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We define an equity–interest rate hybrid model in which the equity part is driven
by Heston stochastic volatility and the interest rate is generated by the displaced
diffusion stochastic volatility LIBOR market model. We assume a nonzero cor-
relation between the main processes. A number of approximations lead to an
approximating model which falls within the class of affine processes described
by Duffie, for which we then provide the corresponding forward characteristic
function. By using the appropriate change of measure and freezing the LIBOR
rates, the dimension of the corresponding pricing partial differential equation
can be greatly reduced. We discuss the accuracy of the approximations and the
efficient calibration in detail. Finally, using experiments, we show the effect of the
correlations and interest rate smile/skew on typical equity–interest rate hybrid
product prices. This approximate hybrid model can be evaluated for a whole strip
of strikes for equity plain vanilla options in milliseconds.

1 INTRODUCTION

Over the past decade the Heston equity model (Heston (1993)) with deterministic
interest rates has established itself as one of the benchmark models for pricing equity
derivatives. The assumption of deterministic interest rates in the Heston model is
rather harmless when equity products with a short time to maturity need to be priced.
For long-term equity contracts or equity–interest rate hybrid products, however, a
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2 L. A. Grzelak and C. W. Oosterlee

deterministic interest rate might be unacceptable. The extension of the Heston model
with stochastic interest rates is established for basic short-rate processes, like Hull–
White or multifactor models, in, for example, Grzelak et al (2011) and Grzelak and
Oosterlee (2011). These interest rate models cannot generate implied volatility smiles
or skews as commonly observed in the interest rate market. They can therefore mainly
be used for long-term equity options, or for fairly simple equity–interest rate hybrid
products. For hybrid products that are exposed to the interest rate smile, more involved
models are required. In this paper we develop such a hybrid model.

For several years the lognormal LIBOR market model (LMM) (see Brace et al
(1997); Jamshidian (1997); and Miltersen et al (1997)) has been an established bench-
mark for interest rate derivatives. Without enhancements, this stochastic differential
equation (SDE) system is unable to model strike-dependent volatilities of fixed income
derivatives such as caps and swaptions. An important step in the modeling process
came with the local volatility (Andersen andAndreasen (2000)) and stochastic volatil-
ity extensions (Andersen and Brotherton-Ratcliffe (2005); Andersen and Andreasen
(2002); and Rebonato (2002)), with which a model can be fitted reasonably well to
market data while guaranteeing the model’s stability.

A number of stochastic volatility extensions of the LMM have been presented in
the literature (see, for example, Brigo and Mercurio (2007)). The model on which our
work is based is the displaced diffusion–stochastic volatility (DD–SV) model devel-
oped by Andersen and Andreasen (2002). It was Piterbarg (2005) who connected the
time-dependent model volatilities and skews for LIBOR and swap rates to the market
implied quantities. The concept in Piterbarg (2005) of effective skew and effective
volatility enables the calibration of the volatility smiles for a grid of swaptions.

In this paper we develop an equity–interest rate hybrid model with equity modeled
by the Heston model and the interest rate driven by the LMM (specifically, by the
DD–SV model (Andersen and Andreasen (2002))). The model is relevant for pricing
equity–interest rate hybrid products that are exposed to the interest rate smile. In
practice, the equity calibration is performed with an a priori calibrated interest rate
model. For the remaining calibration task a very efficient and fast model evaluation
is mandatory. We develop and present such a model here.

By changing measures from the risk-neutral to the forward measure, associated
with the zero-coupon bond as the numeraire, the dimension of the approximating
characteristic function can be reduced significantly. This – along with freezing the
LIBOR rates and appropriate linearizations of the nonaffine terms arising in the cor-
responding instantaneous covariance matrix – is key to the efficient model evaluation
and pricing of equity options of European type. For a whole strip of strikes the approx-
imate hybrid model developed can be evaluated for equity plain vanilla options in just
milliseconds.

The Journal of Computational Finance Volume 15/Number 4, Summer 2012
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Equity–interest rate hybrid model with stochastic volatility 3

The approximating model, denoted by H1–LMM, is very practical for calibration,
because of the high speed of the calculations involved, the available characteristic
function and existing Fourier inverse algorithms (see Fang and Oosterlee (2008)).
Moreover, for typical instruments on which the calibration is carried out, it appears
to be very precise.

However, the approximate model used for calibration cannot be a new stand-alone
model for hybrid products, as the approximations introduced modify the Girsanov ker-
nel when changing between the measures. This means that, in fact, the approximation
we have derived is not guaranteed to be arbitrage-free.

The paper is organized as follows. First, in Section 2, we discuss the generalization
of the Heston model and provide details about the DD–SV interest rate model. In
Section 3 the dynamics for the equity forward model are derived. An approxima-
tion leading to the corresponding characteristic function is developed in Section 4.
Numerical experiments, in which the accuracy of the approximations is checked, are
presented in Section 5.

2 THE EQUITY AND INTEREST RATE MODELS

2.1 The Heston model and extensions

With state vector X.t/ D ŒS.t/; �.t/�T, under the risk-neutral pricing measure, the
Heston stochastic volatility model (Heston (1993)) is specified by the following sys-
tem of SDEs:

dS.t/

S.t/
D r.t/ dt C

p
�.t/ dWx.t/; S.0/ > 0

d�.t/ D �. N� � �.t// dt C �
p
�.t/ dW�.t/; �.0/ > 0

9>=
>; (2.1)

with r.t/ a deterministic time-dependent interest rate, a correlation dWx.t/ dW�.t/ D
�x;� dt , and j�x;� j < 1. The variance process, �.t/, of the stock, S.t/, is a mean-
reverting square-root process, in which � > 0 determines the speed of adjustment
of the volatility toward its theoretical mean, N� > 0, and � > 0 is the second-order
volatility, ie, the variance of the volatility.

As already indicated in Heston (1993), under the log transform for the stock,x.t/ D
logS.t/, the model belongs to the class of affine processes (see Duffie et al (2000)).
For � D T � t , the characteristic function (CF) is therefore given by:

�H.u;X.t/; �/ D exp.A.u; �/C Bx.u; �/x.t/C B�.u; �/�.t// (2.2)

where the complex-valued functions A.u; �/, Bx.u; �/ and B�.u; �/ are known in
closed form (see Heston (1993)).

Research Paper www.journalofcomputationalfinance.com
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The CF is explicit, but its inverse also has to be found for pricing purposes. Because
of the form of the CF, we cannot get it analytically, and a numerical method for inte-
gration has to be used (see, for example, Carr and Madan (1999), Fang and Oosterlee
(2008), Lee (2004) and Lewis (2001) for Fourier methods).

Since a deterministic interest rate is not sufficient for our pricing purposes, we
relax this assumption and assume the rates to be stochastic. A first extension of
the framework can be made by defining a correlated short-rate process, r.t/, of the
following form:

dr.t/ D �r.t; r.t// dt C 	r.t; r.t// dWr.t/; r.0/ > 0

with dWr.t/ dWx.t/ D �x;r dt . Depending on the functions �r.t; r.t// and
	r.t; r.t//, many different interest rate models are available. Popular single-factor
versions include the Hull and White (1996), Cox–Ingersoll–Ross (Cox et al (1985))
and Black and Karasinski (1991) models. Multifactor models arise by extending the
single-factor processes with additional sources of randomness (see Brigo and Mer-
curio (2007) for a survey).

Clearly, even for nonzero correlation between the equity process and the interest
rates, the extension of the plain Heston model with an additional (correlated) stochastic
interest rate process is rather straightforward. However, the standard techniques for
determining the corresponding CF are not applicable (the model is not affine, see
Duffie et al (2000)), so model calibration can become a cumbersome task.

Previously, in Grzelak and Oosterlee (2011), we proposed linear approximations
for the nonaffine terms in the instantaneous covariance matrix related to a short-
rate-based hybrid model in order to determine a CF. With such a short-rate model,
however, the interest rate can only be calibrated well to at-the-money products like
caps and swaptions. Those models can therefore only be used for relatively basic
hybrid products, which are insensitive to the interest rate smile.

When developing a more advanced hybrid model, moving away from the short-
rate processes to the market models, the main difficulty is linking the discrete tenor
LIBOR rates, L.t; Ti ; Tj / for Ti < Tj , to the continuous equity process, S.t/. This
issue is addressed here.

In the next section we present the main concepts of the market models.

2.2 The market model with stochastic volatility

Here, we build the basis for the interest rate process in the Heston hybrid model.
For a given set of maturities T D fT0; T1; T2; : : : ; TN g with a tenor structure

�k D Tk � Tk�1 for k D 1; : : : ; N , we define P.t; Ti / to be the price of a zero-
coupon treasury bond maturing at time Ti .> t /, with face-value €1 and the forward

The Journal of Computational Finance Volume 15/Number 4, Summer 2012
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LIBOR rate Lk.t/ WD L.t; Tk�1; Tk/:

L.t; Tk�1; Tk/ � 1

�k

�
P.t; Tk�1/

P.t; Tk/
� 1

�
for t < Tk�1 (2.3)

For modeling the LMM, we take the DD–SV model. The LIBOR rateLk.t/ is defined
under its natural measure by the following system of SDEs:

dLk.t/ D 	k.t/.ˇk.t/Lk.t/C .1 � ˇk.t//Lk.0//
p
V.t/ dW k

k .t/; Lk.0/ > 0

dV.t/ D 
.V.0/ � V.t// dt C �
p
V.t/ dW k

V .t/; V .0/ > 0

9=
;

(2.4)
with:

dW k
i .t/ dW k

j .t/ D �i;j dt for i ¤ j

dW k
V .t/ dW k

i .t/ D 0

)
(2.5)

where 	k.t/ determines the level of the volatility smile. Parameter ˇk.t/ controls
the slope of the volatility smile, and 
 determines the speed of mean reversion for
the variance and influences the speed at which the volatility smile flattens as the
swaption expiry increases (Piterbarg (2005)). Parameter � determines the curvature of
the smile. Subscript “i and superscript “j ” in dW j

i .t/ indicate the associated process
and the corresponding measure, respectively. Throughout this paper we assume that
the DD–SV model in (2.4) is already in the effective parameter framework developed
in Piterbarg (2005). This means that approximate time-homogeneous parameters are
used instead of time-dependent parameters. For this reason we set ˇk.t/ � ˇk and
	k.t/ � 	k .

An important feature, which will be shown in the next section, is that it is convenient
in our framework to work under the TN -terminal measure associated with the last
zero-coupon bond, P.t; TN /.

By taking:

�k.t/ D ˇkLk.t/C .1 � ˇk/Lk.0/ (2.6)

under the TN -terminal measure and for k < N , the LIBOR dynamics are given by:

dLk.t/ D ��k.t/	kV.t/

NX
j DkC1

�j�j .t/	j

1C �jLj .t/
�k;j dt C 	k�k.t/

p
V.t/ dW N

k .t/

dV.t/ D 
.V.0/ � V.t// dt C �
p
V.t/ dW N

V .t/

9>>=
>>;

(2.7)
with:

dW N
i .t/ dW N

j .t/ D �i;j dt for i ¤ j

dW N
k .t/ dW N

V .t/ D 0

)
(2.8)

Research Paper www.journalofcomputationalfinance.com
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6 L. A. Grzelak and C. W. Oosterlee

In the DD–SV model in (2.4) the change of measure does not affect the drift in the pro-
cess for the stochastic variance, V.t/. This is due to the assumption of independence
between the variance process, V.t/, and the LIBORs, Lk.t/. Although a generaliza-
tion to a nonzero correlation is possible (see Wu and Zhang (2008)), it is not strictly
necessary. The model, by the displacement construction and the stochastic variance,
already provides a satisfactory fit to market data.

Note that, for k D N , the dynamics for L.t; Tk�1; Tk/ do not contain a drift term
(as LIBOR L.t; TN �1; TN / is a martingale under the TN measure).

When changing measures for the stock process from the risk-neutral to the TN -for-
ward measure, one needs to find the form for the zero-coupon bond,P.t; TN /. By the
recursive Equation (2.3) it is easy to find the following expression for the last bond
(needed in Equation (3.3)):

P.t; TN / D P.t; Tm.t//

� NY
j Dm.t/C1

.1C �jL.t; Tj �1; Tj //

��1

(2.9)

with m.t/ D min.k W t 6 Tk/ (empty products in (2.9) are defined to be equal
to 1). The bond P.t; TN / in (2.9) is fully determined by the LIBOR rates Lk.t/,
k D 1; : : : ; N , and the bond P.t; Tm.t//. Although the LIBORs Lk.t/ are defined in
(2.7), the bond P.t; Tm.t// is not yet well-defined in the current framework.

In the following subsection we discuss possible interpolation methods for the short-
dated bond P.t; Tm.t//.

2.3 Interpolations of short-dated bonds

Let us consider the discrete tenor structure T and the LIBOR ratesLk.t/ as defined in
(2.3). As already indicated in Brace et al (1997) and Musiela and Rutkowski (1997),
the main problem with market models is that they do not provide continuous time
dynamics for any bond in the tenor structure. Therefore, it is rather difficult, without
additional assumptions, to define a short-rate process, r.t/, which can be used in
combination with the Heston model for equity.

In this section we discuss how to extend the market model so that the no-arbitrage
conditions are met and the bonds P.t; Ti / for t … T are well-defined.

We start with the interpolation technique introduced in Schlögl (2002). In this
approach a linear interpolation that produces a piecewise deterministic short rate
for t 2 .Tm.t/�1; Tm.t// is used. The method is equivalent to the assumption of a
zero volatility for all zero-coupon bonds, P.t; Ti /, maturing at a (future) date in the
tenor structure T , ie, t 6 Tm.t/, the zero-coupon bondP.t; Tm.t// is well-defined and
arbitrage-free (see Schlögl (2002) and Beveridge and Joshi (2010)) if:

P.t; Tm.t//
defD .1C .Tm.t/ � t /L.Tm.t/�1; Tm.t///

�1 for Tm.t/�1 < t < Tm.t/

(2.10)

The Journal of Computational Finance Volume 15/Number 4, Summer 2012
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Equity–interest rate hybrid model with stochastic volatility 7

Representation (2.10) satisfies the main features of the zero-coupon bond, ie, for
t ! Tm.t/, the bond P.t; Tm.t// ! 1. Since Equation (2.10) implies a zero volatility
interpolation for the intermediate intervals, a deterministic interest rate is assumed
for intermediate time points, Tm.t/�1 < t < Tm.t/.

However, the assumption of a locally deterministic interest rate in short-dated bonds
may be unsatisfactory, for example, for pricing path-sensitive products in which the
payment does not occur at the prespecified dates, Ti 2 T . In such a case, one can use
an interpolation that incorporates some internal volatility.An alternative arbitrage-free
interpolation for zero-coupon bonds is, for example, given by:

P.t; Tm.t//
defD .1C .Tm.t/ � t / .t//�1 for t 6 Tm.t/ (2.11)

with:

 .t/ D ˛.t/Lm.t/.Tm.t/�1/C .1 � ˛.t//Lm.t/C1.t/

and where ˛.t/ is a (chosen) deterministic function that controls the level of the
volatility in the short-dated bonds.

More details on interpolation approaches can be found in Schlögl (2002), Piterbarg
(2004), Davis and Mataix-Pastor (2009) and Beveridge and Joshi (2010).

Remark 2.1 When calibrating the equity–interest rate hybrid model, the interest
rate part is usually calibrated to market data, independent of the equity part.Afterward,
the calibrated interest rate model is combined with the equity component. With suit-
able correlations imposed, the remaining parameters are then determined. Obviously,
in the last step the hybrid parameters are determined by calibration to equity option
values. By assuming that the equity maturities, Ti , are defined to be the same dates
as the zero-coupon bonds in the LMM, there is no need for advanced zero-coupon
bond interpolations. The interpolation routines are, however, often used when pric-
ing the hybrids themselves. The hybrid product pricing is typically performed with a
short-step Monte Carlo simulation, for which the assumption of a constant short-term
interest rate may not be satisfactory (especially if the hybrid payments occur at dates
that are not specified in the tenor structure T ).

3 THE HYBRID HESTON–LIBOR MARKET MODEL

In this section we present the full-scale hybrid model.
As indicated in, for example, Morini and Mercurio (2007), when pricing interest rate

derivatives the usual reference measure is the spot measure Q associated with a directly
rebalanced bank account numeraire B.t/. However, when dealing with an equity–
interest rate hybrid model, after calibrating the interest rate part, one needs to price
the European equity options in order to determine the unknown equity parameters.

Research Paper www.journalofcomputationalfinance.com
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The price of a European call option is given by:

˘.t/ D B.t/EQ

�
1

B.TN /
.S.TN / �K/C

ˇ̌̌
ˇ Ft

�
with t < TN (3.1)

where K is the strike, S.TN / is the stock price at time TN , Ft is the filtration and
B.TN / is the numeraire. Since the money-saving account, B.TN /, is a stochastic
quantity, the joint distribution of 1=B.TN / and S.TN / is required to determine the
value in (3.1). This may be a difficult task. Obviously this issue is avoided when
switching between the appropriate measures. From the risk-free measure Q to the
forward measure associated with the zero-coupon bond maturing at the payment
day, TN , P.t; TN / (see Jamshidian (1991)). With the Radon–Nikodým derivative we
obtain:

˘.t/ D P.t; TN /E
TN

�
.S.TN / �K/C
P.TN ; TN /

ˇ̌̌
ˇ Ft

�
D P.t; TN /E

TN ..F TN .TN / �K/C j Ft / with t < TN (3.2)

with F TN .t/ the forward of the stock S.t/, defined as:

F TN .t/ D S.t/

P.t; TN /
(3.3)

3.1 Derivation of the hybrid model

Under the TN -forward measure we assume that the equity process is driven by the
Heston stochastic volatility model, given by the following dynamics:

dS.t/

S.t/
D .� � � / dt C

p
�.t/ dW N

x .t/; S.0/ > 0

d�.t/ D �. N� � �.t// dt C �
p
�.t/ dW N

� .t/; �.0/ > 0

9>=
>; (3.4)

Note that the drift in (3.4) is not yet specified.
For the interest rate model we choose the DD–SV LMM under the TN -measure

generated by the numeraire P.t; TN /, given by:

dLk.t/ D � �k.t/	kV.t/

NX
j DkC1

�j�j .t/	j

1C �jLj .t/
�k;j dt C 	k�k.t/

p
V.t/ dW N

k .t/

dV.t/ D
.V.0/ � V.t// dt C �
p
V.t/ dW N

V .t/

9>>=
>>;

(3.5)
with a nonzero correlation between the stock process, S.t/, and its variance process,
�.t/, between the LIBORs Li .t/ � L.t; Ti�1; Ti / and Lj .t/ � L.t; Tj �1; Tj / for

The Journal of Computational Finance Volume 15/Number 4, Summer 2012



�

�

“jcf_grzelak” — 2012/5/2 — 13:27 — page 9 — #9
�

�

�

�

�

�
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i; j D 1 : : : N , i ¤ j , and between the stock S.t/ and LIBOR rates, ie:

dW N
x .t/ dW N

� .t/ D �x;� dt

dW N
x .t/ dW N

j .t/ D �x;j dt

dW N
i .t/ dW N

j .t/ D �i;j dt

9>>=
>>; (3.6)

We assume a zero correlation between the LIBORs Li .t/ and their variance process
V.t/, between the LIBORs and the variance process for equity �.t/, between the
variance processes �.t/ and V.t/, and between the stock S.t/ and the variance of the
LIBORs V.t/.

For the calculation of the value of the European option given in (3.2), we first need
to determine the dynamics for the forward, F TN .t/. From Ito’s lemma we obtain:

dF TN .t/ D 1

P.t; TN /
dS.t/ � S.t/

P 2.t; TN /
dP.t; TN /

C S.t/

P 3.t; TN /
.dP.t; TN //

2 � 1

P 2.t; TN /
.dS.t//.dP.t; TN //

Since the forward is a martingale under theTN -measure generated by the zero-coupon
bond, P.t; TN /, the forward dynamics do not contain a drift term. This implies that
we should not encounter any dt terms1 in the dynamics of dF TN .t/, ie:

dF TN .t/ D .� � � / dt C 1

P.t; TN /
dS.t/ � S.t/

P 2.t; TN /
dP.t; TN / (3.7)

Equation (3.7) shows that, in order to find the dynamics for process dF TN .t/, the
dynamics forP.t; TN / also need to be determined.With the approximation introduced
in Section 2.3, the bond P.t; TN / is given by:

1

P.t; TN /
D .1C .Tm.t/ � t /Lm.t/.Tm.t/�1//

NY
j Dm.t/C1

.1C �jL.t; Tj �1; Tj //

Before we derive the Ito dynamics for the zero-coupon bond, P.t; TN /, for ease of
notation we define the following “support variables”:

f .t/ D 1C .Tm.t/ � t /L.Tm.t/�1; Tm.t/�1; Tm.t//

gj .t; Lj .t// D 1C �jL.t; Tj �1; Tj /

By taking the log transform of the bond, logP.t; TN /, we find:

logP.t; TN / D � log.f .t// �
NX

j Dm.t/C1

loggj .t; Lj .t// (3.8)

1 Note that the dt term in (3.7) should compensate for the drift appearing from dS.t/.

Research Paper www.journalofcomputationalfinance.com
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10 L. A. Grzelak and C. W. Oosterlee

so that the dynamics for the log bond read:

d logP.t; TN / D �d log.f .t// �
NX

j Dm.t/C1

d loggj .t; Lj .t// (3.9)

On the other hand, by applying Ito’s lemma to logP.t; TN /, we obtain:

d logP.t; TN / D 1

P.t; TN /
dP.t; TN / � 1

2

�
1

P.t; TN /

�2

.dP.t; TN //
2 (3.10)

By neglecting the dt terms (as we do not encounter any dt terms in the dynamics of
dF TN .t/) and by matching Equations (3.9) and (3.10), we obtain:

dP.t; TN /

P.t; TN /
D �

NX
j Dm.t/C1

d loggj .t; Lj .t// (3.11)

with the dynamics for d loggj .t; Lj .t//:

d loggj .t; Lj .t// D �j

1C �jLj .t/
dLj .t/ (3.12)

After substitution of (3.11), (3.12) and (3.5) and neglecting the dt terms, the dynamics
for the bond P.t; TN / are given by:

dP.t; TN /

P.t; TN /
D �

NX
j Dm.t/C1

�j	j�j .t/
p
V.t/

1C �jLj .t/
dW N

j .t/ (3.13)

Now we return to the derivations for the forward, F TN .t/, in Equation (3.7). By
Equation (3.4) these can be expressed as:

dF TN .t/

F TN .t/
D

p
�.t/ dW N

x .t/ � 1

P.t; TN /
dP.t; TN / (3.14)

Finally, by combining Equations (3.14) and (3.13), the dynamics for the forward
F TN .t/ are determined:

dF TN .t/

F TN .t/
D

p
�.t/ dW N

x .t/C
NX

j Dm.t/C1

�j	j�j .t/
p
V.t/

1C �jLj .t/
dW N

j .t/ (3.15)

Since the forwardF TN .t/ is a martingale under the TN -measure (ie, fully determined
in terms of the volatility structure), the interpolation with zero volatility does not
affect the dynamics for the forward F TN .t/. As indicated in Rebonato (2004), under
the forward measure, the forward price (3.15) includes components arising from the
volatility of the zero-coupon bonds that connect the spot and the forward prices.

The Journal of Computational Finance Volume 15/Number 4, Summer 2012
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Equity–interest rate hybrid model with stochastic volatility 11

4 APPROXIMATION FOR THE HYBRID MODEL

With the stock processS.t/ under the TN -terminal measure to be driven by the Heston
model with a stochastic, correlated variance process �.t/, we obtain the dynamics
in (3.15) for the forward prices F TN .t/, with dW N

x .t/ dW N
�
.t/ D �x;� dt and the

parameters as defined in (2.1). The LIBOR rates Li .t/ are defined in (3.5).
We call this model the Heston–LIBOR market model (H–LMM) here. This is the

full-scale model, which requires approximations for efficient pricing of European
equity options.

The model in (3.15) is not of the affine form, as it involves terms like �j .t/=.1C
�iLi .t//. Therefore, we cannot use the standard techniques from Duffie et al (2000)
to determine the CF. The availability of a CF is especially important for the model
calibration, where fast pricing for equity plain vanilla products is essential. For this
reason we freeze the LIBOR rates (Glasserman and Zhao (1999); Hull and White
(2000); and Jäckel and Rebonato (2000)), ie:

Lj .t/ � Lj .0/ (4.1)

As a consequence, �j .t/ � Lj .0/ (with �j .t/ in (2.6)) and the dynamics for the
forward F TN .t/ read:

dF TN .t/

F TN .t/
�

p
�.t/ dW N

x .t/C
NX

j Dm.t/C1

�j	jLj .0/
p
V.t/

1C �jLj .0/
dW N

j .t/ (4.2)

with the correlations and the remaining processes given in (3.6). We now determine
the log transform of the forward x.t/ WD logF TN .t/. With A D fm.t/C 1; : : : ; N g
and application of Ito’s lemma, the dynamics for x.t/ are given by:

dx.t/ � �1

2

� X
j 2A

 j

p
V.t/ dW N

j .t/C
p
�.t/ dW N

x .t/

�2

C
p
�.t/ dW N

x .t/C
X
j 2A

 j

p
V.t/ dW N

j .t/ (4.3)

with:

 j D �j	jLj .0/

1C �jLj .0/

The square of the sum in the drift can be reformulated using the following formula:

� NX
j D1

zj

�2

D
NX

j D1

z2
j C

X
i;j D1;:::;N

i¤j

zizj for N > 0

Research Paper www.journalofcomputationalfinance.com
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12 L. A. Grzelak and C. W. Oosterlee

By taking zj D  j

p
V.t/ dW N

j the dynamics can now be expressed as:

dx.t/

� �1

2

�
�.t/C V.t/

� X
j 2A

 2
j C

X
i;j 2A
i¤j

 i j�i;j

�
C 2

p
V.t/

p
�.t/

X
j 2A

 j�x;j

�
dt

C
p
�.t/ dW N

x .t/C
p
V.t/

X
j 2A

 j dW N
j .t/

By setting:

A1.t/ WD
X
j 2A

 2
j C

X
i;j 2A
i¤j

 i j�i;j

A2.t/ WD
X
j 2A

 j�x;j

9>>>>=
>>>>;

(4.4)

we obtain:

dx.t/ � �1
2
.�.t/C V.t/A1.t/C 2

p
V.t/

p
�.t/A2.t// dt

C
p
�.t/ dW N

x .t/C
p
V.t/

X
j 2A

 j dW N
j .t/ (4.5)

On the other hand, the frozen LIBOR dynamics are given by:

dLk.t/ � �	kLk.0/V .t/

NX
j DkC1

 j�k;j dt C 	kLk.0/
p
V.t/ dW N

k .t/

which, by taking:

B1.k/ D
NX

j DkC1

 j�k;j

equal to:

dLk.t/ � �	kLk.0/V .t/B1.k/ dt C 	kLk.0/
p
V.t/ dW N

k .t/ (4.6)

with the variance process V.t/ given in (3.5).
Here, we derive the instantaneous covariance for the stochastic model given by

(4.5) and (4.6) with the variance processes in (3.4) and (3.5). Since the dynamics for
the forward F TN .t/ involve the LIBOR rates, the dimension of the covariance matrix
will be dependent on time t . For a given state vector:

X.t/ D Œx.t/; �.t/; LN
1 .t/; L

N
2 .t/; : : : ; L

N
N .t/; V .t/�

T

The Journal of Computational Finance Volume 15/Number 4, Summer 2012
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Equity–interest rate hybrid model with stochastic volatility 13

the covariance matrix will be of the following form:

˙.X.t//˙.X.t//T

D

2
666666666664

˙x;x ˙x;� ˙x;L1
˙x;L2

� � � ˙x;LN
0

˙�;x ˙�;� 0 0 � � � 0 0

˙L1;x 0 ˙L1;L1
˙L1;L2

� � � ˙L1;LN
0

˙L2;x 0 ˙L2;L1
˙L2;L2

� � � ˙L2;LN
0

:::
:::

:::
:::

: : :
:::

:::

˙LN ;x 0 ˙LN ;L1
˙LN ;L2

� � � ˙LN ;LN
0

0 0 0 0 � � � 0 ˙V;V

3
777777777775

dt (4.7)

with:

˙x;x D �.t/C V.t/A1.t/C 2
p
V.t/

p
�.t/A2.t/ (4.8)

˙Li ;Lj
D �i;j	i	jLi .0/Lj .0/V .t/ (4.9)

˙x;Li
D �x;i	iLi .0/

p
�.t/

p
V.t/C 	iLi .0/V .t/

X
j 2A

 j�i;j (4.10)

and:
˙�;� D �2�.t/; ˙Li ;Li

D 	2
i L

2
i .0/V .t/

˙V;V D �2V.t/; ˙x;� D �x;���.t/

)
(4.11)

Zeros are present in the covariance matrix due to the assumption of zero correlation
for �x;V , ��;Li

, �Li ;V and ��;V . The covariance matrix and the drift in Equation (4.5)
include the nonaffine terms

p
�.t/

p
V.t/. Therefore, the resulting model is not affine

and we cannot easily derive the corresponding CF. Appropriate approximations will
be introduced in the next subsection.

4.1 The hybrid model linearization

In order to derive the system in an affine form, approximations for the nonaffine
terms in the instantaneous covariance matrix (4.7) are necessary (as done in Grzelak
and Oosterlee (2011) for a hybrid with stochastic volatility for equity and a short-rate
model for the interest rate). In the present work, we linearize these terms by projection
on the first moments, as follows:p

�.t/
p
V.t/ � E.

p
�.t/

p
V.t//

?D E.
p
�.t//E.

p
V.t//

DW #.t/ (4.12)

Research Paper www.journalofcomputationalfinance.com
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14 L. A. Grzelak and C. W. Oosterlee

with ? indicating independence between the processes �.t/ and V.t/. By Dufresne
(2001) and simplifications as in Kummer (1936), the closed-form expression for the
expectation of the square root of the square-root process E.

p
�.t// can be found:2

E.
p
�.t// D

p
2c.t/e�!.t/=2

1X
kD0

1

kŠ
.1

2
!.t//k

� .1
2
.1C d/C k/

� .1
2
d C k/

(4.13)

with:

c.t/ D 1

4�
�2.1 � e��t /; d D 4� N�

�2
; !.t/ D 4��.0/e��t

�2.1 � e��t /
(4.14)

and gamma function:

� .z/ D
Z 1

0

tz�1e�t dt

Parameters �, N�, �.0/ and � are given in (3.4).
Although the expectation is in closed form, its evaluation is rather expensive. One

may prefer to use a suitable proxy, given by:

E.
p
�.t// � a1 C b1e�c1t ; E.

p
V.t// � a2 C b2e�c2t (4.15)

with constant coefficients ai , bi and ci for i D 1; 2 that can easily be determined (see
Appendix A).

4.2 The forward characteristic function

With the approximations introduced, the nonaffine terms in the drift and in the instant-
aneous covariance matrix have been linearized. This approximate model is therefore
in the class of affine processes. With the approximations, under the log transform, the
forward, x.t/, is governed by the following SDE:

dx.t/ D �1
2
.�.t/C V.t/A1.t/C 2#.t/A2.t// dt

C
p
�.t/ dW N

x .t/C
p
V.t/

X
j 2A

 j dW N
j .t/

(with A1 and A2 as in (4.4)) which is of the affine form. We call this approximation
of the full-scale hybrid model the approximate Heston–LIBOR market model, or
H1–LMM.

Now we derive the corresponding forward characteristic function. Since the dimen-
sion of the hybrid changes over time, the number of coefficients in the corresponding
characteristic function will also change. For a given time to expiry, � D TN � t

2 The expectation for E.
p
V.t// is found analogously.

The Journal of Computational Finance Volume 15/Number 4, Summer 2012
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Equity–interest rate hybrid model with stochastic volatility 15

and B D fm.TN � �/ C 1; : : : ; TN g, the forward characteristic function for the
approximate hybrid model is of the following form:

�TN .u;X.t/; �/ D exp

�
A.u; �/C Bx.u; �/x.t/C B�.u; �/�.t/

C
X
j 2B

Bj .u; �/Lj .t/C BV .u; �/V .t/

�
(4.16)

subject to the terminal condition�TN .u;X.TN /; 0/ D exp.iux.TN //, which, accord-
ing to Equation (3.3), equals �TN .u;X.TN /; 0/ D exp.iu logS.TN //. The coeffi-
cients A.u; �/, Bx.u; �/, B�.u; �/, Bj .u; �/ and BV .u; �/ satisfy the system of ordi-
nary differential equations (ODEs) in the following lemma.

Lemma 4.1 The functions Bx.u; �/ DW Bx , B�.u; �/ DW B� , Bj .u; �/ DW Bj ,
BV .u; �/ DW BV and A.u; �/ DW A for the forward characteristic function given in
(4.16) satisfy the following ODEs:

d

d�
Bx.u; �/ D 0

d

d�
Bj .u; �/ D 0

d

d�
B�.u; �/ D 1

2
Bx.Bx � 1/C .�x;��Bx � �/B� C 1

2
�2B2

�

d

d�
BV .u; �/ D 1

2
A1.t/Bx.Bx � 1/ �

X
j 2A

	jLj .0/BxBj

X
k2A

 k�k;j

� 
BV C 1

2

X
j 2A

	2
j L

2
j .0/B

2
j

C
X

i;j 2A
i¤j

�i;j	i	jLi .0/Lj .0/BiBj C 1
2
�2B2

V

d

d�
A.u; �/ D #.t/A2.t/Bx.Bx � 1/C � N�B� C 
V.0/BV

C
X
j 2A

�x;j	jLj .0/#.t/BxBj

where A D fm.t/C1; : : : ; N g, t D TN �� , with boundary conditionsBx.u; 0/ D iu,
Bj .u; 0/ D 0, B�.u; 0/ D 0, BV .u; 0/ D 0 and A.u; 0/ D 0.

Proof The proof can be found in Appendix B. �

Corollary 4.2 Under the TN -forward measure, the characteristic function for
x.t/ in (4.16) does not contain terms like Bj .u; �/ and Lj .t/ for j D 1; : : : ; N ,

Research Paper www.journalofcomputationalfinance.com
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16 L. A. Grzelak and C. W. Oosterlee

which implies a dimension reduction for the corresponding pricing partial differential
equation, if we move forward in time. This is a consequence of the fact that the LIBOR
dynamics have the property of “dying” after the reset date, ie, the dimension of the
underlying model is reduced as particular LIBORs have been determined.

In fact, the dimension reduction is a natural consequence of freezing the LIBOR
rates at their initial values. The approximating equity model for x.t/ D logF TN .t/

is given by the following system of SDEs:

dx.t/ � �1
2

Of .t; V .t/; �.t// dtC
p
�.t/ dW N

x .t/C
p
V.t/

X
j 2A

 j dW N
j .t/ (4.17)

with:
d�.t/ D �. N� � �.t// dt C �

p
�.t/ dW N

� .t/

dV.t/ D 
.V.0/ � V.t// dt C �
p
V.t/ dW N

V .t/

9=
; (4.18)

where Of .t; V .t/; �.t// WD �.t/C V.t/A1.t/C 2#.t/A2.t/ and the functions A1.t/

and A2.t/ are defined in (4.4). We see that, by a number of approximations, the
functional dependence of x.t/ on the LIBOR dynamics is reduced to a dependence
on the initial LIBOR rates Lk.0/, for k D 1; : : : ; N , and volatility processes �.t/
and V.t/.

As mentioned, the approximate model used for calibration cannot become a new
stand-alone model for hybrid products, as the approximations introduced modify the
Girsanov kernel when changing between the measures. This means that, in fact, the
approximation we have derived is not guaranteed to be arbitrage-free.

Lemma 4.1 indicates that Bx.u; �/ D iu and Bj .u; �/ D 0, giving rise to a
simplification of the forward CF:

�TN .u;X.t/; �/ D exp.A.u; �/C iux.t/CB�.u; �/�.t/CBV .u; �/V .t// (4.19)

with B�.u; �/, BV .u; �/ and A.u; �/ given by:

d

d�
B�.u; �/ D �1

2
.u2 C iu/C .�x;�� iu � �/B� C 1

2
�2B2

�

d

d�
BV .u; �/ D �1

2
A1.t/.u

2 C iu/ � 
BV C 1
2
�2B2

V

d

d�
A.u; �/ D �#.t/A2.t/.u

2 C iu/C � N�B� C 
V.0/BV

9>>>>>>>=
>>>>>>>;

(4.20)

subject to the initial conditions:

B�.u; 0/ D 0; BV .u; 0/ D 0; A.u; 0/ D 0

The Journal of Computational Finance Volume 15/Number 4, Summer 2012
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Equity–interest rate hybrid model with stochastic volatility 17

With the help of the Feynman–Kac theorem, one can show that the forward charac-
teristic function �TN WD �TN .u;X.t/; �/ given in (4.19) with functions B�.u; �/,
BV .u; �/ and A.u; �/ in (4.20) satisfies the following Kolmogorov backward
equation:

0 D @�TN

@t
C 1

2
.� C A1.t/V C 2A2.t/#.t//

�
@2�TN

@x2
� @�TN

@x

�
C �. N� � �/@�

TN

@�

C 
.V.0/ � V /@�
TN

@V
C 1

2
�2V

@2�TN

@V 2
C 1

2
�2�

@2�TN

@�2
C �x;���

@2�TN

@x@�

(4.21)

subject to �TN .u;X.T /; 0/ D exp.iux.TN //, with #.t/ in (4.12), and A1.t/, A2.t/

in (4.4).
Since #.t/ is a deterministic function of time, the partial differential equation

coefficients in (4.21) are all affine.
The complex-valued functions B�.u; �/; BV .u; �/ and A.u; �/ in Lemma 4.1 are

of Heston type (see Heston (1993)). An analytic closed-form solution is available for
constant parameters. However, since the functions A1.t/ and A2.t/ are not constant
but piecewise constant, an alternative approach needs to be used. As indicated in
Andersen and Andreasen (2000), an analytic but recursive solution is also available
for piecewise constant parameters. We provide the solutions in Proposition 4.3.

Proposition 4.3 (Piecewise complex-valued functionsA.u; �/,B�.u; �/,BV .u; �/)
For a given grid, 0 D �0 < �1 < � � � < �N D �; and time interval, sj D �j ��j �1, j D
1; : : : ; N; the piecewise constant complex-valued coefficients B�.u; �/ and BV .u; �/

are given by the following recursive expressions:

B�.u; �j / D B�.u; �j �1/C .� � �x;�� iu � d1
j � �2B�.u; �j �1//.1 � e�d1

j
sj /

�2.1 � g1
j e�d1

j
sj /

BV .u; �j / D BV .u; �j �1/C .
 � d2
j � �2BV .u; �j �1//.1 � e�d2

j
sj /

�2.1 � g2
j e�d2

j
sj /

and:

A.u; �j / D A.u; �j �1/C � N�
�2

�
.� � �x;�� iu � d1

j /sj � 2 log

�
1 � g1

j e�d1
j

sj

1 � g1
j

��

C 
V.0/

�2

�
.
 � d2

j /sj � 2 log

�
1 � g2

j e�d2
j

sj

1 � g2
j

��

� A2.t/.u
2 C iu/

Z �j

�j �1

#.t/ dt

Research Paper www.journalofcomputationalfinance.com
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18 L. A. Grzelak and C. W. Oosterlee

with:

d1
j D

q
.�x;�� iu � �/2 C �2.iuC u2/

d2
j D

p

2 C �2A1.t/.u2 C iu/

g1
j D .� � �x;�� iu/ � d1

j � �2B�.u; �j �1/

.� � �x;�� iu/C d1
j � �2B�.u; �j �1/

g2
j D 
 � d2

j � �2BV .u; �j �1/


C d2
j � �2BV .u; �j �1/

and the initial conditionsB�.u; �0/ D 0,BV .u; �0/ D 0 andA.u; �0/ D 0. Moreover,
for t D TN ��j ; the functionsA1.t/ andA2.t/ are defined in (4.4) and #.t/ is defined
in (4.12), with the parameters �, � , 
, � and �x;� given in (3.4)–(3.6).

Proof The proof can be found in Appendix C. �

With a characteristic function available for the log transformed forward x.t/, we
can compute European option prices for equity maturing at the terminal time, TN .
In the case of an option maturing at a time different from the terminal time TN (say,
at Ti with i < N ), we need to price the equity forward F Ti .t/, and therefore an
appropriate change of measure for the H–LMM (3.15) should be applied. Since the
forward F Ti is a martingale under the Ti -forward measure, it does not contain a drift
term. On the other hand, the variance process �.t/ for the Heston model is neither
correlated with the LIBORs nor with the LIBORs’ variance process V.t/. The change
of measure therefore does not affect the variance process �.t/. In Appendix D we
present a proof for this statement.

5 NUMERICAL RESULTS

In this section several numerical experiments are presented. First, the accuracy of the
approximate model H1–LMM is compared with the full-scale H–LMM for European
call option prices. Furthermore, the sensitivity to the interest rate skew for both models
is checked. Finally, we use a typical equity–interest rate hybrid payoff function and
compare the performance of the new H–LMM with the Heston–Hull–White (HHW)
hybrid model.

5.1 Approximation accuracy of the H1–LMM

We check here the accuracy of the developed approximation H1–LMM. We com-
pare the Monte Carlo European call prices from the full-scale H–LMM with the
corresponding prices obtained by the Fourier inverse algorithm (Fang and Oosterlee

The Journal of Computational Finance Volume 15/Number 4, Summer 2012
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Equity–interest rate hybrid model with stochastic volatility 19

(2008)) for the H1–LMM. In the Monte Carlo simulation we work under one measure,
the TN -terminal measure. So, the prices for different option maturities are calculated
by the following expression:

˘MC.t/ D P.t; TN /E
TN

�
.STi

�K/C
P.Ti ; TN /

ˇ̌̌
ˇ Ft

�
for i 6 N

which, by Equation (3.3), equals:

˘MC.t/ D P.t; TN /E
TN

��
F TN .Ti / � K

P.Ti ; TN /

�C ˇ̌̌
ˇ Ft

�

where K is the strike price, and the bond P.Ti ; TN / is given by (2.9).
The prices calculated by the Fourier inverse algorithm are obtained with the fol-

lowing expression:

˘F.t/ D P.t; Ti /E
Ti ..F Ti .Ti / �K/C j Ft /

with the CF from Proposition 4.3.As mentioned, the change of measure does not affect
the volatility of the Heston process. Pricing under different measures is therefore
consistent.

When calibrating the plain Heston model in practice, the parameters obtained rarely
satisfy the Feller condition �2 < 2� N� (if the Feller condition is satisfied, this ensures
that the variance process is positive). In order to mimic a realistic setting, we also
choose parameters that do not satisfy this inequality, ie:

� D 1:2; N� D 0:1; � D 0:5; S.0/ D 1; �.0/ D 0:1

For the interest rate model, we take:

ˇk D 0:5; 	k D 0:25; 
 D 1; V .0/ D 1; � D 0:1

In the correlation matrix a number of model correlations need to be specified. For
the correlations between the LIBOR rates, we set large positive values, as frequently
observed in the fixed income markets (see, for example, Brigo and Mercurio (2007)),
�i;j D 0:98 for i; j D 1; : : : ; N , i ¤ j . For the correlation between S.t/ and �.t/we
set a negative correlation, �x;� D �0:3, which corresponds to the skew in the implied
volatility for equity. Finally, the correlation between the stock and the LIBORs we set
�x;i D 0:5 for i D 1; : : : ; N . In practice, this correlation would be estimated from
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TABLE 1 The European equity call option prices of the H1–LMM compared with those of
the H–LMM.

T2 T5 T10‚ …„ ƒ ‚ …„ ƒ ‚ …„ ƒ
Strike K CF MC CF MC CF MC

K D 40% 0.6418 0.6424 0.7017 0.7014 0.7821 0.7833
(0.0035) (0.0034) (0.0081)

K D 80% 0.3299 0.3316 0.4638 0.4648 0.6203 0.6226
(0.0030) (0.0034) (0.0082)

K D 100% 0.2149 0.2167 0.3730 0.3742 0.5562 0.5588
(0.0027) (0.0034) (0.0083)

K D 120% 0.1332 0.1345 0.2993 0.3004 0.5008 0.5036
(0.0024) (0.0034) (0.0083)

K D 160% 0.0483 0.0486 0.1933 0.1941 0.4109 0.4140
(0.0016) (0.0034) (0.0082)

K D 200% 0.0184 0.0184 0.1268 0.1273 0.3419 0.3452
(0.0010) (0.0031) (0.0080)

K D 240% 0.0078 0.0076 0.0850 0.0852 0.2878 0.2913
(0.0006) (0.0026) (0.0079)

The H–LMM Monte Carlo experiment was performed with 200 000 paths and twenty intermediate points between
dates Ti�1 and Ti , for i D 1; : : : ; N . The tenor structure was chosen to be T D fT1; : : : ; T10g with the terminal
measure TN D T10. Numbers in parentheses are sample standard deviations.

historical data. The following correlation matrix results:

2
666666664

1 �x;� �x;1 � � � �x;N �x;V

��;x 1 ��;1 � � � ��;N ��;V

�1;x �1;� 1 � � � �1;N �1;V

:::
:::

:::
: : :

:::
:::

�N;x �N;� �N;1 � � � 1 �N;V

�V;x �V;� �V;1 � � � �V;N 1

3
777777775

2
666666664

1 �0:3 0:5 � � � 0:5 0

�0:3 1 0 � � � 0 0

0:5 0 1 � � � 0:98 0
:::

:::
:::

: : :
:::

:::

0:5 0 0:98 � � � 1 0

0 0 0 � � � 0 1

3
777777775

(5.1)

The accuracy and the associated standard deviations, in terms of the European call

option prices for equity (with the Monte Carlo simulation versus the Fourier inversion

of the CF), are presented in Table 1. In Figure 1 on the facing page the corresponding

implied volatility plots are presented. The accuracy of the approximations introduced

(H1–LMM) is highly satisfactory for this experiment.

The Journal of Computational Finance Volume 15/Number 4, Summer 2012



�

�

“jcf_grzelak” — 2012/5/2 — 13:27 — page 21 — #21
�

�

�

�

�

�

Equity–interest rate hybrid model with stochastic volatility 21

FIGURE 1 Comparison of implied Black–Scholes volatilities for the European equity
option, obtained by Fourier inversion of the H1–LMM and by Monte Carlo simulation of the
H–LMM.
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Black–Scholes implied volatility for (a) T D 2, (b) T D 5 and (c) T D 10. Solid line: Fourier inverse. Dashed line:
Monte Carlo.

5.2 Interest rate skew

The approximation H1–LMM was based on freezing the appropriate LIBOR rates and
on linearizations in the instantaneous covariance matrix. By freezing the LIBORs, ie,
`k.t/ � Lk.0/, we have that �k.t/ D ˇkLk.t/C .1 � ˇk/Lk.0/ D Lk.0/.

In the DD–SV model, parameter ˇk controls the slope of the interest rate volatility
smile, so by freezing the LIBORs to Lk.0/ the information about the interest rate
skew is not included in the approximation H1–LMM.

Here we perform an experiment with the full-scale model (H–LMM). Using a
Monte Carlo simulation, we check the influence of parameterˇk on the equity implied
volatilities (Black and Scholes (1973)). The equity implied volatilities for the Euro-
pean call option for H–LMM are presented in Table 2 on the next page. The experiment
displays a small impact of the different ˇks on the equity implied volatilities, which
implies that our approximation, H1–LMM, makes sense for various parameters ˇk in
the interest rate modeling in the present setting.

To explain the small effect of the variation in ˇk on the equity implied volatility
we need to return to the equity forward equation in (3.15), ie:

dF TN .t/

F TN .t/
D

p
�.t/ dW N

x .t/C
NX

j Dm.t/C1

�j	j�j .t/
p
V.t/

1C �jLj .t/
dW N

j .t/

The equity forward is based on two types of correlated volatilities: the equity with
dW N

x .t/ and the interest rate with dW N
j .t/ for j D 1; : : : ; N . Since, in the experi-
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TABLE 2 Equity implied volatilities.

Strike ˇk D 0 ˇk D 0.5 ˇk D 1

K D 40% 35.71% 35.50% 34.60%
(0.0290) (0.0221) (0.0460)

K D 80% 34.63% 34.49% 34.26%
(0.0109) (0.0086) (0.0175)

K D 100% 34.23% 34.15% 33.99%
(0.0087) (0.0066) (0.0139)

K D 120% 33.90% 33.89% 33.78%
(0.0073) (0.0055) (0.0119)

K D 160% 33.40% 33.53% 33.47%
(0.0058) (0.0045) (0.0097)

K D 200% 33.05% 33.28% 33.26%
(0.0052) (0.0041) (0.0088)

K D 240% 32.81% 33.09% 33.12%
(0.0048) (0.0039) (0.0085)

The effect of the interest rate skew, controlled by ˇk , on the equity implied volatilities. The Monte Carlo simulation
was performed with the setup from Table 1 on page 20. The maturity is TN D 10. Values in parentheses indicate
implied volatility standard deviations (the experiment was repeated ten times).

ment, we have chosen a realistic set of parameters (as in Section 5.1) with a rather
large parameter � D 0:5, the first term in the forward SDE above,

p
�.t/ dW N

x .t/, is
dominating. The other volatilities contribute in particular when large maturities are
considered. The theoretical proof for this statement is rather involved, but we can
illustrate it by setting t D 0. For the equity part we then have:p

�.0/ � 0:3162

and for the interest rate we have:

p
V.0/

NX
j D1

�j	jLj .0/

1C �jLj .0/
� 0:0122N

where N corresponds to the number of LIBORs considered.
The experiments performed show that the equity option prices are not strongly influ-

enced by the value of ˇk , which indicates that freezing the LIBORs in the H1–LMM
may not influence the calibration procedure significantly.

5.3 Pricing a hybrid product

Although the interest rate skew parameter ˇk does not strongly influence the equity
prices, it may still have an impact on the hybrid contract price. In this subsection we
use the H–LMM and price a typical exotic payoff.
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As indicated in Hunter and Picot (2006), an investor interested in structured prod-
ucts may look for higher expected return (higher coupons) than available from basic
market instruments. By trading hybrid products they can also trade the correlation, for
example, by including multiple assets in a structured derivatives product, and there-
fore the basket volatility can be reduced. This typically makes the corresponding
option cheaper.

The main advantage of the H–LMM lies in its capability to price hybrid products
that are sensitive to an equity smile, an interest rate smile and the correlation between
the assets. A hybrid payoff that involves the equity and interest rate assets is the
so-called “minimum of several assets payoff” (see Hunter and Picot (2006)). The
contract is made for an investor willing to take some risk in one asset class in order
to become a participant in a different asset class. If the investor wants to be involved
in an n-year constant maturity swap (CMS), by taking some risk in equity, this can
be expressed by the following payoff:

payoff D max

�
0;min

�
Cn.T /; k% � S.T /

S.t/

��

where S.t/ is the stock price at time t and Cn.t/ is an n-year CMS. By setting the
tenor structure T D f1; : : : ; 10g, with payment for P.TN ; TM / at time TN D 5 and
with maturity TM D 10, we obtain the following pricing equation:

˘H.t/ D P.t; T5/E
T5

�
max

�
0;min

�
1 � P.T5; T10/P10

kD6 P.T5; Tk/
; k% � S.T5/

S.t/

�� ˇ̌̌
ˇ Ft

�
(5.2)

In our simulation, the bonds P.Ti ; Tj / are obtained from the DD–SV LMM and
determined by (2.9) for t D Ti and TN D Tj . As a first test we check the sensitivity
to the interest rate skew (by changing ˇ and keeping the correlation �x;i D 0 for
all i ) and to the correlation between the stock, St , and the LIBOR rates, Li .t/, by
varying the correlation, �x;i D f0;�0:7; 0:7g for all i . Figure 2 on the next page
shows the corresponding results. We see a significant impact on the hybrid prices,
which suggests that plain equity models, or equity short-rate hybrid models, may
lead to different prices for such hybrid products.

Insight into the added value of the H–LMM can be gained by comparing the
H–LMM results with, for example, the HHW hybrid model. In the HHW model
the equity part is driven by the Heston process, as in Equation (2.1), but the interest
rate is driven by a Hull–White short-rate process given by the following SDE:

dr.t/ D 
.
.t/ � r.t// dt C � dWr.t/ with r.0/ > 0 (5.3)

with positive parameters 
, 
.t/, � and dWx.t/ dWr.t/ D �x;r dt .
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FIGURE 2 The value for a “minimum of several assets” hybrid product.

0.05 0.10 0.15 0.20 0.25
0.010

0.020

0.030

0.040

k (%)

P
ric

e

 

4 6 8 10 12

0.026

0.030

0.034

0.038

0.042

k (%)

P
ric

e

 
(a) (b)

The prices are obtained by Monte Carlo simulation with 20 000 paths and 20 intermediate points. (a) Influence of
ˇ . Dotted circle line, ˇ D 0; solid square line, ˇ D 0.3; dashed triangle line, ˇ D 0.6; solid diamond line, ˇ D 1.
(b) Influence of �x;L. Dotted circle line, �x;L D 0; dashed triangle line, �x;L D �0.7; solid square line, �x;L D 0.7.

Before performing the pricing of the hybrid product the model parameters need to
be determined. The models were calibrated to data sets provided in Appendix E. For
the H–LMM, the parameters from Section 5.1 were used. In the calibration of the
HHW model, we first calibrated the Hull–White process, for which we obtained:


 D 0:0614; � D 0:0133; r0 D 0:05

Then, with an imposed correlation between the stock and the short rate, �x;r D 0:5;

the remaining parameters were found to be:

� D 0:650; � D 0:469; N� D 0:090

�x;� D �0:222; �.0/ D 0:114

In part (a) of Figure 3 on the facing page we present the pricing results with the I don’t quite understand the
caption here. You say in the
figure heading that the graphs
are for the H–LMM and
HHW models, but in the
notes Heston–DD–SV is
mentioned. Please clarify.

two hybrid models. For k > 5% (with k in Equation (5.2)) a significant difference
between the obtained prices is observed, although the two models were calibrated to
the same data set.

Payoff equation (5.2) shows that, as the percentage k increases, the dominating part
of the product will be the CMS rate. We conclude that the Hull–White underlying
model for the short rate indeed does not take into account the interest rate smile/skew
and therefore gives different prices for a smile/skew sensitive product.

In part (b) of Figure 3 on the facing page we present the histograms of the CMS
rate for both models. The histograms show a significantly fatter tail in the case of the
DD–SV model than the one for the Hull–White short-rate model.
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FIGURE 3 Hybrid prices and CMS for the H–LMM and HHW models.
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(a) Hybrid prices obtained by two different hybrid models: H–LMM and HHW. The models were calibrated to the
same data set. Gray circle line: HHW model. Black square line: Heston–DD–SV. (b) Constant maturity swap rate for
the H–LMM and HHW models. Black bars: CMS–SV–LMM. Gray bars: CMS–HW.

6 CONCLUSION

As well as requiring models that are well-defined and that capture the important
features in the market, the financial industry also needs models that are efficiently
calibrated to market data.

We have proposed an equity–interest rate hybrid model with stochastic volatility
for stock and for the interest rates. To bring the model into the class of affine processes,
we projected the nonaffine terms on time-dependent functions. This approximation
to the full-scale model is affine, and we have determined a closed-form forward
characteristic function. By this the approximate hybrid model, H1–LMM, can be
used for calibration purposes.

The main advantage of the model developed here lies in its ability to price hybrid
products exposed to the interest rate smile accurately and efficiently.

We have focused on the calibration aspects. In future research we will aim for
theoretical analysis of the impact of the various approximations made.

APPENDIX A: APPROXIMATIONS FOR E.
p

v.t//

Expectation E.
p
�.t// (as well as E.

p
V.t//) can be approximated by a function of

the following form:
E.

p
�.t// � aC be�ct DW Q�.t/ (A.1)

with a, b and c as constants. Appropriate values for a, b and c in (A.1) can be obtained
via an optimization problem of the form mina;b;c k�.t/� Q�.t/kn;where k � kn is any
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nth norm, where:

�.t/ D
s
c.t/.!.t/ � 1/C c.t/d C c.t/d

2.d C !.t//

for c.t/, d and !.t/ defined in (4.14). Here, instead of a numerical approximation for
these coefficients, we use a simple analytic expression in Result A 1.

Result A 1 By matching the functions �.t/ and Q�.t/ for t ! C1, t ! 0 and
t D 1, we find that:

lim
t!C1�.t/ D

r
Nv � �2

8�
D a1 D lim

t!C1
Q�.t/

lim
t!0

�.t/ D
p
v.0/ D a1 C b1 D lim

t!0

Q�.t/

lim
t!1

�.t/ D �.1/ D a1 C b1e�c1 D lim
t!1

Q�.t/

9>>>>>>=
>>>>>>;

(A.2)

The values a1, b1 and c1 can now be estimated by:

a1 D
r

Nv � �2

8�
; b1 D

p
v.0/ � a1; c1 D � log.b�1

1 .�.1/ � a1// (A.3)

APPENDIX B: PROOF OF LEMMA 4.1

Proof For affine processes X.t/, the forward CF �TN .u;X.t/; �/ is given by
(Duffie et al (2000)):

�TN .u;X.t/; �/ D ETN .eiuTX.T / j Ft /

D exp.A.u; �/C BT.u; �/X.t//

with time lag � D TN � t . Here, the expectation is taken under the TN -forward
measure, QTN . The complex-valued functions A.u; �/ and BT.u; �/ have to satisfy
the following complex-valued ODEs:

d

d�
B.u; �/ D aT

1B C 1
2
BTc1B

d

d�
A.u; �/ D BTa0 C 1

2
BTc0B

9>>=
>>; (B.1)

with ai , ci , i D 0; 1, defined in:

�.X.t// D a0 C a1X.t/

for any .a0; a1/ 2 Rn � Rn�n, and:

˙.X.t//˙.X.t//T D .c0/ij C .c1/
T
ij X.t/
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for arbitrary .c0; c1/ 2 Rn�n � Rn�n�n. Index n indicates the dimension, �.X.t// is
the drift of processes X.t/ and ˙.X.t//˙.X.t//T corresponds to the instantaneous
covariance matrix.

Under the log transform we find that the state vector X.t/ has N C 3 elements
.n D N C 3/:

X.t/ D Œx.t/; �.t/; L1.t/; : : : ; LN .t/; V .t/�
T

With the Heston equity model (4.5) and the stochastic volatility LMM in (4.6) we set
vector u D Œu; 0; : : : ; 0�T. In order to find the functionsA.u; �/ and BT.u; �/ in (B.1)
we need to determine the matrices aT

1 , c0, c1 and the vector a0. By the approximations
in (4.1) and (4.12), the drifts in the LIBORsLi .t/ and in the forward dynamics do not
contain any nonaffine terms. For A D fm.t/C 1; : : : ; N g, t D TN � � , the nonzero
elements in matrix aT

1 are given by:

aT
1.2; 1/ D �1

2
; aT

1.2; 2/ D ��
aT

1.N C 3; 1/ D �1
2
A1.t/; aT

1.N C 3;N C 3/ D �

with:

aT
1.N C 3; j C 2/ D �	jLj .0/B1.j / for j 2 A

To determine the matrices c1 and c0 we use the instantaneous covariance matrix from
(4.7). For matrix c1 the nonzero elements are given by:

c1.1; 1; 2/ D 1; c1.1; 1;N C 3/ D A1.t/

c1.2; 1; 2/ D �x;��; c1.1; 2; 2/ D �x;��

c1.2; 2; 2/ D �2; c1.N C 3;N C 3;N C 3/ D �2

and:

c1.j C 2; j C 2;N C 3/ D 	2
j L

2
j .0/ for j 2 A

c1.i C 2; j C 2;N C 3/ D �i;j	i	jLi .0/Lj .0/ for i; j 2 A; i ¤ j

c1.1; j C 2;N C 3/ D 	jLj .0/
X
k2A

 k�j;k

c1.j C 2; 1;N C 3/ D c1.1; j C 2;N C 3/

In essence, the first and the second index of c1 indicate which covariance term we
deal with, whereas the third term indicates which variable is defined. The unspecified
matrix values are equal to zero.

For matrix c0 and vector a0 we get:

c0.1; 1/ D 2#.t/A2.t/

c0.1; j C 2/ D c0.j C 2; 1/ D �x;j	j#.t/Lj .0/ for j 2 A
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and:

a0.1/ D �#.t/A2.t/; a0.2/ D � N�; a0.N C 3/ D 
V.0/

By substitutions and appropriate matrix multiplications in (B.1) the proof is complete.
�

APPENDIX C: PROOF OF PROPOSITION 4.3

Proof We note that the functions A1.t/ and A2.t/ are constant between the times
�i . For simplicity, we set �0 D 0 and � D T � t . Since Bj .u; �/ D 0, the equations
which need to be solved are given by:

d

d�
B�.u; �/ D b1;0 C b1;1B� C b1;2B

2
� (C.1)

d

d�
BV .u; �/ D b2;0 C b2;1BV C b2;2B

2
V (C.2)

d

d�
A.u; �/ D a0B� C a1BV C f .t/ (C.3)

with certain initial conditions for B�.u; �0/, BV .u; �0/ and A.u; �0/ and coefficients:

b1;0 D �1
2
.u2 C iu/; b1;1 D �x;�� iu � �; b1;2 D 1

2
�2

b2;0 D �1
2
A1.t/.u

2 C iu/; b2;1 D �
; b2;2 D 1
2
�2

)
(C.4)

and the coefficients for A.u; �/:

a0 D � N�; a1 D 
V.0/; f .t/ D �#.t/A2.t/.u
2 C iu/ (C.5)

Since B�.u; �/ and BV .u; �/ do not depend on A.u; �/, a closed-form solution is
available (see, for example, Heston (1993) and Wu and Zhang (2008)). For � > 0 we
find:

B�.u; �/ D B�.u; �0/C .�b1;1 � d1 � 2b1;2B�.u; �0//

2b1;2.1 � g1e�d1.���0//
.1 � e�d1.���0// (C.6)

BV .u; �/ D BV .u; �0/C .�b2;1 � d2 � 2b2;2BV .u; �0//

2b2;2.1 � g2e�d2.���0//
.1 � e�d2.���0// (C.7)

with:

d1 D
q
b2

1;1 � 4b1;0b1;2; d2 D
q
b2

2;1 � 4b2;0b2;2

g1 D �b1;1 � d1 � 2B�.u; �0/b1;2

�b1;1 C d1 � 2B�.u; �0/b1;2

; g2 D �b2;1 � d2 � 2BV .u; �0/b2;2

�b2;1 C d2 � 2B�.u; �0/b2;2

9>>=
>>;
(C.8)
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For A.u; �/ we have:

A.u; �/ D A.u; �0/C a0

Z �

0

B�.u; s/ ds C a1

Z �

0

BV .u; s/ ds C
Z �

0

f .� � s/ ds

The first two integrals can be solved analytically:

Z �

0

B�.u; s/ ds D 1

2b1;2

�
.�b1;1 C d1/.� � �0/ � 2 log

�
1 � g1e�d1.���0/

1 � g1

��
Z �

0

BV .u; s/ ds D 1

2b2;2

�
.�b2;1 C d2/.� � �0/ � 2 log

�
1 � g2e�d2.���0/

1 � g2

��
(C.9)

For the last integral we have:Z �

0

f .� � s/ ds D �.u2 C iu/
Z �

0

#.� � s/A2.� � s/ ds (C.10)

SinceA2.� � s/ is constant between 0 and � , functionA2.� � s/ can be taken outside
the integral. The proof is finished by the appropriate substitutions. �

APPENDIX D: EQUITY VARIANCE DYNAMICS UNDER MEASURE
CHANGE

Proposition D 1 The dynamics of the variance process �.t/ given in (3.4) are
not affected by changing the forward measure generated by numeraire P.t; Ti /, for
i D 1; : : : ; N .

Proof Under the TN -forward measure, the model with the forward stock F TN .t/

in (3.15), the variance process �.t/ in (3.4), and the LIBOR rates as given in (3.5)
can, in terms of the independent Brownian motions, be expressed as:

2
666666666666664

dL1.t/

dL2.t/

:::

dLN .t/

dV.t/

dF TN .t/

F TN .t/

d�.t/

3
777777777777775

D

2
6666666666664

�1.t/

�2.t/

:::

�N .t/ D 0


.V .0/ � V.t//
0

�. N� � �.t//

3
7777777777775

dt C AH

2
666666666666664

d QW N
1 .t/

d QW N
2 .t/

:::

d QW N
N .t/

d QW N
V .t/

d QW N
x .t/

d QW N
�
.t/

3
777777777777775

(D.1)
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with:

A D

2
666666664

	1�1.t/
p
V.t/ � � � 0 0 0 0

:::
: : :

:::
:::

:::
:::

0 � � � 	N�N .t/
p
V.t/ 0 0 0

0 � � � 0 �
p
V.t/ 0 0

�1.t/
p
V.t/ � � � �N .t/

p
V.t/ 0

p
�.t/ 0

0 � � � 0 0 0 �
p
�.t/

3
777777775
(D.2)

where:

�j .t/ D �j	j�j .t/

1C �jLj .t/

and H is the Cholesky lower triangular of the correlation matrix C , which is given
by:

C D

2
666666666664

1 �1;2 � � � �1;N 0 �x;1 0

�2;1 1 � � � �2;N 0 �x;2 0
:::

:::
: : :

:::
:::

:::
:::

�N;1 �N;2 � � � 1 0 �x;N 0

0 0 � � � 0 0 0 0

�x;1 �x;2 � � � �x;N 0 1 �x;�

0 0 � � � 0 0 �x;� 1

3
777777777775

(D.3)

With �k.t/ the kth row vector from matrix M D AH , the dynamics for the LIBOR
LN .t/ can be expressed as:

dLN .t/ D �N .t/ d QW N .t/

The Radon–Nikodým derivative, �N �1
N .t/, is given by:

�N �1
N .t/ D dQN �1

dQN
D P.T0; TN /

P.T0; TN �1/
.1C �NLN .t// (D.4)

and therefore, the dynamics for �N
N �1.t/ read:

d�N �1
N .t/ D �N �1

N .t/
�N �N .t/

1C �NLN .t/
d QW N .t/ (D.5)

By the Girsanov theorem this implies that the change of measure is given by:

d QW N .t/ D �N �N .t/
T

1C �NLN .t/
dt C d QW N �1.t/ (D.6)
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where the firstN C1 elements correspond toN LIBORs with their volatility process
V.t/. The remaining two elements are related to the equity part driven by the Heston
model.

We wish to find the dynamics for process �.t/ under the measure QN �1. In terms
of the independent Brownian motions the variance process �.t/ is given by:

d�.t/ D �. N� � �.t// dt C �N C3.t/ d QW N .t/

with:
�N C3.t/ D Œ0; 0; 0; : : : ; 0„ ƒ‚ …

N C1

; �
p
�.t/�x;� ; �

p
�.t/

p
1 � �2

x;� � (D.7)

By Equation (D.6) the dynamics for �.t/ under QN �1 are given by:

d�.t/ D �. N� � �.t// dt C �N C3.t/

�
�N �N .t/

T

1C �NLN .t/
dt C d QW N �1.t/

�
(D.8)

Since:
�N .t/ D Œ: : : ; : : : ; : : :„ ƒ‚ …

N C1

; 0; 0� (D.9)

so the scalar product �N C3.t/�N .t/
T D 0. This results in the following dynamics for

the process �.t/ under the QN �1 measure:

d�.t/ D �. N� � �.t// dt C �N C3.t/ d QW N �1.t/ (D.10)

Since, for all j D 1; : : : ; N , the scalar product �N C3.t/�j .t/
T D 0, changing the

corresponding forward measures does not affect the drift of the variance process �.t/.
This observation concludes the proof. �

APPENDIX E: REFERENCE MARKET DATA

In Table E.1 on the next page we present the reference market data to which the
models have been calibrated.

The zero-coupon bonds are given by: P.0; 1/ D 0:9512, P.0; 2/ D 0:9048,
P.0; 3/ D 0:8607, P.0; 4/ D 0:8187, P.0; 5/ D 0:7788, P.0; 6/ D 0:7408,
P.0; 7/ D 0:7047, P.0; 8/ D 0:6703, P.0; 9/ D 0:6376 and P.0; 10/ D 0:6065.
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