m2

)
, σ2 = ln

(
1 +

v

m2

)
.

(4) Draw (a vector of) uniform random numbers, U1, and determine their inverse
according to the log-normal distribution (defined by µ and σ):

A∆ = exp(σ ·N−1(U1) + µ).

(5) Insert A∆ and σ∆ in the algorithm described in Sec. 3.3.1 to sample the condi-
tional CEV process.

4. Numerical Experiments

To analyze the validity and efficiency of our discretization schemes numerically, we
price some European options based on the parameter sets in Table 3.

The first two test cases represent two limiting cases for the SABR model, i.e.
β = 1 and α = 0, respectively. Our aim is here to check the efficiency of two
components of the scheme proposed, i.e. the moment-matched log-normal integrated
variance sampling scheme and the direct inversion scheme for the conditional CEV
process. In Case I, β = 1, the asset price follows a basic geometric Brownian motion
and there is no complication with the absorbing boundary at zero. The main pricing
bias will then be from the moment-matching algorithm to sample the integrated
variance. In Case II, we set α = 0, so that we isolate the part which is related to
the simulation of the CEV process. In this second test, we give special attention to
the martingale property of the simulated path.

Table 3. Parameters in Test Cases I to
IV for the numerical experiments.

Set I Set II Set III Set IV

S0 4% 4% 0.5% 7%
σ0 20% 20% 20% 40%
α 0.3 0 0.3 0.8
β 1 0.4 0.5 0.5
ρ −0.5 0 −0.3 −0.6
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For Test Case I, we use the option prices generated by a small time step Euler
Monte Carlo simulation as reference prices, whereas for Test Case II we use an
analytic option pricing formula, derived by Schroder [30], as the reference.

Next to these two tests, we also consider two practically relevant, yet challenging,
parameter sets, i.e. Cases III and IV, with parameters often observed in fixed income
instrument pricing. Parameter set III is representative for a low interest rate market,
as observed for example in Japan. This parameter set is often embedded in the
popular power-reverse dual contract. In this set, the impact of the behavior at the
zero boundary on the price should be clearly visible. Parameter set IV then describes
volatile market conditions as a high volatility-of-volatility parameter gives rise to a
heavy tailed distribution of the asset prices.

The benchmark Monte Carlo scheme, for the low-bias scheme proposed here, is
the Full Truncation Euler scheme from [24]. All Monte Carlo simulations have been
performed simulating 105 paths.

4.1. Results for Test Case I

As in a double log-normal model (i.e. β = 1) St = 0 cannot be reached, the
Euler scheme performs well. It is also reasonable to expect that the Euler Monte
Carlo scheme with a sufficiently large number of time steps is stable and converges
to the correct solution. Here, we perform two tests, with T = 5 and T = 10,
respectively.

Table 4 shows that the conditional moment-matched integrated variance sam-
pling scheme produces a very small bias for a practical number of time steps, like
2 or 4 time steps per year. The accuracy of the low-bias scheme is comparable to
that of an Euler scheme with 50 times more time steps. To illustrate the accuracy
of the conditional moment-matching scheme, we present the implied option volatil-
ities from the moment-matching scheme with 4 time steps a year together with
the 200 time steps Euler scheme and Hagan’s asymptotic formula in Fig. 5. In the
two figures, we observe that the difference between the implied volatilities from the

Table 4. Results of the low-bias SABR scheme with β = 1, Test Case I.

K ∆ 40% 80% 100% 120% 160% 200%

T = 5
Euler 1/200 0.02077 0.00889 0.00512 0.00279 0.00083 0.00029
low-bias 1/2 0.02079 0.00887 0.00510 0.00277 0.00082 0.00029

1/4 0.02076 0.00890 0.00512 0.00279 0.00082 0.00029
Hagan 0.02083 0.00894 0.00514 0.00279 0.00082 0.00030

T = 10

Euler 1/200 0.02198 0.01124 0.00758 0.00503 0.00234 0.00125
low-bias 1/2 0.02196 0.01122 0.00756 0.00502 0.00233 0.00124

1/4 0.02198 0.01124 0.00758 0.00504 0.00235 0.00126
Hagan 0.02230 0.01154 0.00781 0.00521 0.00248 0.00139
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Fig. 5. Result of the conditional moment-matching log-normal sampling scheme for the integrated
variance, simulating 5 and 10 years call option prices under a double log-normal model. A com-
parison is made with the truncated Euler Monte Carlo scheme, and Hagan’s asymptotic SABR
formula. Parameters used are α = 0.3, ρ = −0.5, S0 = 0.04, σ0 = 0.2.

200 time steps Euler scheme and the low-bias SABR scheme with 4 time steps is
negligible, whereas Hagan’s asymptotic formula produces a visible pricing error for
the 5 year maturity and is inexact for the 10 years maturity.

4.2. Results for Test Case II

With α = 0, the stochastic volatility part vanishes and the system reduces to a plain
CEV model. An option pricing formula for the CEV model is known then in closed
form [30]. More recently, Lesniewski [22] provided a classification (and an explicit
option pricing formula) for the CEV process with absorbing and with reflecting
boundaries. Hence, we have an analytic reference value so that we can determine
the accuracy of our discretization scheme and the price impact of the assumptions
related to the boundary condition at zero. In this subsection, we also examine the
martingale property of the discrete process in the algorithm proposed here.

In detail, we have implemented an Euler scheme with full truncation at zero,
i.e. Ŝ∆ = max(Ŝ∆, 0), the direct inversion scheme for the CEV process, but with
a reflecting boundary, as well as our proposed low-bias scheme. We present the
implied volatilities obtained by these numerical schemes and compare them to the
exact CEV option pricing formula with absorbing boundaries in [22], in Fig. 6. We
also include Hagan’s asymptotic formula in the comparison by choosing a very small
volatility-of-volatility parameter and a small correlation coefficient,3 i.e. α = 0.0001
and ρ = 0.0001. In all experiments the Euler scheme consists of 50 times more time
steps than the low-bias SABR scheme.

3This makes sense because the CEV model is a special case of the SABR model with a zero
volatility-of-volatility parameter.
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Fig. 6. Comparison for the CEV process of the implied volatilities generated by different methods;
Maturities are 2 and 10 years, and parameters α = 0.0, S0 = 0.04, σ0 = 0.2 and β = 0.4.

From Fig. 6, we see that:

• The low-bias scheme has a low bias for all strikes and maturities. In most of the
cases the implied volatilities obtained by the low-bias scheme are highly accurate
when compared to the exact solution. The low-bias scheme is essentially free of
bias with merely four time steps a year, whereas the Full Truncation Euler scheme
requires more than 200 time steps to converge.

• The results from the low-bias scheme with the reflecting boundary agree very
well with the exact solution and with our proposed low-bias scheme for strikes
that are far away from zero. For small strike values there is a substantial miss-
pricing by the direct inversion scheme with reflecting boundary and its pricing
bias increases with maturity.

• Hagan’s formula is not an accurate approximation for the CEV model in the
parameter range of small β (i.e. β ≤ 0.5).

• The small time step Full Truncation Euler scheme performs reasonably well for
all maturities, in particular for short maturities. However, we observe an upward
shift in the implied volatility curve (the shift is larger for long maturities). This
upward “bias” is the result of the truncation and can not be removed completely,
not even by smaller time steps ∆.

• The pricing biases from the Full Truncation Euler scheme as well as from the
direct inversion scheme with reflecting boundary are most significant for small
values of the strike.

We focus on the martingale property of the discretized processes generated by
the different simulation schemes. In Table 5 we see that the direct inversion scheme
with reflecting boundary gives rise to a positive drift which decreases with smaller
time steps. In contrast, the proposed low-bias SABR scheme does not generate any
statistically significant drift, and the martingale property is preserved. The Euler
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Table 5. Test Case II. Test of martingale properties of several
discretization schemes for a pure CEV process with initial asset
price at 4%, i.e. S0 = 0.04. The numbers shown in the table are
1
N

PN
i=1 ŜT , with ŜT generated by different discretization schemes.

The Full Truncation Euler schemes considered are implemented
with 50 times more time steps than the low-bias scheme.

∆ Low-Bias (%) Truncated Euler (%) Reflecting (%)

T = 5
1/2 4 4.05 4.39
1/4 4 4.06 4.22
1/8 4 4.07 4.13
1/16 4 4.04 4.07

T = 10
1/2 4.01 4.09 4.47
1/4 3.99 4.05 4.25
1/8 4 4.02 4.16

T = 15
1/2 3.99 4.06 4.47
1/4 4.01 4.04 4.31
1/8 4 3.99 4.15

scheme with Full Truncation does not preserve the martingale property, although
the drift decreases (but does not disappear) with smaller time step ∆.

To show the order of convergence of the low-bias SABR scheme, we compute the
root-mean-squared (RMS) errors of at-the-money (ATM) option prices obtained by
the Euler and the low-bias SABR scheme for different numbers of time steps, see
Fig. 7. The convergence behavior of the low-bias scheme appears to be superior
(which is also the case for other strike values, not shown).
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Fig. 7. Test Case II; Convergence of the estimated RMS error for call options with decreasing time
step ∆.
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4.3. Results for Cases III and IV

For Test Cases III and IV, we consider the full correlation SABR model and some
practical yet challenging parameter settings, like rates almost zero or high volatility-
of-volatility parameter.

Due to the absence of reference values (by a semi-closed form solution or an
accurate approximation), we make use of the following result to determine the
convergence order of our algorithm:

Result 4.1 (Weak Convergence Order without an Exact Solution [29]).

(1) If a discrete approximation X̂ to a continuous process X with time step ∆ has
a weak convergence order γ for some positive constant K1, i.e.:

|E[g(X(T ))] − E[g(X̂(T,∆))]| ≤ K1∆γ (4.1)

Then, there exists a positive constant, K2, such that:∣∣∣∣E[g(X̂(T,∆))] − E

[
g

(
X̂

(
T,

∆
2

))]∣∣∣∣ ≤ K2∆γ . (4.2)

(2) Conversely, if it is known that the discretization is weakly convergent and
Eq. (4.2) holds for some positive constant K2, then the weak convergence order
is γ. The proof can be found in Schmitz-Abe and Shaw [29].

Parameter set III is particularly challenging for the Euler discretization scheme
and for Hagan’s SABR formula, because the initial rates are close to zero. It is
known that when initial asset prices are close to zero, many paths may reach neg-
ative values. The Full Truncation Euler scheme will project the negative values to
zero. The drawback is that the truncated Gaussian process is not a martingale any-
more, and an increasing number of time steps has to be employed to reduce the
resulting bias. On the other hand, the asymptotic SABR formula by Hagan is not
valid for strikes K → 0. The formula is a result of keeping log(f/K) constant and
taking T → 0. However, when K → 0, it follows that log(f/K) → ∞, which is an
incorrect way of approaching the asymptotic limit. As a result, Hagan’s formula is
not accurate for very low strike prices.

In the low-bias SABR scheme, option pricing at low strike values does not pose
any problem. We apply Formula (4.2) to the Monte Carlo prices of the ATM options
and define the relative error to be

ε =
∣∣∣∣Ĉ(Ŝ(T,∆)) − Ĉ

(
Ŝ(T,

∆
2

)
)∣∣∣∣ .

Here, Ĉ denotes the Monte Carlo estimate of the call option price for underlying
discrete process Ŝ. Clearly, the low-bias scheme produces convergent Monte Carlo
prices (see Figs. 8 and 9) and smaller errors than the truncated Euler scheme.
Again, the relative error of the low-bias scheme with only 4 time steps per year is
comparable to that of the Euler scheme with more than 32 time steps per year.

For Test Case IV the resulting call option prices are presented in Table 6.
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Fig. 8. Convergence of relative errors; Test Case III; left: error versus time step size, right: same
picture in log-log scale.
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Fig. 9. Convergence of relative errors, T = 5; Test Case IV; error versus time step size, right: same
picture in log-log scale.

4.4. Computational time

From the numerical results presented above, the accuracy of the low-bias scheme
has been confirmed. In addition, the CPU time to compute one sample path is of
great importance for practical application. The CPU time required for the low-bias
scheme is largely dependent on the value of parameter β. Computations are faster for
β ≈ 1 and somewhat slower for β ≈ 0. This is due to the space transform employed
in the derivation of the low-bias SABR scheme, Y = S2−2β/(1 − β)2. With β ≈ 1,
Y tends to infinity and the distribution approaches a Gaussian distribution. Most
of the sample paths will then be drawn from the “cheap to evaluate” quadratic
Gaussian approximation. On the contrary, when β ≈ 0, most of the draws will be
from the direct inversion scheme, which takes more CPU time.
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Table 6. Estimated call option prices for Test Case IV.

∆ K = 40(%) K = 100(%) K = 160(%)

Low-Bias Euler Low-Bias Euler Low-Bias Euler

T = 2
1 0.0803 0.0922 0.0645 0.0714 0.0510 0.0538
1/2 0.0688 0.0838 0.0535 0.0649 0.0405 0.0489
1/4 0.0642 0.0771 0.0492 0.0596 0.0366 0.0449
1/8 0.0619 0.0708 0.0474 0.0546 0.0352 0.0409

1/16 0.0610 0.0673 0.0468 0.0518 0.0347 0.0388
1/32 0.0604 0.0643 0.0463 0.0494 0.0343 0.0368

T = 5
1 0.0795 0.1074 0.0672 0.0895 0.0564 0.0735

1/2 0.0693 0.0928 0.0576 0.0767 0.0454 0.0624
1/4 0.0667 0.0827 0.0540 0.0680 0.0429 0.0550
1/8 0.0643 0.0759 0.0523 0.0621 0.0412 0.0499
1/16 0.0632 0.0702 0.0512 0.0572 0.0406 0.0457
1/32 0.0625 0.0674 0.0506 0.0548 0.0400 0.0437

T = 10
1 0.0765 0.1133 0.0665 0.0966 0.0575 0.0815
1/2 0.0678 0.0975 0.0566 0.0823 0.0466 0.0687
1/4 0.0669 0.0850 0.0550 0.0713 0.0451 0.0591
1/8 0.0652 0.0774 0.0537 0.0645 0.0434 0.0530
1/16 0.0635 0.0705 0.0523 0.0584 0.0422 0.0476
1/32 0.0630 0.0678 0.0520 0.0561 0.0421 0.0456

Table 7. Computational time (in seconds) for a 1 year
option with parameters given in Test Case III and IV.

∆ 1
2

1
4

1
8

1
16

1
32

Test Case III
Low-bias 8.59 10.97 13.75 23.61 40.48
Euler FT 0.26 0.43 0.83 1.59 3.17

Test Case IV
Low-bias 4.75 7.38 12.61 23.06 42.13
Euler FT 0.26 0.43 0.83 1.59 3.17

Table 7 presents CPU times for the Full Truncation Euler and the low-bias
schemes used in Cases III and IV for a small number of time steps.

For Test Case III, we now analyze the martingale property, E[ŜT ] = Ŝ0, of
the discrete process to analyze the accuracy (or bias) of the low-bias scheme. For
comparison, we also simulate with the Full Truncation Euler scheme with the same
number of time steps (see Fig. 10).

The results in Fig. 10 indicate that the low-bias scheme with the absorbing
boundary generates a very small bias, which rapidly disappears with a larger number
of time steps. For the truncated Euler scheme the martingale bias decreases slowly
in the number of time steps and the bias disappears after using 512 steps per year.
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Fig. 10. Comparison of martingale biases of the low-bias scheme and the truncated Euler scheme
for a simulation up to one year in Test Case III. The E[ŜT ] curves are the discrete approxima-
tions of 1

N

PN
i=1 ŜT , with ŜT generated by different discretization schemes. The computational

time of the truncated Euler scheme is plotted against the number of time steps in the secondary
y-axis.

In Case III, due to the size of the β parameter, the computational time per
step of the low-bias scheme is approximately 10 times that of the Euler scheme.
The truncated Euler scheme suffers however from a non-negligible martingale (first
moment) bias, even with 256 time steps per year (see Fig. 10). In contrast, the
low-bias scheme is almost free of bias with 2 steps per year. With 4 time steps
per year, the low-bias scheme requires approximately 10 seconds per year, whereas
50.34 seconds are used by the truncated Euler scheme with 512 time steps.

Case IV is challenging because a relatively small β-value is combined with a large
α-parameter (α = 80%). The low-bias scheme uses on average more than 10 times
the computational effort per time step compared to the truncated Euler scheme in
this case. Despite this, we argue that it is preferable to choose the low-bias scheme
also for this parameter set because the truncated Euler scheme tends to be highly
biased4 and this bias is still significant for 2048 time steps per year (see Fig. 11),
costing more than 200 seconds computational time per year. The low-bias scheme
is then clearly more efficient to reach the same level of accuracy.

4The probability of hitting zero is very high, so that a large number of truncations of the negative
paths is expected.
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Fig. 11. Comparison of martingale bias of the low-bias scheme and the truncated Euler scheme
for a simulation up to one year in Test Case IV. The computational time of the truncated Euler
scheme is plotted against the number of time steps in the secondary y-axis.

5. Conclusion

In this paper we have presented a low-bias SABR simulation scheme. We firstly
reviewed some analytic properties of the CEV process, which is a space transformed
squared Bessel process, and discussed the classification of boundary conditions and
the associated probability density and distribution functions. As the conditional
SABR process, given the terminal volatility level and the integrated variance, is
also a squared Bessel process, we can find an explicit distribution function for the
conditional SABR process.

Based on the idea of mixing conditional distributions and a direct inversion of
the noncentral chi-square distributions, we have proposed a low-bias SABR Monte
Carlo scheme. The scheme proposed can deal with the — often problematic —
behavior of the CEV process in the vicinity of the zero boundary. The low-bias
scheme is stable and exhibits a highly satisfactory convergence behavior compared
to the truncated Euler scheme. The scheme is an alternative when a truncated Euler
scheme gives rise to significant bias, even with a very large number of time steps,
which is the case, for example, when S0 ≈ 0 or when the skewness parameter, β, is
less than 1

2 .
A multi-dimensional extension of the present scheme is an interesting topic of

future research.
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