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This paper considers the problem of pricing options with early-exercise features whose pay-off depends
on several sources of uncertainty. We propose a stochastic grid method for estimating the optimal exercise
policy and use this policy to obtain a low-biased estimator for high-dimensional Bermudan options. The
method has elements of the least-squares method (LSM) of Longstaff and Schwartz [Valuing American
options by simulation: A simple least-squares approach, Rev. Finan. Stud. 3 (2001), pp. 113–147], the
stochastic mesh method of Broadie and Glasserman [A stochastic mesh method for pricing high-dimensional
American option, J. Comput. Finance 7 (2004), pp. 35–72], and stratified state aggregation along the pay-off
method of Barraquand and Martineau [Numerical valuation of high-dimensional multivariate American
securities, J. Financ. Quant. Anal. 30 (1995), pp. 383–405], with certain distinct advantages over the
existing methods. We focus on the numerical results for high-dimensional problems such as max option
and arithmetic basket option on several assets, with basic error analysis for a general one-dimensional
problem.

Keywords: American options; high dimensional; Monte Carlo; Gram Charlier; stochastic grid method;
regression; stochastic mesh method; least squares method (LSM); Bermudan options

2000 AMS Subject Classifications: 65C05; 65C30; 62P05; 91B28; 60G40

1. Introduction

Pricing of Bermudan options1 especially for multi-dimensional processes is a challenging problem
owing to its path-dependent settings. The traditional valuation methods, such as lattice and tree-
based techniques are often impractical in such cases due to the curse of dimensionality and hence
are used only in the low-dimensional cases. In the recent years, many simulation-based algorithms
have been proposed for pricing Bermudan options, most of which use a combination of Monte
Carlo simulations and dynamic programming to estimate the option price.

Monte Carlo simulations for pricing options became popular after the pioneering works of
Boyle [8], Bossaerts [7] and Tilley [30]. Regression-based approaches for pricing Bermudan
options have been proposed by Carriere [16], Tsitsiklis and Van Roy [31] and Longstaff and
Schwartz [25]. The Longstaff and Schwartz least-squares method (LSM) computes the option
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price by first determining the optimal exercise policy for a set of simulated paths and then finds
the expected value of the discounted pay-off obtained by following this exercise policy. The option
price obtained is the lower bound on the true option price, as the exercise policy obtained would
either be inferior or equal to the optimal exercise policy. Eglof [18] and Zanger [32] analyse the
convergence of the LSM. Belomestny et al. [4] compare local regression estimators which are
popular for computing Greeks with global regression estimators, which is a generalization of the
methods of Tsitsiklis and Van Roy [31] and Longstaff and Schwartz [25]. They also present an
algorithm where instead of regressing continuation functions, the control and stopping times are
backwardly constructed on a set of simulated trajectories.

Ibanez and Zapatero [21] compute at each exercise opportunity the fixed points of the optimal
exercise frontier and obtain the parametric form of this frontier by regressing on quadratic or
cubic function. They use the frontier obtained with plain vanilla Monte Carlo simulation to obtain
a low-biased estimator of the true price.

Duality-based approaches for Bermudan option pricing are proposed by Haugh and Kogan [20]
and Rogers [29] which can be used to construct an upper bound on the option value. Andersen
and Broadie [1] improved the practical implementation of duality-based methods by propos-
ing a simulation algorithm for obtaining the upper bounds from any given exercise policy. The
duality-based algorithms work by first computing the lower bounds using some exercise policy (a
sub-optimal policy) and then adding a non-negative quantity that penalizes potentially incorrect
exercise decisions made by the sub-optimal policy.

The stochastic mesh method (SMM) of Broadie and Glasserman [14] approximates the option
values using a dynamic programming-style backward recursion for approximating the price and
optimal exercise policy. The continuation value at each mesh point is computed as the weighted
sum of option values attained due to all possible transitions to mesh points in the next time step. In
the original mesh method, the weights were computed from the transition density of the underlying
process. In an improvement to the original stochastic mesh method, Broadie et al. [15] avoid the
use of the transition density of the underlying process of asset prices and other state variables
by choosing mesh weights through optimization of a convex objective function subject to known
conditional expectations.

In an important attempt to circumvent the curse of dimensionality problem associated with
pricing of multi-dimensional Bermudan options, Barraquand and Martineau [3] introduce the
state aggregation technique, in which they partition the space of underlying assets (state space)
into a tractable number of cells, and compute an approximate early-exercise strategy that is
constant over those cells. They limit their search to strategies that depend upon a stratification
map (a real-valued function mapping the state) rather than upon the entire state itself. Particularly
in the case of Bermudan options, they use the pay-off as stratification map, and call this technique
as stratified state aggregation along the pay-off (SSAP). Boyle et al. [10] draw attention to some
drawbacks of using SSAP.

Berridge and Schumacher [6] introduced a hybrid method to price high-dimensional American
options by first performing a discretization of the state space using quasi-Monte Carlo (QMC)
points and then finding the approximation to the partial differential operator on this grid which is
used to formulate linear complementarity problems at successive time points, working backwards
from the option expiry.

The stochastic grid method (SGM) follows the dynamic programming style of SMM, by
recursively computing the option price, moving backwards in time. The functional approxi-
mation, obtained using regression, of the option price at a given time step is used to compute
the option price at the previous time step. The dimensionality of the problem is recursively
reduced using the pay-off as a mapping function. Although numerical results are given for the
high-dimensional problems, we show that error for SGM is bounded only for a one-dimensional
problem.
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1188 S. Jain and C.W. Oosterlee

The SGM has certain advantages over the existing methods. The LSM, although computation-
ally fast and simple to implement, uses a large number of paths to obtain a good exercise policy.
Also the number of basis functions required for regression grows almost exponentially with the
dimensions of the problem. SGM on the other hand can be used to obtain a good exercise pol-
icy using far fewer paths. The number of basis functions used in the SGM is independent of the
dimensions of the problem. SGM uses sub-simulation when moments required to approximate the
transition density function are unavailable, which can make the method computationally expen-
sive. SGM does not suffer from the limitations, pointed out by Boyle et al. [10], of the SSAP
method of Barraquand and Martineau, making it an efficient algorithm for handling options with
a large number of underlying assets.

The paper is organized as follows, Section 2 is devoted to the description of the SGM. In
Section 3, we present a basic error analysis for a one-dimensional problem and discuss some
of the results for the single asset case. In Section 4, we discuss and compare the results for
high-dimensional problems with the other available models. In Section 5 we conclude, make
observations about some existing open problems and directions in which the future research
efforts can be made.

2. The method of stochastic grid

The SGM solves a general optimal stopping problem using a hybrid of dynamic programming
and Monte Carlo methods. The method first computes the optimal exercise policy and a direct
estimator of the true option price. The lower bound values are computed by discounting the pay-off
obtained by following this exercise policy. We describe in detail how these bounds are obtained
in the sections to follow.

2.1 Problem formulation

We assume complete probability space (�, F , P) and finite time horizon [0, T ]. � is the set of
all possible realizations of the stochastic economy between 0 and T . FT is the sigma field of
distinguishable events at time T , and P is the risk-neutral probability measure on elements of F .
The information structure in this economy is represented by an augmented filtration Ft : t ∈ [0, T ].
We assume that Ft is generated by Wt , a d-dimensional standard Brownian motion, and the state
of economy is represented by an Ft-adapted Markovian process St = (S1

t , . . . , Sd
t ) ∈ Rd , where

t ∈ [t0 = 0, . . . , ti, . . . , tk = T ]. Let ht = h(St) be a non-negative adapted process representing the
pay-off of the option, i.e. the holder of the option receives ht if the option is exercised at time t. Let
the risk-less savings account process be Bt = exp(

∫ t
0 rs ds), where rt denotes the instantaneous

risk-free rate of return. We consider the special case where rt is constant. The problem is then to
compute

V0 = max
τ

E

[
h(Sτ )

Bτ

]
, (1)

where τ is a stopping time taking values in the finite set {0, t1, . . . , tk = T}. The value of the option
at the terminal time T is equal to the products pay-off

V(T , x) = h(x). (2)

The conditional continuation value Q(ti, Sti = x), i.e. the expected future pay-off at time ti and
state Sti = x is given by

Q(ti, Sti = x) = Bti

Bti+1

E[V(ti+1, Sti+1)|Sti = x]. (3)
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International Journal of Computer Mathematics 1189

Figure 1. Grid points (30,000 × 30,000), figure (a) at t, figure (b) at s where t < s < T .

The Bermudan option value at time ti and state Sti = x is given by

V(ti, Sti) = max(h(Sti), Q(ti, Sti)). (4)

We are interested in finding the value of the option at the initial state S0, i.e. V(0, S0).

2.2 Method details of the SGM

We use a (Markovian) discretization scheme which is easy to simulate, e.g. the Euler scheme, to
generate N sample paths originating from the initial state S0. When the diffusion process appears in
a closed form, such as the case of the commonly used multi-dimensional Black and Scholes model,
we can generate the sample paths directly. The stochastic grid points (ti, Sti) can be interpreted as
the intersections of the sample paths with a plane representing different intermediate time steps
ti. Figure 1 shows the grid points for an option with two underlying assets Sti = (S1, S2) starting
from the initial state St0 = (100, 100) at two different time intervals t and s, where t is close to the
initial time and s is closer to the final exercise time T . The number of grid points in the vicinity
of the initial state St0 = (100, 100), the point for which we are interested to find the option value,
increases as we approach t0, providing a natural refinement around the point of interest. This
method of grid generation is closely related to the binomial tree approach, where only grid points
associated with the initial state are generated.

This is the most basic method for generating grids to be used in SGM. It is possible to use a
more advanced spatial discretization method like the quantization tree method of Bally et al. [2],
where rather than settling the grids a priori, at each time step a grid �∗

k of size Nk is generated,
which optimally fits to a large simulated sample of Stk among all grids with size Nk such that the
closest neighbour rule projection of Stk onto the grid �∗

k is the best least-squares approximation
of Stk .

The value of the option at the expiration time tk = T will be equal to its pay-off given
by h(ST ). We restrict our attention to financial derivatives with pay-off that are element of
the space of square integrable or finite variance functions. Examples of pay-off functions on
multiple assets include, for a basket call option, h(St) = (a1S1

t + · · · + anSn
t − K)+, for an

out-performance option h(St) = (max(a1S1
t , . . . , anSn

t ) − K)+, where the notation x+ is short
for max(x, 0).

2.3 Computing the optimal exercise policy

The main obstacle in pricing Bermudan options using Monte Carlo methods is the fact that we
do not know the optimal exercise policy. SGM computes the continuation value at each grid
point, starting from the grid points at the expiration time tk = T and moving backwards in time.
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1190 S. Jain and C.W. Oosterlee

The option is exercised if the immediate pay-off is greater than the discounted continuation
value.

The grid estimator is defined recursively starting with V̂(T , ST ) = h(ST ), and for i = k −
1, . . . , 1, by

V̂(ti, Sti = x) = max

(
h(Sti = x),

Bti

Bti+1

E[Ẑ(ti+1, g(Sti+1 |Sti = x))|Sti = x]
)

, (5)

where

Ẑ(ti+1, g(Sti+1 |Sti = x)) = E[V̂(ti+1, Sti+1)|g(Sti+1 |Sti = x)]. (6)

Mapping function g(·) maps the high-dimensional Sti+1 -space to a low-dimensional g(Sti+1)-
space. We use g(Sti+1 |Sti = x) to denote that mapping g(·) is applied to all grid points Sti+1 which
are generated from source Sti = x. E[Ẑ(ti+1, g(Sti+1 |Sti))|Sti ] represents the continuation value for
the grid point Sti . Using iterated conditioning we can show,

E[V̂(ti+1, Sti+1)|Sti = x] = E[E[V̂(ti+1, Sti+1)|g(Sti+1 |Sti = x)]|Sti = x]
= E[Ẑ(ti+1, g(Sti+1 |Sti = x))|Sti = x]. (7)

In the sections to follow we discuss how to approximate Ẑ(ti+1, g(Sti+1 |Sti)) and the choice of
the mapping function g(·). Once we have the functional approximation, Ẑ(ti+1, g(Sti+1 |Sti)), we
can use it to compute the discounted continuation value at the grid points for ti and thus make
the optimal exercise decision, i.e. exercise if the discounted continuation value is less than the
immediate pay-off.

2.4 Parametrization of the option values

The continuation value at time ti and state Sti = x, i.e. Q(ti, Sti = x) can be computed from
Equation (3). Instead of using the direct functional approximation of the option price at ti+1,
i.e. V̂(ti+1, Sti+1), we use the law of iterated conditioning, i.e. E[E[X|G]|H] = E[X|H], where H
is the sub- σ algebra of G, to compute the continuation value. Then the continuation value can be
written as (7).

In order to compute Q(ti, Sti = x) , from Equation (7) we need to know the functional form of
Ẑ(ti+1, g(Sti+1 |Sti)). At the expiration time, the option value is given by Equation (2).

In the examples to follow, the form of solution is simplified if we write the pay-off function in
the following form:

h(St) = max(g(St) + X, 0), (8)

with g : [0, T ] × Rd → R explained before. In the case of a simple call on a single asset
with strike K , g(St) = St and X = −K , for a put on the maximum of d assets and strike K ,
g(S1

t , . . . , Sd
t ) = − max(S1

t , . . . , Sd
t ) and X = K . It should be noted however that this form of

writing the pay-off function is not restrictive for SGM but is used as it simplifies the form of the
solution.

We assume that the unknown functional form of Ẑ(ti+1, g(Sti+1 |Sti = x)) can be represented by
a linear combination of a countable set of Fti+1 -measurable basis functions, where Fti+1 is the
information set at time ti+1.

Similar to the regression-based algorithms [25,31] SGM approximates the unknown functional
form of E[V̂(ti+1, Sti+1)|g(Sti+1 |Sti = x)] by projecting it on the first M(< ∞) polynomial basis
functions.
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International Journal of Computer Mathematics 1191

Remark 1 In the examples we approximate the function Ẑ(ti+1, g(Sti+1 |Sti)) by Ẑ(ti+1, g(Sti+1 |
St0)), as all the grid points at ti+1 generated from source St0 are used in the regression. The
exercise policy obtained is still accurate as shown by the numerical results (lower bound values).
To simplify the notations, we will be referring to g(Sti+1 |St0) by g(Sti+1) from here on. An improved
approximation will be based on a more sophisticated regression scheme, where grid points at ti
are bundled based on proximity, and only those grid points at ti+1 are used for regression to
approximate Ẑ(ti+1, g(Sti+1 |Sti)) that originate from the bundle containing Sti .

When we approximate Ẑ(ti+1, g(Sti+1 |Sti)) by Ẑ(ti+1, g(Sti+1 |St0)), an accurate early-exercise
policy is obtained when g(·) is of the form given by Equation (8). However, also other choices
of g(·) can be made. For other choices, it becomes important that the grid points are bundled
based on some nearest neighbour rules to get an accurate exercise policy. In the special case when
g(·) is chosen to be constant, SGM with bundling would very closely resemble the state space
partitioning method by Jin et al. [22].

We denote this approximation by ZM(ti+1, g(Sti+1 |St0)) or ZM(ti+1, g(Sti+1)). We approximate
Equation (6) over a set of M polynomial basis functions, as

ZM(ti+1, g(Sti+1)) = E[V̂(ti+1, Sti+1)|g(Sti+1)] =
M−1∑
m=0

am�m(g(Sti+1)), (9)

such that at each time step

r = min
am

N∑
1

|ZM(ti+1, g(Sti+1)) − V(ti+1, Sti+1)|2, (10)

where {�(·)}M−1
m=0 form a set of basis functions and r is the sum of squared residual errors.

This approximation can be justified if we assume that V(ti, Sti) is an element of the L2 space
of square integrable functions relative to some measure and therefore can be written as the linear
combination of basis functions. Rather than regressing over entire g(Sti+1)-space, a better accuracy
is obtained by piecewise regression, as explained in Section 3 and the specific examples to follow.

2.4.1 Mapping high-dimensional state to single-dimensional g(·)-space

In an approach similar to Barraquand and Martineau’s SSAP method [3], we reduce the dimensions
of the problem by using g(Sti+1) rather than the cross-products of the underlying states (as in LSM)
for regression.

Figure 2 shows in a schematic diagram how dimension reduction works in SGM. In order
to compute the continuation value at Sti directly, a high-dimensional transition density func-
tion would be required, as shown in Figure 2(a). In SGM, however, we first project the option
value at ti+1 over the g(Sti+1)-space, see Figure 2(b). In other words, we compute the conditional
expectation, E[V(ti+1, Sti+1)|g(Sti+1)], using the least-squares regression. The continuation value
is then computed using the tower property as explained in Equation (7), which involves a one-
dimensional transition density function. When we use all the grid points at ti+1 for regression, we
compute E[V̂(ti+1, Sti+1)|g(Sti+1), St0 ], instead of E[V̂(ti+1, Sti+1)|g(Sti+1), Sti ]. A better approxima-
tion is obtained by bundling the grid points at ti based on proximity and using only those grid
points at ti+1 that originate from the bundle containing Sti for regression. However, in the present
paper we find that in the case that all the grid points at ti are in a single bundle, we still obtain a
very satisfactory exercise policy (as is reflected in the lower bounds), when the mapping function
g(·)- is of the form of the pay-off function. We report on these latter results for higher-dimensional
problems in the numerical section.
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1192 S. Jain and C.W. Oosterlee

(a) (b)

Figure 2. Schematic diagram showing how dimension reduction works in SGM. The option value at step t + 1 is given,
figure (a) shows the conventional way of computing the continuation value at S(t), based on P(St+1|St); figure (b) shows
how the continuation value is computed in SGM by means of projection E[V |g(St+1)] onto g(·) and P(g(St+1)|St).

Boyle et al. [10] and Broadie and Detemple [12] show that the pay-off value is not a sufficient
statistic for determining the optimal exercise decision for options on the maximum of several
assets for SSAP. This argument, however, is specific to the SSAP and would not apply to SGM.
In the SSAP method, the state space is first mapped to the partitions (cells) along the pay-off
space h(St) and then the same exercise decision is applied for all underlying states that fall into a
particular cell or partition. This results in seemingly far off state points (like (100,90), (100,100)
and (100,50)) to have the same exercise decision. In SGM first the exercise decision is made for
each underlying state Sti (or grid point) at time step ti and then the state space is reduced to g(Sti).

In order to give a better intuition about our method and allay the concerns raised by Boyle
et al. [10], we use the same example given by them. Figures 3–6 show the evolution of two
asset prices St = (S1

t , S2
t ) with two exercise time steps. The option pay-off, h(St = (S1

t , S2
t )) =

g(S1
t , S2

t ) = max(S1
t , S2

t ) and for convenience the risk-free interest rate is taken to be zero. The
steps followed at each time step starting from the final expiration time t2 are

• Step 1: Compute the continuation value at each state point.
• Step 2: Make the exercise decision, based on the greater of immediate exercise h(St = x) or

continuation value Q(t, St = x).
• Step 3: Regress the option value obtained over g(S1

t , S2
t ) = max(S1

t , S2
t ) to be used in the previous

exercise time step (as we move backwards in time) to compute the continuation value.
• Step 4: In the previous exercise time step, compute the transition probability from each state

point to the g(·)-space in the next time step, i.e. P(g(Sti+1)|Sti = x).
• Step 5: Compute the continuation value Q̂(ti, Sti) and the option value V̂(ti, Sti) using

Equation (5).

Focusing on the example, Figure 3 shows that at time t2 the option values V(t2, St2 = (14, 2)) and
V(t2, St2 = (2, 14)) are 14 and V(t2, St2 = (4, 2)) is 4. On regressing these values over max(S1

t , S2
t )

we obtain Ẑ(t2, g(St2) = 14) = 14 and Ẑ(t2, g(St2) = 4) = 4, as shown in Figure 4. Moving to
exercise time step t1 we first compute the transition probability for each state point (grid point)
at t1 to the g(·)-space in t2. In the present example, the state St1 = (8, 8) transitions to g(St2) =
14 with probability 1. Similarly, the conditional transition probability for St1 = (8, 4) equals
P(g(St2) = 4|St1 = (8, 4)) = 1. Together with these conditional transition probabilities and the
approximation of the option values at t2, we compute the continuation value for the state points
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International Journal of Computer Mathematics 1193

Figure 3. Step I: compute the option values at t2 as a function of (S1, S2).

Figure 4. Step II: map the option prices to max(S1, S2).

at t1. The continuation value at St1 = (8, 8) equals 14, computed by

Q̂(t1, St1) =
∑

i

Ẑ(t2, g(St2) = i) · P(g(St2) = i|St1 = (8, 8)).

The continuation value at St1 = (8, 4) is 4, determined as

Q̂(t1, St1) =
∑

i

Ẑ(t2, g(St2) = i) · P(g(St2) = i|St1 = (8, 4)).

Figure 5 shows that the option value at St1 is the maximum of immediate exercise and con-
tinuation, i.e. max(8, 14) for St1 = (8, 8) and max(8, 4) for St1 = (8, 4). Thus, it is optimal to
exercise in state St1 = (8, 4) and to continue in the state St1 = (8, 8). On regressing these values
over max(S1, S2), we obtain V̂(t1, g(St1) = 8) is 11, as shown in Figure 6. Finally, for time step
t0 state (8, 6) evolves to g(St1) = 8 with probability 1. Therefore, the conditional continuation
value is 11, ∑

i

Ẑ(t1, g(St1) = i) · P(g(St1) = i|St0 = (8, 6)),

and the option value V̂(t0, (8, 6)) = max(8, 11), which gives the correct value.
Although this example is over simplified, it gives a basic understanding of our approach.

In Figure 7 we plot the shape of typical exercise regions εX for an Bermudan call option on
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1194 S. Jain and C.W. Oosterlee

Figure 5. Step III: compute the option values at t1 as function of (S1, S2).

Figure 6. Step IV: map the option price to max(S1, S2).

Figure 7. Exercise regions for a max-call option.

the max of two underlying assets obtained using SGM. The figures are in agreement with
those deduced by Broadie and Detemple [12]. Interestingly we can see, as was found by
Broadie et al. that prior to maturity exercise is not optimal when the prices of the underlying
assets are equal.
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2.5 Computing the continuation value

The continuation value for grid point Sti is the discounted conditional expectation of the option
values in the next time step ti+1 given Sti . This can be written as

Q(ti, Sti = x) = Bti

Bti+1

E[V(ti+1, Sti+1)|Sti = x].

As mentioned in Section 2.4, we first approximate the conditional expectation of the option values
at ti+1 given g(Sti+1) as a polynomial function of g(Sti+1), Equation (9). The continuation value can
then be approximated using iterated conditioning as

Q̂(ti, Sti = x) = Bti

Bti+1

E[Ẑ(ti+1, g(Sti+1))|Sti = x]. (11)

Here, Ẑ is a polynomial function of the adapted process g(Sti+1) and hence we need to determine
the conditional probability density function P(g(Sti+1)|Sti = x) in order to compute its expectation.
Using Equation (9), Equation (11) can be written as

Q̂(ti, Sti = x) = Bti

Bti+1

∫
Sti ∈Rd

(
M−1∑
m=0

am�m(g(Sti+1))

)
dP(g(Sti+1)|Sti = x). (12)

There are three possibilities for computing the distribution of g(Sti+1) given state Sti :

(1) The exact transition probability density function P(g(Sti+1)|Sti = x) is known, for example for
a call or put on a single asset in the Black–Scholes framework, a call or put on the geometric
mean of d assets.

(2) The transition probability density function P(g(Sti+1)|Sti = x) is unknown; however, the
moments of the distribution are known, for example for a call or put on the Max or Min
of d assets in the Black– Scholes framework.

(3) The transition probability density function P(g(Sti+1)|Sti = x) and its moments are unknown.

Case 1 is the trivial case where the density function is already known. This case can also be
handled efficiently by Fourier techniques, particularly when the conditional density function is
not known but when the characteristic function (the Fourier transform of the conditional density)
is [19]. Case 3 can be reduced to Case 2, by computing the moments with the help of Monte
Carlo sub-simulations. For each grid point at time step ti, we generate sub-paths until time ti and
compute the first four non-central moments (denoted by ‘prime’), μ′

1 = μ, μ′
2 = μ2 + σ 2, μ′

3, μ′
4,

of g(Sti+1). The computational effort required for such a sub-simulation is of order O(NG × NS),
where NG are the number of grid points and NS are the number of sub-paths simulated. In the
examples we considered, when sub-simulation was required, the computational time was a few
minutes. The computational time can further be reduced by using GPUs and generating sub-paths
for a group of nearest neighbour grid points, rather than for each one of them.

Once we have these moments for g(Sti+1) corresponding to the grid points at ti, we approximate
the conditional density function f (x)using the Gram Charlier Series (see [24]). Given the moments
of a distribution, the Gram Charlier series approximates the density function f (x) as

f̂ (x) = 1√
2πσ

exp

[
− (x − μ)2

2σ 2

] [
1 + κ3

3!σ 3
H3

(
x − μ

σ

)
+ κ4

4!σ 4
H4

(
x − μ

σ

)]
, (13)

where H3(x) = x3 − 3x and H4(x) = x4 − 6x2 + 3 are Hermite polynomials. κ1 = μ, κ2 = σ 2,
κ3 = μ3, κ4 = μ4 − 3μ2

2 are the first four cumulants. More details about computing the probability
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1196 S. Jain and C.W. Oosterlee

density function are given in the specific examples in the sections to follow. In Appendix 3, we
discuss the convergence of Gram Charlier Series and also show some numerical results for its
error analysis.

2.5.1 Need for peripheral paths

We notice that in the high-dimensional problems, the exercise policy obtained is better if we
generate additional paths from points on the periphery of source point S0. This idea is not new
and was originally proposed by Rasmussen [28] as an improvement for the LSM, which he calls
initial state dispersion where instead of using the original initial state S0 for generating the state
variables one starts with some fictitious initial time point −TD < 0 and the original state for
generating the state variables. More recently Kan et al. [23] propose a scheme to disperse the
points around the initial source point without starting from a fictitious initial time point. In our
examples, however, we use two additional point sources around the initial point and generate an
equal number of paths from these three source points.

2.6 Lower bound values

The solution from the SGM can be validated by computing the lower bound on the option price,
using the exercise policy obtained from it. To compute the lower bound on the option price, we
simulate a number of sample paths (fresh set of paths should be used) originating from S0 using the
same discretization scheme. The continuation value at the new grid points is then obtained using

Q(ti, Sti = x) = Bti

Bti+1

E[Ẑ(ti+1, g(Sti+1))|Sti = x],

where the functional approximation of the conditional option values Ẑ(ti+1, g(Sti+1)) is obtained
from the SGM algorithm. For each sample path, we find the first exercise period ti, if it exists,
for which h(Sti) ≥ Q̂(ti, Sti). The option is then exercised and its discounted pay-off is given by
h(Sti)/Bti . The lower bound on the option price is then obtained as

V0 = E0

[
hτ̃

Bτ̃

]
, (14)

where τ̃ = min{t ∈ [0, T ] : Q̂t ≤ ht}. The option value obtained by following any exercise strategy
is dominated by the optimal strategy. In other words, as the option value is obtained by following
a stopping rule τ̃ it gives the lower bound on the true price (see [1]).

2.6.1 Algorithm

We briefly summarize the SGM algorithm.

• Step I: Generate N sample paths {St0 , . . . , Stk }, where [t0 = 0, . . . , tk = T ] and Sti ∈ Rd , starting
from St0 = S0. The paths are discretized in time using some discretization scheme (e.g. Euler’s
discretization scheme). Each of the N asset prices Sti represents the grid points in ti.

• Step II: Compute the option value for grid points in tk = T as

V(T , ST ) = h(ST ) = max(g(ST ) + X, 0).
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• Step III: Compute the approximate functional form,

Ẑ(T , g(ST |S0)) = E[V̂(T , ST )|g(ST )],

by regressing the option value at the grid points over polynomial basis functions of g(ST );
• Step IV : Perform the following steps for each exercise time ti moving backwards in time,

starting from tk−1 until we reach t0 to obtain the direct SGM estimator value V(t0, St0 = S0) :
(1) Compute the continuation value for grid points at ti using the functional approximation of

Ẑ(ti+1, g(Sti+1)),

Q̂(ti, Sti) = Bti

Bti+1

E[Ẑ(ti+1, g(Sti+1))|Sti)].

(2) Compute the option value for grid points at ti as

V̂(ti, Sti) = max(g(Sti) + X, Q̂(ti, Sti)).

(3) Compute the functional approximation for the conditional expectation, i.e.

Ẑ(ti, g(Sti)) = E[V̂(ti, Sti)|g(Sti)]

by regressing the option value obtained at each grid point in ti over a set of polynomial
basis function of g(Sti).

(4) Go to the previous time step (i ⇒ i − 1).
• Step V : Using the exercise strategy obtained while computing the direct SGM estimator, for

each path (from a set of new paths) determine the earliest time to exercise τ̃ = min{t ∈ [0, T ] :
Q̂t ≤ ht}. Obtain the lower bound option value as E0[hτ̃ /Bτ̃ ].

3. Error analysis for the single asset case

We perform a basic error analysis for a single asset case. SGM has two main sources of error in
the penultimate exercise opportunity, i.e. when ti+1 = T . They are,

• εz(ti+1, g(Sti+1)): error in the approximation of

Z(ti+1, g(Sti+1)) = E[V(ti+1, Sti+1)|g(Sti+1)],

• εf (g(Sti+1)|Sti): error in the approximation of the transition density function,

f (g(Sti+1)|Sti = x).

The approximation of the continuation value at ti, is given by,

Q̂(ti, Sti) =
∫

(Z(ti+1, x) + εz(ti+1, x))(f (x|Sti) + εf (x|Sti)) dx, (15)

error in the estimation of the continuation value, εQ(ti, Sti), comes from error in the approxima-
tion of Z(ti+1, Sti+1) and transition density function f (g(Sti+1)|Sti). Error, εQ(ti, Sti), can be split
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1198 S. Jain and C.W. Oosterlee

into, error due to approximation of the transition density function, εQf (ti, Sti), and error due to
approximation of Z(ti+1, g(Sti+1)), i.e. εQz(ti, Sti).

εQ(ti, Sti) ≈
∫

εf (ti+1, x)Z(ti+1, x) dx +
∫

εz(ti+1, x)f (x|Sti) dx

≤
∫

|εf (ti+1, x)|Z(ti+1, x) dx +
∫

|εz(ti+1)|f (x|Sti) dx (16)

= εQf (ti, Sti) + εQz(ti, Sti). (17)

We show these two errors are bounded.

3.1 Error due to Gram Charlier approximation

Milne [27] showed that if f (x) satisfies a condition of the form

|ex2
1/4f (x1) − ex2

2/4f (x2)| < L|x1 − x2|, (18)

and if

|x ex2/4f (x)| < L, (19)

with L constant, then the error of a Gram Charlier series as in (13) with n terms is bounded by

|f (x) − fn(x)| = |εf (x)| < BLn−1/2 e−x2/4, (20)

where B is a constant independent of n. Assuming that the conditions above are satisfied, the error
in the continuation value due to the Gram Charlier approximation can be bounded by

εQf (ti, Sti) < BLn−1/2
∫

e−x2/4Z(ti+1, x) dx. (21)

3.2 Error due to parametrization of option price

We approximate Z(ti+1, g(Sti+1)) by piecewise interpolation. If we use a single high-degree poly-
nomial regression, it can lead to significant errors if one of the derivatives of Z(ti+1, g(Sti+1)) is
discontinuous. A robust alternative is to replace the single high-degree polynomial for regression
in [x0, xn], here x0 = min(g(Sti+1)) and xn = max(g(Sti+1)) by several low-degree polynomials by
appropriately dividing the regression domain [x0, xn]. An extreme case of this would be to use a
linear polynomial to interpolate between adjacent data points. In such a case, the maximum error
due to regression is bounded by

max
x∈[x0,xn]

|Z(ti+1, x) − Ẑ(ti+1, x)| = |εz|max ≤ max
x∈[x0,xn]

1

2

∣∣∣∣∂2Z(ti+1, x)

∂x2

∣∣∣∣ �2, (22)

where � denotes the largest space between interpolation points.
In practice, however, dividing the domain upto six regions with four polynomial basis functions

for each region already gives a small regression error. The break points for dividing the domain
[x0, xn] are chosen as the early-exercise point and the critical points for ∂2Z(ti+1, x)/∂x2, Figure 8
compares the maximum and mean regression error with different numbers of pieces (keeping the
number of grid points constant) and with different numbers of grid points (keeping the number of
pieces constant) for a call option on single asset. It can be seen that for the same number of grid
points, significantly smaller errors in regression can be obtained using more partitions.
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Figure 8. Maximum and average-squared residual errors due to parametrization of the option price when (a) the number
of segments in the piecewise regression is constant = 6 and (b) the number of grid points used in the regression is constant
= 10,000.

Assuming that the conditions above are satisfied, the error in continuation value due to
parametrization of the option price is then bounded by

εQz(ti, Sti) ≤ |εz|max

∫
f (x|Sti) dx. (23)

Under the assumption that the conditions for convergence of Gram Charlier series expansion
are satisfied and we use large number of local regression functions, the error in the continuation
value is bounded by

εQ(ti, Sti) ≤ BLn−1/2
∫

e−x2/4Z(ti+1, x) dx + |εz|max

∫
f (x|Sti) dx. (24)

Here, we assume that
∫

e−x2/4Z(ti+1, x) dx is bounded.

3.3 Error due to recursion

From (24), the error in continuation value at ti is bounded. At ti , the error in the option price
V(ti, Sti) can be determined using

V̂(ti, Sti) = max(Q(ti, Sti) + εQ(ti, Sti), h(Sti))

≤ max(Q(ti, Sti), h(Sti)) + |εQ(ti, Sti)|. (25)
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1200 S. Jain and C.W. Oosterlee

The continuation value at ti−1 will have error described by

Q̂(ti−1, Sti−1) ≤
∫

(Z(ti, x) + |εz(ti, x)| + |εQ(ti, x)|)(f (x|Sti−1) + εf (ti, x)) dx. (26)

The additional term in Equation (26) when compared to (15), is the error due to recursion, εR :

εR ≤
∫

|εQ(ti, x)|(f (x|Sti−1) + εf (ti, x)) dx,

which is bounded by

εR ≤ max
Sti

(|εQ(ti, Sti)|).
It can be shown that the error due to recursion at time step t0 is bounded by

εR0 ≤
∑

i

max
Sti

(|εQ(ti, Sti)|).

3.4 Numerical results for Bermudan put on a single asset

We illustrate the error analysis using numerical results for a put on a single asset, where the
risk-neutral asset price follows the stochastic differential equation:

dS = rS dt + σS dW , (27)

r being the continuously compounded risk-free interest rate, σ the annualized volatility. Here, we
assume r and σ to be constant. W is the standard Brownian motion. We assume that the option
is exercisable a finite number of times (k) per year, at a strike price of K , up-to and including the
final expiration time T . We generate N sample paths {St0 , . . . , Sti}, using the closed-form solution
for the SDE (27). The asset values Sti represent the grid points in ti.

3.4.1 Parametrization of the option value for a single asset

The option price at any time ti prior to the expiration time T is given by

V(ti, Sti) = max(g(Sti) + X, Q(ti, Sti)).

To compute the functional approximation of the option value at time ti, we regress the option
values obtained at the grid points on polynomial basis functions of g(Sti) = Sti . We perform a
piecewise least-squares regression with one of the break points at X ∗

t = S∗
ti , where S∗

ti is the early-
exercise point. For better approximation, the continuation region can be further divided into pieces
with break points selected at the critical points for Z ′′(ti, Sti). For the two segment case, we regress
the option value as

Ẑ(ti, Sti) = 1{g(Sti )<X ∗
t }

M−1∑
m=0

am(|g(Sti)|)m + 1{g(Sti )≥X ∗
t }

M−1∑
m=0

bm(|g(Sti)|)m, (28)

with the coefficients am and bm chosen so that residuals r1 and r2 are minimized,

r1 = min
am

(
1{g(Sti )<X ∗

t }
∑

|V(ti, Sti) − Ẑ(ti, |g(Sti)|)|2
)

,

r2 = min
bm

(
1{g(Sti )≥X ∗

t }
∑

|V(ti, Sti) − Ẑ(ti, |g(Sti)|)|2
)

.
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We choose the first four polynomials (including the constant) as basis functions. Increasing the
number of basis functions does not significantly improve the approximation; however, increasing
the number of pieces does improve the solution.

3.4.2 Continuation value for the single asset case

In order to compute the continuation value for the grid points at ti using Equation (11), we need
the transition probability density function P(g(Sti+1)|Sti). For a single asset following a stochastic
process given by Equation (27), the conditional transition density function is given by

P(|g(Sti+1)| = x|Sti) = Sti e((r−σ 2/2)�t+σ
√

�tY)
P(Y = x∗), (29)

where �t = ti+1 − ti, Y ∼ N (0, 1) and

x∗ := 1

σ
√

�t

[
log

(
x

Sti

)
−

(
r − σ 2

2

)
�t

]
.

Equation (12) can then be written as

Q̂(ti, Sti) = Bti

Bti+1

(∫ K∗

−∞

M−1∑
m=0

am(f (Y))m dP(Y) +
∫ ∞

K∗

M−1∑
m=0

bm(f (Y))m dP(Y)

)
, (30)

where

K∗ = 1

σ
√

�t

[
log

( |X ∗
ti+1

|
Sti

)
−

(
r − σ 2

2

)
�t

]
,

f (Y) = Sti e((r−σ 2/2)�t+σ
√

�tY),

dP(Y) = 1√
2π

e−Y2/2 dY .

Solving Equation (30) we obtain the continuation value at each grid point as

Q̂(ti, Sti) = Bti

Bti+1

[
M−1∑
m=0

ϕm
ti ((am − bm)�(K∗ − mσ

√
�t) + bm)

]
, (31)

where

ϕm
ti = (Sm

ti em((r−σ 2/2)+(m/2)σ 2)�t),

and

�(x) = 1

2

[
1 + erf

(
x√
2

)]
.

In order to compute the value of X ∗
ti = |g((Sti)|, we need to solve the non-linear equation

g(Sti) = K − Q(ti, Sti), (32)

where the value of Q(ti, Sti) is obtained from Equation (31). The value of X ∗
ti can be

approximated as

X ∗
ti = max(|g(Sti)|1g(Sti )≥Q(ti ,Sti )−X),

i.e. we find the maximum value of the asset price for the grid points lying in the early-exercise
region or alternatively the minimum value of the asset price for grid points in the continuation
region.
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3.4.3 Results for single asset put option

To illustrate the results, Table 1 reports the value of the early-exercise option implied by both the
COS method and SGM. We use the COS method with N = 210 terms in the Fourier expansion, as
our reference. The lower bound values, which are obtained by following the exercise policy from
SGM on a fresh set of paths, are sometimes greater than the true option price. The lower bound
values are taken as the mean of 30 simulation results. True lower bound values can be obtained
by computing the mean over a large number of simulation results.

The SGM estimates are based on 10,000 (5000 plus and 5000 antithetic) paths using 50 exercise
points per year, while the LSM estimates are based on 100,000 (50,000 plus and 50,000 antithetic)
paths. Figure 9 compares the SGM direct estimator with the true option price for different numbers
of grid points. Figure 10 compares the lower bound values obtained from SGM with lower bound
from the LSM algorithm for different numbers of paths. The exercise policy obtained using SGM
is better and stable compared with the one obtained using LSM, as can be deduced from the
standard errors for the lower bounds for the two algorithms.The direct estimator value converges
fast to the true price, as the number of partitions and grid points increases. The standard errors of
the direct estimator are small compared with that of SGM lower bound values and much lower
than that of LSM values.

The time taken for each simulation is few seconds on a system with Intel(R) Duo-Core 2.13 GHz
processors and 2 GB RAM.

Table 1. Comparison of the SGM direct estimator and lower bound values with the LSM and COS method results for
an Bermudan put option on a single asset, where the option is exercisable 50 times per year.

COS method SGM lower SGM direct Closed-form
S0 σ T Bermudan bound (s.e.) estimator (s.e.) LSM (s.e.) European

36 0.4 2 8.508 8.512 (0.56) 8.509 (0.010) 8.488 (0.51) 7.700
38 0.4 2 7.670 7.665 (0.53) 7.670 (0.011) 7.669 (0.50) 6.979
40 0.4 2 6.920 6.913 (0.59) 6.919 (0.011) 6.921 (0.55) 6.326
42 0.4 2 6.248 6.252 (0.59) 6.246 (0.013) 6.243 (0.51) 5.736
44 0.4 2 5.647 5.632 (0.66) 5.642 (0.014) 5.622 (0.51) 5.202

The strike price of the put is 40, the short-term interest rate is 0.06. The simulation for SGM is based on 10,000 (5000 plus 5000 antithetic)
paths for the asset price process, and for LSM is based on 100,000 (50,000 plus and 50,000 antithetic) paths.
The standard error for the simulation (s.e.) is in cents while the option values are in dollars.
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Figure 9. SGM direct estimator with confidence interval for different number of grid points. The regression is performed
on six different pieces.
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Figure 10. Comparison between lower bounds and confidence interval obtained using the exercise policy from SGM
and LSM for different number of grid points (paths for latter).

4. Numerical results for high dimensions

In this section we illustrate our methodology by pricing Bermudan options on the max of two,
three and five assets, and a basket option on an arithmetic mean of four and five assets. The
underlying assets are assumed to follow the standard single and multi-asset Black–Scholes model
(geometric Brownian motion, GBM).

4.1 Bermudan call on maximum of d assets

A Bermudan max-option is a discretely exercisable option on multiple underlying assets whose
pay-off depends on the maximum among all asset prices. We assume that the asset prices follow
correlated GBM processes, i.e.

dSi
t

Si
t

= (r − qi) dt + σi dWi
t , (33)

where each asset pays a dividend at a continuous rate of qi. Wi
t , i = 1, . . . , d, are standard Brownian

motions and the instantaneous correlation between Wi
t and Wj

t is ρij. We assume that the option
expires at time T and there are k equally spaced exercise dates in the interval [0, T ]. If we use K
to denote the strike price of the option, then the pay-off for d underlying assets is max(g(Si

t) +
X, 0), where X = −K and, g(Si

t) = max(S1
t , . . . , Sd

t ). We start by generating N sample grid points
(S1

ti , . . . , Sd
ti ) at each time step ti, using the discretization scheme

Sj
ti = Sj

ti−1
exp

((
r − qi − 1

2
|σi|2

)
�t +

∑
1≤k≤d

σjkWk
�t

)
, 1 ≤ j ≤ d, (34)

where �t = ti − ti−1.As explained in Section 2.5, for high-dimensional options additional periph-
eral paths are required to obtain better lower bound values. In the present example, we generate
additional sample paths from two points around initial source point S0, the points selected as
S0 e0.3σ

√
�t and S0 e−0.1σ

√
�t , which already significantly improves the lower bound values. The

peripheral paths are used only to obtain the exercise-policy from the direct SGM estimator and
are not used to obtain the lower bound values. Additional peripheral paths are required because
in their absence the regressed function values around peripheral grid points become a source of
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1204 S. Jain and C.W. Oosterlee

error. In the subsequent section, we discuss the scheme of parametrization and computing the
continuation values specific to the Bermudan max-call option.

4.1.1 Parametrization of the option value for max options

In order to compute the functional form of the option value at ti+1, we regress the option values
obtained at the grid points over the polynomial basis functions of g(Sti+1). We use piecewise regres-
sion, with the break points at X ∗

t = g(S∗
ti+1

), where g(S∗
ti+1

) + X = Q(ti+1, S∗
ti+1

). The regression
scheme can be written as

Ẑ(ti+1, g(Sti+1)) = 1{g(Sti+1 )<X ∗
t }

M−1∑
m=0

am(�m(g(Sti+1)))

+ 1{g(Sti+1 )≥X ∗
t }

M−1∑
m=0

bm(�m(g(Sti+1))), (35)

where � are the basis functions. The coefficients am and bm are chosen such that residuals r1 and
r2 are minimized,

r1 = min
am

(
1{g(Sti+1 )<X ∗

t }
∑

|V(ti+1, Sti+1) − Ẑ(ti+1, g(Sti+1))|2
)

,

r2 = min
bm

(
1{g(Sti+1 )≥X ∗

t }
∑

|V(ti+1, Sti+1) − Ẑ(ti+1, g(Sti+1))|2
)

.

We use a set of four (including the constant) Hermite polynomial basis functions of g(Sti+1) for
regression in our example.

4.1.2 Computing the continuation value for max options

In order to compute the continuation value for grid points at ti using Equation (11), we need
to know the transition probability density function P(g(Sti+1)|Sti). For a call on the max of d
underlying assets, (g(Sti+1) = max(S1

ti+1
, . . . , Sd

ti+1
)), it is difficult to compute the exact transition

density function. Like Boyle and Tse [9], we use Clark’s algorithm to compute the first four
moments of this distribution. The approximation of the transition probability density function
can be obtained from these moments using the Gram Charlier expansion. Clark’s algorithm [17]
gives the exact expression for the first four moments of the maximum of a pair of jointly normal
variates as well as the correlation coefficient between the maximum of the pair and the third
normal variate. The details of Clark’s algorithm are given in Appendix 1. Sti being a log-normal
process given by Equation (34), we can write

P(g(Sti+1) = X|Sti) = P

(
max
1≤j≤d

(Sj
ti+1

) = X|Sti

)
= P

(
max
1≤j≤d

(Y j
ti+1

) = log(X)|Sti

)
, (36)

where Y j
ti+1

, 1 ≤ j ≤ d has a multivariate normal distribution. Using Clark’s algorithm we can
obtain the first four moments of the random variable Y = max(Y 1

ti+1
, . . . , Y d

ti+1
). If κi

2 (1 ≤ i ≤ 4)

are the first four cumulants of Y then using the Gram Charlier Expansion, we can write the
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Table 2. Bermudan max-call option on 2, 3 and 5 underlying asset: the results are compared with Andersen and
Broadie [1] and Broadie and Cao [11].

95% CI 95 % CI
S0 SGM LB (s.e.) SGM direct (s.e.) Binomial value AB BC

n = 2 assets
90 8.069 (0.026) 8.088 (0.003) 8.075 [8.053, 8.082] –

100 13.892 (0.024) 13.900 (0.004) 13.902 [13.892, 13.934] –
110 21.282 (0.028) 21.290 (0.003) 21.345 [21.316, 21.359] –

n = 3 assets
90 11.228 (0.023) 11.253 (0.003) 11.29 [11.265, 11.308] –

100 18.665 (0.031) 18.625 (0.005) 18.69 [18.661, 18.728] –
110 27.463 (0.036) 27.413 (0.006) 27.58 [27.512, 27.663] –

n = 5 assets
90 16.527 (0.028) 16.644 (0.005) – [16.602, 16.655] [16.620, 16.653]

100 25.992 (0.033) 26.141 (0.006) – [26.109, 26.292] [26.115, 26.164]
110 36.590 (0.047) 36.725 (0.005) – [36.704, 36.832] [36.710, 36.798]

The parameters are: K = 100, r = 5%, q = 10%, ρ = 0, T = 3, σ = 20%. There are 10 exercise opportunities equally spaced in time.
Values in parentheses are standard errors. The total number of grid points at each time step was 30,000 with an equal number of paths
generated from the three source grid points (two peripheral and one initial point).

approximate probability density function of Y as Equation (13). The continuation value given by
Equation (12) can then be written as

Q̂(ti, Sti) = Bti

Bti+1

(∫ K∗

−∞

M−1∑
m=0

am�m(ex) dP(Y = x|Sti) +
∫ ∞

K∗

M−1∑
m=0

bm�m(ex) dP(Y = x|Sti)

)
,

(37)
where K∗ = log(X ∗

ti ) The solution of Equation (37) is given in Appendix 2.

4.1.3 Results for Bermudan call on max of several assets

To illustrate the results, Table 2 compares the result of a Bermudan max option on 2, 3 and 5
underlying assets. The results reported in Table 2 are fairly remarkable given the simplicity of the
method. The values obtained from the SGM are close to the values reported in the literature. The
number of paths required to obtain an accurate exercise policy (as reflected by the lower-bound
values) is far less than required to obtain the exercise policy for the duality-based methods. Also
the time for each simulation is less than a minute on a system with Intel(R) Duo-Core 2.13 GHz
processors and 2 GB RAM. The number of basis functions required for regression, irrespective
of the dimensions of the problem, is upto 4 (including the constant).

4.2 Bermudan put on arithmetic mean of d assets

A Bermudan basket option is a discretely exercisable option on multiple underlying assets whose
pay-off depends on the weighted average of the underlying asset prices. We assume that the asset
prices follow correlated GBM processes given by Equation (33). The pay-off for d underlying
assets is max(g(Si

t) + X , 0), where X = K and,

g(Si
t) = −(w1S1

t + · · · + wdSd
t ), (38)

such that
d∑

i=1

wi = 1.
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1206 S. Jain and C.W. Oosterlee

The discretization and parametrization scheme for a Bermudan put on a basket is the same as that
for Bermudan call on max of several assets. However, we use the case of basket option to show
how the conditional continuation value can be computed in the general case.

4.2.1 Computing the continuation value for Bermudan basket options

In order to compute the continuation value for grid points at ti using Equation (11), the tran-
sition probability density function P(g(Sti+1)|Sti) is required. For a put on the weighted mean
of d underlying assets, the exact transition density function is unknown. The moments for the
distribution of g(Sti+1) can be obtained using sub-simulations, which can be used to approximate
the density function using the Gram Charlier series (Equation (13)). For each grid point at ti,
sub-paths are generated until the next time step ti+1, and the first four non-central moments of the
distribution of g(Sti+1) so obtained are computed. In order to re-use the results obtained for the
Bermudan max option, we find the distribution P(log(|g(Sti+1)|) = x|Sti), rather than determining
P(|g(Sti+1)| = x|Sti ). The continuation value is then given by Equation (37).

4.2.2 Results for Bermudan basket option

To illustrate the results, Table 3 compares the result of a Bermudan put option on four underlying
assets. In order to compute the continuation value, we generate NS = 1000, sub-paths for each
of the underlying assets. The computational effort increases linearly with the number of exercise
opportunities k, the number of paths NS in the sub-simulations, and the dimension of the problem
d. Although computationally more expensive than the case where the moments of the distribution
can be computed analytically, this example shows a generic case when its not easy to compute
the transition probability density or its moments directly. The time taken for each simulation was
a few (<5) minutes. Table 4 compares the results of a Bermudan put option on five underlying
assets with those reported by Bender et al. [5]. The LSM values and confidence intervals reported
by Bender et al. our close to our values.

Table 3. Bermudan put option on arithmetic mean of four underlying assets: the
results are compared with the CONV method of Lord et al. [26] and the LSM values.

S0 SGM LB (s.e) SGM direct (s.e) FFT value LSM (s.e.)

40 1.739 (0.37) 1.740 (0.16) 1.739(0.08) 1.739

The parameters are: K = 40, r = 6%, q = 2%, ρ = 0.25, T = 1, σ = 20%. There are 10 exercise
opportunities equally spaced in time. Values in parentheses are standard errors. The total number
of grid points at each time step were 30,000 with equal number of paths generated from the three
source grid points (two peripheral and one initial point). For the LSM algorithm there were 300,000
paths for each asset, and 18 set of basis functions.

Table 4. Bermudan put option on arithmetic mean of five underlying assets: the results are compared
with the intervals reported by Bender et al. [5] and the LSM values.

S0 SGM LB (s.e.) SGM direct (s.e.) LSM (s.e.) BKS 95% CI

90 10.000 (0.00) 10.000 (0.00) 10.000 (0.00) [10.000, 10.004]
100 2.134 (0.012) 2.141 (0.008) 2.163 (0.001) [2.154, 2.164]
110 0.540 (0.010) 0.550 (0.006) 0.540 (0.001) [0.535, 0.540]

The parameters are: K = 100, r = 5%, ρ = 0, T = 3, σ = 20%. There are four exercise opportunities (including
t0) equally spaced in time. Values in parentheses are standard errors. The total number of grid points at each time
step were 3000 with equal number of paths generated from the 3 source grid points (two peripheral and one initial
point). For the LSM algorithm, there were 120,000 paths for each asset and 24 sets of basis functions.
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5. Conclusion

In this paper, we have presented the SGM for pricing and exercising Bermudan options. Our
approach is based on dynamic programming and linear least-squares regression. One of the main
achievements of the algorithm is its ability to reduce a multi-dimensional problem to a single-
dimensional case, and yet avoid some of the associated short comings as were discussed by
Boyle et al. [10].

The SGM method can be seen as a hybrid of the stochastic mesh method of Broadie and
Glasserman [13], the LSM of Longstaff and Schwartz [25] and the stratified sampling along the
pay-off method of Barraquand and Martineau (1996). It is similar to SMM as we follow the
same dynamic programming approach, by approximating the option price at exercise times ti+1

and moving backwards in time using the information at ti+1, to approximate the continuation
value and hence the option price at exercise step ti. We use the regression approach of LSM for
approximating the conditional expectation E[V̂(ti+1, Sti+1)|g(Sti+1)]. Similar to the approach of
SSAP, we use the pay-off function to reduce the dimensions of the problem.

The regression in SGM differs from the LSM algorithm, as SGM does not approximate the
functional form of the continuation value, rather it uses regression to approximate the functional
form of E[V(ti+1, Sti+1)|g(Sti+1)] at the exercise dates ti+1.

In SSAP before pricing the option, the entire (i.e. at all time steps) state space is reduced
to a one-dimensional state (using pay-off as the mapping function). The option pricing is then
carried out for this reduced state space. This scheme can result in wrong exercise policy as
was shown by Boyle et al. [10]. In SGM, option price and exercise policy for grid points in
ti+1 are first computed in the high-dimensional space. This is followed by reducing the state
space at ti+1. The continuation value at ti is then computed (by iterated conditioning) using
one-dimensional probability density function, rather than multivariate distributions for transition
Sti+1 |Sti .

SGM can be computationally expensive when sub-simulations are required, especially when
there are many early-exercise dates. The computational time when sub-simulations are required
can be reduced by running SGM on parallel GPUs. SGM algorithm is well suited for parallel
processing as computing the moments using sub-simulation can run independent of other pro-
cesses. Another possible improvement could be using sub-simulation for a group of grid points
(nearest neighbours) rather than for each grid points independently.

Although we did not look into the computation of price sensitivities for hedging purposes
here, we believe that the method is well suited for computing the Greeks. Once the functional
approximation of the option values at the next time step is available, it can be used to compute
the continuation values and option values in the close neighbourhood of the initial point, thus
allowing for fast approximation of some of the Greeks.

An aspect not yet explored is the choice of more refined methods to generate the initial grid
points. The stochastic method for grid generation is a convenient method of grid generation, such
that the density of the generated grid points at different time steps is closely related to the transition
probability density function, when the transitions happen from the initial point. Since once the
grid points are generated, the method employed for generating the grid points has no effect on
the solution, it allows using more sophisticated methods of grid generation, like the quantization
tree method of Bally et al. [2] in future work.

In order to show convergence of the SGM algorithm in high dimensions with an increasing
number of paths, the method should include bundling for more accurately computation of the
conditional expectation given by Equation (6).

Bundling can be interpreted as the punishment for the dimension reduction introduced in this
paper, when high accuracy is required. However, in a follow-up paper we will show the strength
of a bundling algorithm once it is implemented.
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Notes

1. A Bermudan option is an option where the buyer has the right to exercise at a set (discretely spaced) of times. This
is intermediate between a European option which allows exercise at a single time, namely expiry and an American
option, which allows exercise at any time. With an increasing number of exercise opportunities Bermudan option
values approach the value of an American option.

2.

κ1 = μ = μ′
1

κ2 = σ 2 = μ′
2 − μ′2

1

κ3 = μ′
3 − 3μ′

2μ
′
1 + 2μ′3

1

κ4 = μ′
4 − 4μ′

3μ
′
1 − 3μ′2

2 + 12μ′
2μ

′2
1 − 6μ′4

1

where μ′
i is the ith non-central moment
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Appendix 1. The Clark algorithm

The Clark algorithm [17], calculates the first four moments of the maximum of a pair of jointly normal variates as well
as the correlation coefficient between the maximum of the pair and a third normal variate. Let X1 and X2 have a bivariate
normal distribution, with means μ1 and μ2, and standard deviations σ1 and σ2, respectively. The correlation coefficient
between the two is ρ. Y denotes the maximum of (X1,X2). Let νi denote the ith non-central moment for the distribution
of Y , then

ν1 = μ1�(α) + μ2�(−α) + aφ(α), (A1)

ν2 = (μ2
1 + σ 2

1 )�(α) + (μ2
2 + σ 2

2 )�(−α) + (μ1 + μ2)aφ(α), (A2)

ν3 = (μ3
1 + 3μ1σ

2
1 )�(α) + (μ3

2 + 3μ2σ
2
2 )�(−α)

+ [(μ2
1 + μ1μ2 + μ2

2)a + (2σ 4
1 + σ 2

1 σ 2
2 + 2σ 4

2

− 2σ 3
1 σ2ρ − 2σ1σ

3
2 ρ − σ 2

1 σ 2
2 ρ2)a−1]φ(α), (A3)

ν4 = (μ4
1 + 6μ2

1σ
2
1 + 3σ 4

1 )�(α) + (μ4
2 + 6μ2

2σ
2
2 + 3σ 4

2 )�(−α)

+
{

(μ3
1 + μ2

1μ2 + μ1μ
2
2 + μ3

2)a − 3α(σ 4
1 − σ 4

2 )

+ 4μ1σ
3
1

[
3

(
σ1 − σ2ρ

a

)
−

(
σ2 − σ1ρ

a

)3
]

+ 4μ2σ
3
2

[
3

(
σ2 − σ1ρ

a

)
−

(
σ1 − σ2ρ

a

)3
]}

φ(α). (A4)

If X3 is a random variable with normal distribution, and the correlation coefficients between X3 and X1, X2 are ρ1, ρ2,
respectively, then the correlation coefficient ρX3Y between X3 and Y = max(X1, X2) is given by

ρX3Y = [σ1ρ1�(α) + σ2ρ2�(−α)]/(ν2 − ν2
1 )1/2, (A5)

where

a2 = σ 2
1 + σ 2

2 − 2σ1σ2ρ,

α = μ1 − μ2

a
,

φ(x) = (2π)−1/2 exp

(
− x2

2

)
,

�(x) =
∫ x

−∞
φ(t) dt.
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1210 S. Jain and C.W. Oosterlee

Clark’s method can be used to obtain the exact moments of Y and its correlation with X3; however, as the distribution
of Y is not exactly normal, the method can be only used to obtain the approximation of the first four moments of the
maximum of a set of d normal variates. If X1, . . . , Xd are the d jointly normal variates, and Y is the maximum of these d
variates then by using the recursive scheme

Yi = max(X1, X2, . . . , Xi+1) = max(Yi−1, Xi+1)

and applying Clark’s approximation at each step we can compute the approximation of the first four moments for the
distribution of Y . It is easy to deduce how Clark’s method can be used to obtain the moments for the minimum of d assets
as well (see Boyle et al. [9]).

Appendix 2. Solution for continuation value

The solution to equation ∫ K∗

−∞

M−1∑
m=0

am�m(ex) dP(Y = x|Sti−1 ),

where �(·) is polynomial basis function, can be written as the linear combination of,∫ K∗

−∞
(emx) dP(Y = x|Sti−1 ),

m = (0, . . . , (M − 1)), and P(Y = x|Sti−1 ) is

φ

(
x − μ

σ

) [
1 + κ3

3!σ 3
H3

(
x − μ

σ

)
+ κ4

4!σ 4
H4

(
x − μ

σ

)]
.

Here φ(x) is,

φ(x) = 1√
2π

e−x2/2.

We need to solve, ∫ K∗

−∞
(emx)φ

(
x − μ

σ

) [
1 + κ3

3!σ 3
H3

(
x − μ

σ

)
+ κ4

4!σ 4
H4

(
x − μ

σ

)]
dx. (A6)

Equation (A6) can be written as

A
∫ K∗

−∞
φ

(
x − θ

σ

) [
1 + κ3

3!σ 3
H3

(
x − μ

σ

)
+ κ4

4!σ 4
H4

(
x − μ

σ

)]
dx, (A7)

where

A = e(μm+m2σ 2/2),

and

θ = (μ + mσ 2).

This can be written in a form easy to integrate,

A
∫ K∗

−∞
φ

(
x − θ

σ

) ⎡⎣1 + κ3

3!σ 3

3∑
j=0

(
3

j

) (
θ − μ

σ

)j

H3−j

(
x − θ

σ

)

+ κ4

4!σ 4

4∑
k=0

(
4

k

) (
θ − μ

σ

)k

H4−k

(
x − θ

σ

)]
dx, (A8)

using the property, ∫ x

−∞
φ(y)Hn(y) dy = −φ(x)Hn−1(x).
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Appendix 3. Gram Charlier series

The convergence of the Gram Charlier series has been discussed by Milne [27]. If a distribution satisfies the conditions
given by Equations (18) and (19) then Milne shows the order of convergence for Gram Charlier series approximation of
the distribution is O(n−1/2), where n is number of terms in the series expansion. Here, we give some numerical results to
show the effect of

• error in the moment estimates in the case of sub-simulation,
• non-random error in the Gram Charlier series approximation on the SGM estimator.

The effect of error in the moment estimates from sub-simulation is illustrated in Figure A1. It plots the standard error
for the direct estimator when an increasing number of sub-paths is used. We plot the standard error vs. 1/

√
NS , where NS

is number of sub-paths used. When the exact values of the higher moments are used (as can be computed using the Clark
algorithm), the standard error should be Y -intercept of the fitted function (as it is the case when NS → ∞). We find that
this is indeed the standard error for the direct SGM estimator when we use exact moments from the Clark algorithm. Also
we find that the mean of the direct SGM estimator and SGM lower bound values obtained with sub-simulation are close
to those obtained using the exact moments.

As the error from the Gram Charlier series is independent of the regression error, we look at the case of a European
option price for a max option. In this case, the error in the approximation of E[V(T , ST )|g(ST )] is zero. Then the error in
the option price is only due to the Gram Charlier series. We compare the results with those from Boyle [9] as reference
values.

Table A1 gives the max European call option values for a three-dimensional case, when the first two, three and four
moments are used in the Gram Charlier series. We found that the error due to non-inclusion of higher moments while
approximating the Gram Charlier series in the case of max option is significant only when the volatilities of the underlying
assets are not the same.
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Figure A1. Standard error vs. 1/
√

NS for a Bermudan max call option with 10 equally spaced exercise opportunity and
30,000 grid points. The parameters are same as Table 2 for 2 assets and S0 = [100, 100].

Table A1. European call option on max of three underlying assets: the results are
compared with Boyle (1990).

Strike Boyle 2 moments GC 3 moments GC 4 moments GC

30 16.703 16.705 16.700 16.705
40 9.235 9.249 9.251 9.237
50 4.438 4.375 4.458 4.439

The parameters are: S0 = [40, 40, 40], r = 10%, ρ = 0.9, T = 1, σ = [25, 30, 35]%.
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