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Abstract

The stochastic Alpha Beta Rho stochastic volatility (SABR-SV) model is widely used in the fi-
nancial industry for the pricing of fixed income instruments. In this paper we develop an unbiased
simulation scheme for the SABR-SV model, which deals efficiently with (undesired) possible nega-
tive values, the martingale property of the discrete scheme and the discretization bias of commonly
used Euler discretization schemes. The proposed algorithm is based the analytic properties of the
governing distribution. Experiments with realistic model parameters show that this scheme is
robust for interest rate valuation.

1 Introduction

The Stochastic Alpha Beta Rho (SABR) model by Hagan [12] is a popular model in the financial
industry because of the availability of an analytic asymptotic implied volatility formula. Practi-
cal applications of the SABR model include interpolation of volatility surfaces and the hedging of
volatility risk. In the context of pricing interest rate derivatives, the combination of the SABR model
and the market standard Libor Market Models (LMM) [27] is of particular interest. Other references
on this topic include Morini & Mercurio [26], Hagan & Lesniewski [13] or Labordere [21].

The constant elasticity of variance (CEV) process, introduced by Cox [9], is an important ingredi-
ent of the SABR model. The CEV process has appeared in several other models in finance, including
the CEV Libor Market Model (LMM) by Andersen & Andreasen [2].

Pricing and hedging of path-dependent securities are applications that typically require the use
of Monte Carlo methods. Despite the fact that the CEV model has been introduced more than 30
years ago and that various researchers have shown evidence of significant bias in the basic Euler
scheme for the CEV model, only a few references devising efficient unbiased Monte Carlo schemes
were found in the literature.

It was shown by Schroder [31] that the CEV process, representing the asset price dynamics of
the SABR model, equals a space transformed squared Bessel process. As the volatility process in the
SABR model is driven by a geometric Brownian motion, a close relation between the SABR model
and the Heston model [14] exists: In the Heston model the asset price dynamics follow geometric
Brownian motion, whereas the volatility is governed by a squared Bessel process. Due to this, it
seems natural to generalize the unbiased simulation schemes for the Heston stochastic volatility
model to the SABR case. Broadie & Kaya [6]’s so-called exact simulation scheme (the BK scheme)
is based on the insight in Willard [33] that the conditional distribution, given the terminal volatility
and the integrated variance in a time interval, is log-normal. In their scheme, an acceptance-rejection
technique is employed to sample the variance process, and a Fourier inversion technique is applied
to recover the variance process. Although the BK scheme is free of bias by construction, its practical
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application is hampered by its computational speed. Andersen [1] developed two efficient variants
of the BK scheme, the truncated Gaussian (TG) and the quadratic exponential (QE) schemes, that are
both based on the moment matching technique. Essentially, the noncentral chi-square distribution
is approximated by a distribution whose moments are matched with those of the exact distribution.
Since the QE scheme is based on transformations to uniform and normal random numbers, it can be
implemented efficiently [11].

A direct application of the QE scheme to the SABR model does not work well, because the QE
scheme is based on a squared Bessel process with a reflecting boundary at zero volatility, which gives
rise to a sub-martingale process. It is therefore not suited to model SABR’s asset price dynamics.
Instead, a squared Bessel process with an absorbing boundary is the specification which is in agree-
ment with the arbitrage-free constraints (and thus produces a true martingale process). Accurate
handling of the absorbing boundary behavior is nontrivial, as the transition density of the absorbed
process does not integrate to unity and the moments are not known in closed form.

Some simulation algorithms for the squared Bessel processes exist in the literature. Andersen &
Andreasen [2] investigated basic Euler as well as log-Euler schemes for the CEV model in a Monte
Carlo setting and mentioned that ‘the simulated prices of caps, floors and swaptions exhibit a bias
relative to the continuous-time prices ... even for an infinite number of Monte Carlo trials’. Kahl &
Jäckel [19] proposed a higher-order Monte Carlo scheme based on an implicit Milstein discretiza-
tion for the CEV process. This scheme does not perform well when zero is attainable, due to the
discontinuity of the first derivative of the diffusion coefficient. Campolieti & Makarov [7] devel-
oped an exact scheme based on an acceptance-rejection sampling of the Bessel bridge process. The
Bessel bridge scheme is however quite complex and its computational time is relatively high. Lord
et al. [24] consider an Euler scheme in combination with certain rules to deal with negative paths
produced by the Euler scheme. The authors conclude that the computational efficiency of the Euler
scheme with these fixes is superior to the more complicated schemes. For certain relevant parameter
configurations the scheme produces a significant bias for practical sizes of the time steps.

In this paper we propose an unbiased path simulation scheme for the continuous-time CEV and
SABR models, also based on Willard’s [33] idea of mixing the conditional distributions [23] of a
stochastic volatility model (given the terminal volatility and integrated variance). Our contribution
is threefold. First of all, we derive the conditional distribution of the SABR model over a discrete
time step and show that, conditioned on the terminal volatility and the integrated variance, it is
a space transformed squared Bessel process with a shifted initial condition. Secondly, we propose
an efficient easy-to-implement algorithm to simulate the squared Bessel process with an absorbing
boundary at zero. Thirdly, we provide a simple approximation formula for the conditional moments
of the integrated variance by means of the small disturbance expansion method (see Kunitomo &
Takahashi [20] and Chen [8]), which facilitates effective sampling from the joint distribution of the
terminal volatility and the integrated variance.

The paper is organized as follows. In Section 2 we describe the basic SABR model and summarize
some analytic properties that are relevant for simulation. In Section 3, we review some existing
discretization schemes, for later comparison. In Section 3.4 we present the unbiased discretization
scheme to simulate the asset and the variance processes. Section 4 discusses the performance of the
whole algorithm. Section 5 concludes.

2 Some analytic features of the SABR model

Given a time interval ∆ and an arbitrary set T of discrete times s < s + ∆ . . . < s + N∆ and a stochas-
tic process X = {Xt; t > 0}, a discretized simulation scheme generates a skeleton Xs, Xs+∆, . . . of a
sample path of the stochastic process X. To device such a scheme, we start sampling from the
marginal distribution of Xs+∆. A repetition of such a one-period scheme may produce the full time-
discrete paths for X. Since here we consider the discrete scheme generating paths for a stochastic
volatility model, Xt = (St, σt), for all t ∈ T , the asset price process St itself is not a Markov process.
The fundamental question, as argued by Andersen [1], is how to generate a random sample of Ss+∆

from the conditional distribution of Ss+∆, given (Ss, σs, σs+∆,
∫ s+∆

s σ2
udu).

In this section, we focus on the analysis of the conditional distribution function; the sampling
technique is discussed in the next section. For notational convenience, we do not use the notation s
and s + ∆ for the initial and terminal time points, respectively, but use simply 0 for the initial time
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point, t, s represent the running time and ∆ is the terminal time for each discrete time interval.
The Stochastic Alpha Beta Rho Stochastic Volatility (SABR SV) model [12] is given by the follow-

ing system of stochastic differential equations (SDEs) with constant parameters α and β:

dSt = σtS
β
t dW1,t,

dσt = ασtdW2,t,
(2.1)

where E[dW1,tdW2,t] = ρdt. Since the asset price St itself follows a CEV process, one can expect that
the conditional SABR process, given σ∆ and

∫ ∆
0 σ2

s ds, is a CEV process as well. The next step will be

to ‘mix’ the conditional CEV process with the joint distribution of σ∆ and
∫ ∆

0 σ2
s ds.

We will show, in the subsequent section, that, conditional on σ∆ and
∫ ∆

0 σ2
s ds, the coordinate

transformed asset price process defined by the invertible transformation X(S) = S1−β/(1− β)
is a time-changed Bessel process of dimension (1− 2β− ρ2(1− β))/((1− β)(1− ρ2)), starting at
S1−β

0 /(1− β). Based on this, the analytic distribution function for S∆ will be derived. After that we
show that we can sample this conditional distribution efficiently by a direct inversion scheme.

2.1 The distribution of the CEV process

Let (Ω,F ,Ft, P) be a filtered probability space generated by {Wt}, a one-dimensional Brownian
motion. For all 0 ≤ t ≤ T, the CEV process can be described by the following stochastic differential
equation:

dSt =σtS
β
t dWt (2.2)

with initial condition S0 = ξ0 which we assume to be F0-measurable.
Here we simply choose σt to be a constant, i.e. σt ≡ σ. Following Schroder [31], we consider

an invertible transformation Xt = S1−β
t /(1− β) for β 6= 1. Application of Itô’s lemma gives us the

following SDE for Xt which we recognize as a time-changed Bessel process:

dXt = (1− β)
S−β

t
1− β

σSβ
t dW1,t −

1
2

β(1− β)
S−1−β

t
1− β

σ2S2β
t dt

= σdWt −
βσ2

(2− 2β)Xt
dt. (2.3)

Then we define a second transformation, Yt = X2
t , which results in a time-changed squared

Bessel process of dimension δ := (1− 2β)/(1− β), that thus satisfies the following SDE:

dYt = 2
√
|Yt|σdWt + δσ2dt. (2.4)

Let ν(t) be a time-change function, so that ν(t) = σ2t. Then, Yt = Zν(t), where {Zt} is a δ-
dimensional squared Bessel process, i.e., the strong solution of the SDE:

dZt = 2
√
|Zt|dWt + δdt (2.5)

with degree of freedom δ. The squared Bessel process is a Markov process and its transition densities
are known explicitly.

The next step is to sample random numbers from the analytic transition density in Z-space and to
apply an inverse variable transformation to obtain the random numbers in the original coordinates.

First, a few technical details need to be discussed. They are presented in the form of results and
propositions below.

RESULT 2.1. [2]: For a standard squared Bessel process, as defined by SDE (2.5), the following statements
hold true:

1. All solutions to SDE (2.5) are non-explosive.

2. For δ < 2, Z = 0 is an attainable boundary for Process (2.5).
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3. For δ ≥ 2 SDE (2.5) has a unique solution and zero is not attainable.

4. For 0 < δ < 2 the SDE (2.5) does not have a unique solution, unless the boundary condition is specified
for the solution to Eq. (2.5) at Z = 0.

5. For δ ≤ 0, there is a unique strong solution to the SDE (2.2), and boundary condition zero is absorbing.

Proof. The results have been proved in Appendix A of [2] based on the theory presented in [5].

For the latter two cases, the transition densities are known:

RESULT 2.2 (Transition density for squared Bessel process). The transition density, qδ(t, x, y), for the
squared Bessel process reads:

1. For δ ≤ 0 and for 0 < δ < 2 in Eq. (2.5) but only when the boundary is absorbing at y = 0:

qδ(t, x, y) =
1
2t

( y
x

) δ−2
4

exp
(
− x + y

2t

)
I| δ−2

2 |

(√xy
t

)
, y ≥ 0, t > 0. (2.6)

2. For 0 < δ < 2 when y = 0 is a reflecting boundary:

qδ(t, x, y) =
1
2t

( y
x

) δ−2
4

exp
(
− x + y

2t

)
I δ−2

2

(√xy
t

)
, y ≥ 0, t > 0. (2.7)

Here we denote by Ia(x) the Bessel function, defined by

Ia(x) :=
∞

∑
j=0

(x/2)2j+a

j!Γ(a + j + 1)
,

and by Γ(x) the Gamma function, Γ(x) :=
∫ ∞

0 ux−1e−udu.

Proof. See Borodin [5] p. 136 for squared Bessel process transition densities.

Table 1: The mapping of three parameter ranges.

CEV exponent Squared Bessel δ

−∞ < β < 1
2 0 < δ < 2

1
2 ≤ β < 1 −∞ < δ ≤ 0

β > 1 2 < δ < ∞

By solving a series of inequalities (see the results in Table 1), we find essentially three different
parameter ranges which determine the behavior of the CEV process at the boundary and the form
of the transition densities:

1. For β > 1, SDE (2.2) has a unique solution and boundary condition zero is not attainable. The
density function integrates to unity over S ∈ (0, ∞) for all t ≥ 0 and the process St is a strict
local martingale.

2. For β < 1
2 , SDE (2.2) does not have a unique solution, unless a separate boundary condition is

specified for the boundary behavior at S = 0.

• The density integrates to unity, if the boundary is reflecting and process St is a strict sub-
martingale.

• The density will not integrate to unity if the boundary at S = 0 is absorbing 1 and process
St is a true martingale.

1There is a degenerate part with an atom in the boundary and an absolutely continuous part over (0, ∞).
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3. For 1
2 ≤ β < 1, a unique strong solution to SDE (2.2) exists, and boundary value zero is

absorbing. The density function does not integrate to unity for t > 0 and process St is a true
martingale.

For most financial applications, parameter β ranges between 0 to 1, which is included in Cases 2 and
3 in the list above. We therefore focus on these two cases, and, correspondingly, on the Items 4 and
5 in Result 2.1.

Based on the transition density of the squared Bessel diffusions in X-space given in Result 2.2,
one can easily obtain the transition density for the CEV process (2.2) in S-space. Note first of all that

S∆ =
(
(1− β)

√
|Zν(∆)|

) 1
1−β

.

Let us define a map

h : s→
(
(1− β)

√
s
) 1

1−β , s ≥ 0,

with inverse

h−1 : y→ y2(1−β)

(1− β)2 , y ≥ 0.

So, S∆ = h(Zν(∆)) and Z0 = h−1(S0) = S2(1−β)
0 /(1− β)2. Then Zν(∆) has density qδ(ν(∆), Z0, y) and

it follows that the density for S∆ is given by

p(S|S0) = qδ
(
ν(∆), Z0, h−1(s)

)dh−1(s)
dS

,

where we use p(S|S0) to denote the conditional transition density for the CEV process. By combining
the two cases considered in Result 2.2, the related transition densities for the CEV process, St, in
Eq. (2.2) are of the following form:

1. For 0 < β < 1
2 with absorption at zero and for 1

2 ≤ β < 1:

p
(
S∆|S0

)
=

1
ν(∆)

(S∆

S0

)− 1
2

exp
(
−

S2(1−β)
∆ + S2(1−β)

0
2(1− β)2ν(∆)

)
I| δ−2

2 |

( (S0S∆)1−β

ν(∆)(1− β)2

)S1−2β
∆

1− β
,

where ν(∆) = σ2∆ and δ = 1−2β
1−β .

2. For 0 < β < 1
2 with a reflecting boundary at S = 0:

p
(
S∆|S0

)
=

1
ν(∆)

(S∆

S0

)− 1
2

exp
(
−

S2(1−β)
∆ + S2(1−β)

0
2(1− β)2ν(∆)

)
I δ−2

2

( (S0S∆)1−β

ν(∆)(1− β)2

)S1−2β
∆

1− β
.

By integrating these identities, we find the cumulative distribution functions:

RESULT 2.3. The cumulative distribution function of the CEV price process as in Eq. (2.2) is given by the
following formula:

1. For 0 < β < 1
2 with absorption at zero and for 1

2 ≤ β < 1:

Pr
(
S∆ ≤ x|S0

)
= 1− χ2(a; b, c). (2.8)

2. For 0 < β < 1
2 with a reflecting boundary at S = 0:

Pr
(
S∆ ≤ x|S0

)
= χ2(c; 2− b, a), (2.9)
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with the following parameters:

a =
S2(1−β)

0
(1− β)2ν(∆)

, b =
1

1− β
, c =

x2(1−β)

(1− β)2ν(∆)
, ν(∆) = σ2∆,

and χ2(x; δ, λ) is the noncentral chi-square cumulative distribution function for random variable x with
non-centrality parameter λ and degree of freedom δ.

Proof. The proofs of these results can be found in Schroder [31] using classic results for Bessel pro-
cesses. An alternative proof based on Green function theory can be found in Lesniewski [22].

As stated in Result 2.1, the density will not integrate to unity when the boundary is absorbing.
The shortage in the total probability mass is the probability absorbed at S = 0. Following the result
of Result 2.3, a formula for the absorption probability can be obtained:

COROLLARY 2.1. For 0 < β < 1, the probability of S∆ given by SDE (2.2) and initial conditional S0 reads

Pr
(
S∆ = 0|S0

)
= 1− γ

( 1
2(1− β)

,
S2(1−β)

0
2(1− β)2ν(∆)

)/
Γ
( 1

2(1− β)

)
, (2.10)

where γ(α, β) is the lower incomplete Gamma function and Γ(α) is the Gamma function.

Proof. Choosing x in Eq. (2.8) to be zero, we find that

Pr
(
S∆ = 0|S0

)
=1− χ2

(
S2(1−β)

0
(1− β)2ν(∆)

;
1

1− β
, 0

)

=1−Chi2
(

S2(1−β)
0

(1− β)2ν(∆)
;

1
1− β

)
, (2.11)

where the last equality sign is because the noncentral chi-square distribution with a zero non-
centrality parameter reduces to a chi-square distribution. A chi-square distribution has an explicit
cumulative function in terms of gamma functions:

Chi2(x; δ) =
γ(δ/2, x/2)

Γ(δ/2)
, (2.12)

where γ(α, β) is again the lower incomplete Gamma function. We substitute Eq. (2.12) into Eq. (2.11)
and prove the claim.

In interest rate derivative pricing, initial value, S0, is often very small, hence it is likely for St to
reach zero. The specification of the boundary condition for process St at zero may have a significant
impact on the distribution, as is evident from the distributions in Figure 1. The two plots show
a comparison of the exact cumulative distribution of the CEV process versus the log-normal and
normal distributions at T = 0.25 for S∆, given two different levels of S0, i.e. S0 = 6% in left-hand
plot and S0 = 2% in the right-hand plot. The model parameters chosen were σ = 0.3 and β = 0.4.
We have included the normal and log-normal distributions by matching the first two moments of
S∆. The labels ‘absorbing’ and ‘reflecting’ distinguish the distributions of the CEV process with an
absorption and a reflection boundary condition, respectively. The two matched distributions do not
represent accurate approximations for the true distributions of S∆.

Andersen & Andreasen [2] and Rebonato [28], pp.48, argue that if the asset price follows a CEV
process under a certain measure, there is only one acceptable boundary condition at zero to ensure
the arbitrage-free conditions, which is the absorption condition. If there were a reflecting boundary
at zero, then for an initially worthless portfolio, we would wait until zero is reached (which would
happen with a strictly positive probability). Once the price is zero, we take a long position in the
asset and sell it immediately when the 0 barrier has reflected the price process, realizing a risk-free
profit.

We therefore also assume that the boundary is absorbing at St = 0 and develop a method to
sample from distribution function (2.8). The strategy of sampling will be discussed in full detail in
the sections to follow.
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Figure 1: Comparison of the exact cumulative distribution of the CEV process versus the log-normal
and normal distributions at T = 0.25 for S∆ given different levels of S0.

2.2 SABR conditional distribution

Let (Ω,F ,Ft, Pr) be a filtered probability space generated by two Brownian motions {Ut, W2,t}.
We denote the probability space as the product of two filtered probability spaces generated by two
independent Brownian motions, i.e. Ω = Ω1 ×Ω2,F = F 1 × F 2, {Ft} = {F 1

t × F 2
t }, Pr = Pr1 ×

Pr2.
Whereas a conventional numerical scheme requires the realizations of S∆ to be F0 = F 1

0 × F 2
0

measurable, here, S∆ depends on the realization of σ∆ (i.e. F 2
∆ measurable).

Based on the closed-form distribution function of the CEV process, we show that, conditional on
the levels of σ∆ and

∫ ∆
0 σ2

s ds, the transformed asset price process S2−2β
t /(1− β)2 is a shifted squared

Bessel process with initial condition
(
S1−β

0 /(1− β) + ρ
α (σ∆ − σ0)

)2. Following the arguments of
Islah [15], we present the following results:

RESULT 2.4 (SABR Conditional Distribution [15]). In the context of SABR model (2.1), and conditional
on the level of terminal volatility σ∆ and integrated variance

∫ ∆
0 σ2

s ds, let ω2 ∈ Ω2, t→ σt(ω2) be a volatility
path. The followings statements hold:

1. For an invertible variable transformation X(S) = S1−β/(1− β), application of Itô’s lemma gives us

X∆ =X0 +
ρ

α
(σ∆ − σ0) +

√
1− ρ2

∫ ∆

0
σsdUs −

∫ ∆

0

βσ2
s

(2− 2β)Xs
ds, (2.13)

where Us is a standard Brownian motion, independent of W2,s in System (2.1).

2. With Y(S) = S2−2β/(1− β)2 and application of a time-change ν(t) = (1 − ρ2)
∫ t

0 σ2
s ds, Yt is a

squared Bessel process of dimension 1−2β−ρ2(1−β)
(1−β)(1−ρ2) solving the SDE:

dYν(t) =2
√

Yν(t)dUν(t) +
1− 2β− ρ2(1− β)

(1− β)(1− ρ2)
dν(t), (2.14)

with initial condition Y0 =
( S1−β

0
1−β + ρ

α (σ∆ − σ0)
)2.

3. Let τ be the stopping time for which process Y hits zero, i.e. τ = inf{ν(s)|Yν(s) = 0}, the ‘stopped’
process Y reads

Yν(t)∧τ =Y0 + 2
∫ ν(t)∧τ

0

√
Yν(s)dUν(s) +

1− 2β− ρ2(1− β)
(1− β)(1− ρ2)

(ν(t) ∧ τ) . (2.15)
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Proof. In order to derive the conditional dynamics of the SABR model in Eq. (2.1), we first integrate
the SDE for the volatility σt:∫ ∆

0
dσs = α

∫ ∆

0
σsdW2,s ⇒

∫ ∆

0
σsdW2,s =

1
α

(
σ∆ − σ0

)
. (2.16)

When conditioning on the volatility level σ∆, the above identity becomes a constant. It plays an
important role in the following derivation.

Based on the arguments in Section 2.1, the application of Itô’s lemma to X = S1−β/(1− β) results
in

X∆ = X0 +
∫ ∆

0
σsdW1,s −

∫ ∆

0

βσ2
s

(2− 2β)Xs
ds. (2.17)

We now employ the Cholesky decomposition of the two correlated Brownian motions,

dW1,t = ρdW2,t +
√

1− ρ2dUt, dW2,t = dW2,t.

After substitution of the Cholesky decomposition into Eq. (2.17), we arrive at

X∆ =X0 +
ρ

α

(
σ∆ − σ0

)
+
√

1− ρ2
∫ ∆

0
σsdUs −

∫ ∆

0

βσ2
s

(2− 2β)Xs
ds, (2.18)

where we used Identity (2.16).
In order to prove the second claim in the Result, we write Eq. (2.18) as,

dX̃t =
√

1− ρ2σtdUt −
βσ2

t
(2− 2β)X̃t

dt, with:

X̃0 = X0 +
ρ

α

(
σ∆ − σ0

)
,

where the notation X̃t denotes process Xt with a shifted initial condition. Despite the difference in
notation, X̃t and Xt are the same processes.

We define the variable transformation Y = X̃2, which, after applying Itô’s lemma, gives

dYt =2X̃tdX̃t + dX̃2
t

=2
√

Yt

√
1− ρ2σtdUt +

1− 2β− ρ2(1− β)
(1− β)(1− ρ2)

(1− ρ2)σ2
t dt. (2.19)

Due to the independence of the Brownian motions Ut and W2,t, the integral
∫ t

0 σsdUs is a Gaussian
distribution with mean zero and variance

∫ t
0 σ2

s ds.
We now consider the time-change ν(t) = (1− ρ2)

∫ t
0 σ2

s ds. A Brownian motion under this ‘clock’
will have the same distribution as

√
1− ρ2

∫ t
0 σsdUs, i.e.

Uν(t) =
∫ ν(t)

0
dUs =

√
1− ρ2

∫ t

0
σsdUs.

We substitute the time-changed Brownian motion into Eq. (2.19), which gives us

dYν(t) = 2
√

Yν(t)dUν(t) +
1− 2β− ρ2(1− β)

(1− β)(1− ρ2)
dν(t),

i.e. a time-changed squared Bessel process of dimension δ = 1−2β−ρ2(1−β)
(1−β)(1−ρ2) , starting at

Y0 = X̃2
0 =

(
X0 +

ρ

α
(σ∆ − σ0)

)2.

Inclusion of a stopping time, τ = inf{ν(s)|Yν(s) = 0}, to the second result will prove the third
claim.
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PROPOSITION 2.2 (Cumulative Distribution for Conditional SABR Process). For some S0, strictly
larger than 0, the conditional cumulative distribution of S∆ with an absorbing boundary at St = 0 given σ∆

and
∫ ∆

0 σ2
s ds reads

Pr
(
S∆ ≤ K|S0 > 0, σ∆,

∫ ∆

0
σ2

s ds
)

= 1− χ2(a; b, c), (2.20)

where

a =
1

ν(∆)

( S1−β
0

(1− β)
+

ρ

α
(σ∆ − σ0)

)2
, b = 2− 1− 2β− ρ2(1− β)

(1− β)(1− ρ2)
,

c =
K2(1−β)

(1− β)2ν(∆)
, ν(∆) = (1− ρ2)

∫ ∆

0
σ2

s ds.
(2.21)

χ2(x; δ, λ) is again the noncentral chi-square cumulative distribution function.

Proof. Given that Yν(t) is a time-changed Bessel process, we substitute parameter δ and the non-
centrality parameter Y0 into the distribution function presented in Result 2.3.

Note that the condition S0 > 0 is crucial, because the paths that reach zero should stay in zero,
due to the stopping time τ defined in Result 2.4.

REMARK. It was argued by Andersen [4] that the continuous time process, St, will be a martingale with

E[St+∆|St] = St < ∞.

The equivalent discrete-time process, Ŝt, generated by the unbiased simulation scheme may not satisfy the
martingale condition,

E[Ŝt+∆|Ŝt] 6= Ŝt.

The net drift, away from the martingale, is visible for parameter sets with small β and close-to-zero rates.
However, this combination of parameters does not appear in practical applications as it gives rise impracti-
cal implied volatility levels. For practical SABR parameters, the martingale bias is very small and can be
controlled by reducing the size of the time step.

3 The discretization scheme for the SABR model

In this section we will present the unbiased simulation scheme for the SABR model. Before that, we
review some existing path simulation schemes for the stochastic volatility model. We will denote
time discrete approximations to St and σt by Ŝt and σ̂t, respectively.

3.1 Taylor based time discrete approximation schemes

The basic first-order Taylor approximation scheme for (2.1) takes the following form:

Ŝ∆ = Ŝ0 + σ̂0Ŝβ
0 Z1
√

∆,
σ̂∆ = σ̂0 exp

(
− 1

2 α2∆ + αZ2
√

∆
)
,

(3.1)

with Z1 and Z2 two correlated standard normal random variables, i.e. E[Z1Z2] = ρdt.
This Euler scheme represents an O(

√
∆)-accurate Taylor approximation for the asset price pro-

cess, St. To reduce the bias introduced by the first-order approximation, Elerian [10] suggests using
a transition density derived from the scheme due to Milstein [25]. Including higher-order expansion
terms gives us the Milstein scheme:

Ŝ∆ = Ŝ0 + σ̂0Ŝβ
0 Z1
√

∆ + 1
2 βσ̂2

0 Ŝ2β−1
0 (Z2

1∆− ∆),
σ̂∆ = σ̂0 exp

(
− 1

2 α2∆ + αZ2
√

∆
)
.

(3.2)
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A common problem shared by the Taylor-based approximation schemes is the possibility of gen-
erating negative asset prices, Ŝt, that give rise to financially meaningless solutions. A remedy for
the negative prices is to transform the SDE to logarithmic coordinates using Itô’s lemma [3]. For the
CEV asset price process the log-Euler scheme is defined as:

Ŝ∆ = Ŝ0 exp
(
− 1

2 σ̂2
0 S2β−2

0 ∆ + σ̂0Ŝβ−1
0 Z1

√
∆
)
,

σ̂∆ = σ̂0 exp
(
− 1

2 α2∆ + αZ2
√

∆
)
.

(3.3)

Whereas the log-Euler scheme preserves positivity of the asset price process, numerical experiments
show that the scheme may become unstable for specific time-step sizes [3]. The instabilities occur
because the diffusion terms in Eq. (3.3) approach infinity quickly when Ŝt reaches zero (see some
results in Table 2).

Table 2: Percentages of Taylor-based simulation experiments with failure for the CEV model, with
different step-sizes over a 5 years interval. The parameters are β = 0.3, σ = 0.3 and S0 = 4%.

Issue Stepsize Euler Milstein Log-Euler

Negativity
∆ = 0.5 85% 49% 0%
∆ = 0.25 88% 56% 0%
∆ = 0.125 94% 59% 0%

Infinity
∆ = 0.5 0% 34% 96%
∆ = 0.25 0% 31% 96%
∆ = 0.125 0% 37% 95%

3.2 Local linearization

A second approximation is proposed in Shoji & Ozaki [32] and referred to as local linearization ap-
proach. The original approach is based a model with constant volatility, which is true for the target
SDE, after the variable transformation. Shoji & Ozaki suggest to apply Itô’s lemma to the drift of the
model SDE:

dSt = µ̄(St)dt + σ̄dWt,

with σ̄ constant and fixed initial value, x0,

dµ̄(St) =
1
2

σ̄2µ̄′′(St)dt + µ̄′(St)dSt.

Using the first-order Taylor expansion, the approximate drift µ̃ is defined by:

µ̃(x∆) = µ̄(x0) + µ̄′(x0)(x∆ − x0) +
1
2

σ̄2µ̄′′(x0)(t− s).

The approximate density would then be obtained from dS̃t = µ̃(S̃t)dt + σ̄dWt, which is in the form
of an Ornstein-Uhlenbeck process. From this approximation, one can easily obtain its transition
density from the analytic results for Ornstein-Uhlenbeck processes:

pSh&Oz(x∆, t; x0, s) = φ(x∆; µ̃, σ̃2) (3.4)

where φ refers to the probability density function of a normal distribution, and

µ̃ = x0 +
µ̄(x0)
µ̄′(x0)

L +
σ̄2µ̄′′(x0)

2
[
µ̄′(x0)

]2 (L− µ̄′(x0)∆
)

,

σ̃2 =
σ̄2

2µ̄′(x0)

(
e2µ̄′(x0)∆ − 1

)
, L = eµ̄′(x0)∆ − 1.

This approximation seems attractive due to the closed-form transition density formula. However, it
suffers from several numerical issues; the first one being the negativity problem. Since density (3.4)
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is normal, it has a non-zero probability to become negative-valued. Secondly, the drif term, µ̄, and
its derivatives, i.e.

µ̄(x0) = − βσ̄2

(2− 2β)x0
, µ̄′(x0) =

βσ̄2

(2− 2β)x2
0

, µ̄′′(x0) = − 2βσ̄2

(2− 2β)x3
0

,

diverge for x0 close to zero. Due to these drawbacks, we do not consider this method here.

3.3 Exact scheme of Broadie and Kaya

Broadie and Kaya [6] proposed the BK scheme, an exact simulation for the Heston model. Although
the Heston dynamics are different from the SABR dynamics, the exact simulation concept serves as
the basis to construct the discrete approximation schemes for the SABR model here.

The BK scheme is based on sampling σ∆ from its distribution function. Given σ∆ (and σ0), a
sample from

∫ ∆
0 σ2

s ds is drawn. Conditional on σ∆ and
∫ ∆

0 σ2
s ds, process ln S∆ is from a Gaussian

distribution in the Heston model.
In some more detail, with Vt = σ2

t the Heston stochastic volatility [14] process can be described
as:

dSt =
√

VtStdW1,t,
dVt = κ(θ −Vt)dt + η

√
VtdW2,t

(3.5)

with E[dW1,tdW2,t] = ρdt. To obtain a bias-free scheme, first the SDE for the volatility is integrated,
i.e., ∫ ∆

0

√
VsdW2,s =

1
η

(
V∆ −V0 − κθ∆ + κ

∫ ∆

0
Vsds

)
. (3.6)

Application of the Cholesky decomposition, i.e.,

dW1,t = ρdW2,t +
√

1− ρ2dUt, dW2,t = dW2,t,

gives us for ln St:

d ln St = −1
2

Vtdt + ρ
√

VtdW2,t +
√

1− ρ2
√

VtdUt,

with Brownian motion Ut, independent of W2,t. In integral form, we then obtain

ln S∆ = ln S0 −
1
2

∫ ∆

0
Vsds + ρ

∫ ∆

0

√
VsdW2,s +

√
1− ρ2

∫ ∆

0

√
VsdUs

= ln S0 +
ρ

η

(
V∆ −V0 − κθ∆

)
+
(ρκ

η
− 1

2
) ∫ ∆

0
Vsds +

√
1− ρ2

∫ ∆

0

√
VsdUs. (3.7)

Due to the independence of Ut and W2,t, the Itô integral
∫ ∆

0 VsdUs is Gaussian with mean zero and

variance
∫ ∆

0 Vsds. It is easy to see from Eq. (3.7) that ln S∆ is normally distributed, conditional on V∆

and
∫ ∆

0 Vsds. By aggregation of all conditional Gaussian distributed samples, we obtain the desired
distribution for the stochastic volatility model.

For the Heston model, the distribution of V∆ is known in closed form, but the conditional dis-
tribution of

∫ ∆
0 Vsds is not known explicitly. Broadie and Kaya [6] derive the characteristic function,

which is based on two modified Bessel functions that contain infinite series expansions. A numerical
Fourier-inversion step is then necessary to generate the desired conditional cumulative distribution
function. The evaluation of the characteristic function for

∫ ∆
0 Vsds as well as the required Fourier in-

versions require significant computational effort. The implementation of these steps has to be done
with great care to avoid bias from the numerical inversion.
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3.4 An unbiased scheme for SABR simulation

By utilizing the analytic results for the conditional SABR process presented in Proposition 2.2, and
the above mentioned technique of ‘mixing conditional distributions’, we present an unbiased dis-
cretization scheme for the SABR model. We start to simulate the conditional SABR process, which is
a space-transformed squared Bessel process with an absorbing boundary at zero, and then mix the
conditional process by the joint dynamics of the terminal volatility and integrated variance.

Despite the fact that the volatility σ∆ can easily be sampled from a log-normal distribution, it
is not straightforward to sample the integrated variance. It is also challenging to simulate a CEV
process exactly. Hence, we devote the following two subsections to these issues.

3.4.1 Sampling the conditional CEV process

As discussed in Section 2.2, the CEV process is a space-transformed squared Bessel process, whose
distribution function is known in closed-form as the noncentral chi-square distribution. For large
initial asset prices, S0, the probability of hitting zero is almost zero, i.e. Pr (inf{t|St = 0} < ∆) → 0,
and the distribution function approaches an ordinary noncentral chi-square distribution:

Pr
(
S∆ ≤ K) = 1− χ2(a; b, c) = χ2(c; 2− b, a) + Pr (inf{t|St = 0} < ∆) ≈ χ2(c; 2− b, a). (3.8)

where a, b and c are as defined in Proposition 2.2.
It is well-known (see Johnson et al. [17], pp. 450) that the noncentral chi-square distribution

approaches a Gaussian distribution as the non-centrality parameter goes to infinity. In [1] it was
stated that the noncentral chi-square distribution with a sufficiently large non-centrality parameter
can be accurately approximated by a quadratic function of Gaussian variables.

Andersen’s Quadratic Exponential (QE) scheme does not perform satisfactory for small values
of S0, as the moment-matching method then breaks down. This is due to the fact that for small
values of S0, the probability of reaching zero is high, so that the approximation in Eq. (3.8) does not
hold and the analytic moments for the distribution 1− χ2(a; b, c) are not known. For these small
values, we therefore propose to use a Newton-type root finding method to invert the distribution
function (2.20) directly.

More specifically, we determine a value, c∗, which solves the equation 1− χ2(a; b, c∗)−U = 0
with a high accuracy. To compute the noncentral chi-square distribution, we use Schroder’s [31]
recurrence formula, in which the evaluation of an infinite double sum of gamma functions is re-
quired. This computation takes only a small fraction of the costs for the computation of the original
series [31].

The partial derivative of the cumulative distribution is the probability density function (PDF)
which is known analytically as the transition density for a squared Bessel process, given in Eq. (2.6).
Using this derivative information gives a substantial enhancement of the computational perfor-
mance2.

Moment-matched quadratic Gaussian approximation

The mean and the variance of the noncentral chi-square distribution, χ2(x; k, λ), are k + λ and
2(k + 2λ), respectively. Here we determine, as in Proposition 5 in [1], the values of the relevant
parameters by moment matching.

RESULT 3.1 (Moment-Matched Quadratic Gaussian Approximation [1]). We denote the mean and
variance of a noncentral chi-square distribution, χ2(x; k, λ), by m := k + λ and s2 := 2(k + 2λ), and we
define ψ := s2/m2. With

e2 = 2ψ−1 − 1 +
√

2ψ−1
√

2ψ−1 − 1 ≥ 0 and d =
m

1 + e2 .

A non-central chi-square distributed random variable Y is computed by

Y = d (e + Z)2 Z ∼ N(0, 1),

where E[Y] = m and Var[Y] = s2.
2When the gradient information is not supplied, the algorithm requires many extra function evaluations of the noncentral

chi-square distribution function, which is generally expensive to compute.
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In our case, we have

k =
1− 2β− ρ2(1− β)

(1− β)(1− ρ2)
, λ =

1
ν(∆)

( S1−β
0

(1− β)
+

ρ

α
(σ∆ − σ0)

)2
,

with ν(∆) = (1 − ρ2)
∫ ∆

0 σ2
s ds. We then compute S2(1−β)

∆ /(1− β)2ν(∆) by the quadratic normal
approximation:

S2(1−β)
∆

(1− β)2ν(∆)
= d(e + Z)2 ⇒ S∆ =

(
(1− β)2ν(∆) · d(e + Z)2

) 1
2(1−β) , (3.9)

with Z ∼ N(0, 1).

The constants d and e are as in Result 3.1.

Direct inversion scheme

As mentioned earlier, the quadratic Gaussian approximation is accurate only if S0 is sufficiently
large, or, equivalently, when the probability of absorption is small. For small values of S0, we invert
the distribution function (2.20) directly by a Newton-type method. As in Andersen [1], variable
ψ = s2/m2, defined in Result 3.1, is used as the threshold level to determine which algorithm (either
the moment-matched Quadratic Gaussian or the direct inversion) is to be employed.

We first assume that the integrated variance, ν(∆) = (1− ρ2)
∫ ∆

0 σ2
s ds, has been determined. An

algorithm to sample the conditional CEV process in terms of the transformed squared Bessel process
with an absorbing boundary at zero, starting at time 0 until ∆, then reads:

1. Compute a = 1
ν(∆)

(
S1−β

0
(1−β) + ρ

α (σ∆ − σ0)
)2

and b = 2− 1−2β−ρ2(1−β)
(1−β)(1−ρ2) by Result 2.2;

2. Draw a (vector of) uniform random numbers, U;

3. Compute the absorption probability Pr(S∆ = 0|S0) by Eq. (2.10);

(a) If S0 = 0: S∆ = 0 and return;

(b) Else if U < Pr(S∆ = 0|S0): S∆ = 0 and return;

(c) Otherwise: Go to the next step;

4. Compute ψ := s2/m2 with m := k + λ and s2 := 2(k + 2λ) ;

5. Select a threshold value, ψthres ∈ [1, 2], as in [1]. Here we set ψthres = 2 for numerical efficiency;

6. If {0 < ψ ≤ ψthres}⋂{m ≥ 0}: We sample S∆ by Eq. (3.9);

7. Otherwise if ψ > ψthres or {m < 0}⋂{0 < ψ <= ψthres}: We determine the root c∗ of the
equation H(a, b, c) := 1− χ2(a; b, c)−U = 0 with initial guess c0 = a, and repeat the Newton
method until the prescribed tolerance ε is reached:

cn+1 = cn −
H(a, b, cn)
q(a, b, cn)

,

where

q(a, b, c) =
1
2

( c
a

) b−2
4 exp

(
− a + c

2

)
I| b−2

2 |
(√

ac
)
.

The desired random number, c∗, is from a squared Bessel distribution with an absorbing
boundary at zero.

8. We apply the inverse coordinate transform to recover the random numbers in asset price (or
physical) space:

S∆ =
(

c∗(1− β)2ν(∆)
) 1

2−2β .
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This root finding method consists of only basic operations, so that the whole procedure can be vec-
torized and a vector of uniform random numbers can be processed simultaneously.

Enhanced direct inversion procedure

Although the above method is accurate, it appears to be rather slow, due to a significant number
of evaluations of the (expensive) noncentral chi-square CDF. In order to speed up the procedure,
we determine an accurate initial solution by a cheap numerical procedure. With an accurate initial
solution, this root finding procedure will converge in only a few iterations.

Yuan [34] gives numerical evidence for the fact that the noncentral chi-square distribution ‘con-
verges’ to a normal distribution when non-centrality parameter c or random number a increase in
value. A number of normal approximations to the noncentral chi-square distribution has been de-
veloped, see Johnson and Kotz [16] for a review. A particular accurate approximation is derived by
Sankaran [29]:

χ2(a; b, c) ∼ N

1− hp(1− h + 1
2 (2− h)mp)−

( a
b+c
)h

h
√

2p(1 + mp)

 (3.10)

where N denotes the normal cumulative density function and

h = 1− 2(b+c)(b+3c)
3(b+2c)2 ,

p = b+2c
(b+c)2 ,

m = (h− 1)(1− 3h).

(3.11)

This approximation consists of basic functions only, e.g. square roots, powers and normal distribu-
tion functions, that can be executed quickly on modern hardware. The approximation is sufficiently
accurate for a wide range of parameters, but it varies across different sets of parameters. Especially
for small values of parameter a in Eq. (2.20), this approximation is less accurate.

To illustrate the performance of Sankaran’s approximation, we consider two different test cases
with different values for parameter a (keeping the other parameters the same). Figure 2 presents
the results. In both plots, the difference between the exact curve and Sankaran’s approximation is
visible, but for the larger value of a the discrepancy is substantially smaller. For the purpose of gener-
ating an initial solution for the second stage of the root finding method, however, the approximation
quality is fully satisfactory.

After the inversion of a vector of uniform variables, U, into normal variables, X = N−1(U), we
find a vector of roots, c, which solve the following equation

G(a, b, c) :=
1− hp(1− h + 1

2 (2− h)mp)−
( a

b+c
)h

h
√

2p(1 + mp)
− X = 0, (3.12)

with h, p and m as defined in Eq. (3.11). This can be performed very efficiently by Newton’s method
with analytic derivative information.

In the next stage, we choose the c0 in Step 7 of the direct inversion scheme to be the solution of
Eq. (3.12) and execute that step. The result is a significant improvement in the number of function
evaluations required for Newton’s root finding algorithm to converge.

3.5 The integrated variance

The sampling of the conditionally integrated variance process may be an expensive procedure.
There are several methods in the literature to approximate the integrated variance process,

∫ ∆
0 Vsds|V0, V∆,

or, equivalently,
∫ ∆

0 σ2
s ds|σ0, σ∆. Notable examples include the Fourier inversion technique in [6] and

the drift interpolation in [1]. In the present paper, we propose to use an approximation based on a
moment-matched drift interpolation technique. Instead of dealing with the distribution of the quantity∫ ∆

0 σ2
s ds|σ0, σ∆, we match the first two conditional moments of

∫ ∆
0 σ2

s ds given σ0 (and σ∆) in a log-

normal distribution, and sample the distribution of
∫ ∆

0 σ2
s ds from the moment-matched log-normal

distribution.
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Figure 2: Comparison of the quality of Sankaran’s approximation for two sets of parameters. Degree
of freedom parameter b is set to 0.423 for both cases, but parameter a is lower in the left-side plot,
a = 0.416 than in the right-side plot, a = 2.416.

3.5.1 Small disturbance expansion

In a first step, we derive the conditional moments of
∫ ∆

0 σ2
s ds, given σ∆ (and σ0), by the small dis-

turbance expansion, proposed by Kunitomo [20]. The small disturbance expansion method is closely
related to the stochastic Taylor expansion, which is especially accurate when the quantity α2∆ is
small. In order to apply the small disturbance expansion technique, we first reformulate the log-
normal volatility process by introducing a small parameter 0 < ε << 1 in the diffusion coefficient,
so that α = εα̃:

σ
(ε)
t =σ0 + εα̃

∫ t

0
σ

(ε)
s dW2,s. (3.13)

We construct a expansion of σ
(ε)
t around σ0 by ε→ 0.

PROPOSITION 3.1. For stochastic integral (3.13), we have the formal small disturbance expansion

σ
(ε)
t = σ0 + ε

∂σ
(ε)
t

∂ε

∣∣∣
ε=0

+
1
2

ε2 ∂2σ
(ε)
t

∂ε2

∣∣∣
ε=0

+
1
6

ε3 ∂3σ
(ε)
t

∂ε3

∣∣∣
ε=0

+
1

24
ε4 ∂4σ

(ε)
t

∂ε4

∣∣∣
ε=0

+ O(ε5),

where

∂σ
(ε)
t

∂ε

∣∣∣
ε=0

= σ0α̃
∫ t

0 dW2,s = σ0α̃W2,t,

∂2σ
(ε)
t

∂ε2

∣∣∣
ε=0

= 2σ0α̃2
∫ t

0

∫ s1
0 dW2,s2 dW2,s1 = σ0α̃2(W2

2,t − t
)
,

∂3σ
(ε)
t

∂ε3

∣∣∣
ε=0

= 6σ0α̃3
∫ t

0

∫ s1
0

∫ s2
0 dW2,s3 dW2,s2 dW2,s1 = σ0α̃3(W3

2,t − 3W2,tt
)
,

∂4σ
(ε)
t

∂ε4

∣∣∣
ε=0

= 24σ0α̃3
∫ t

0

∫ s1
0

∫ s2
0

∫ s3
0 dW2,s4 dW2,s3 dW2,s2 dW2,s1 = σ0α̃3(W4

2,t − 6W2
2,tt + 3t2).

(3.14)

Proof. It is easy to see from Eq. (3.13) that σ
(0)
s = σ0. Straightforward application of the deterministic

calculus rules gives us

∂σ
(ε)
t

∂ε
= α̃

∫ t

0
σ

(ε)
s dW2,s + εα̃

∫ t

0

∂σ
(ε)
t

∂ε
dW2,s.

We take the limit ε→ 0, and get the expression for the first-order expansion term:

∂σ
(ε)
t

∂ε

∣∣∣
ε=0

= α̃
∫ t

0
σ

(0)
s dW2,s = σ0α̃

∫ t

0
dW2,s.

The higher-order expansion terms follow by repeating these rules.
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COROLLARY 3.2. The formal small disturbance expansion of the integrated volatility A(ε)
∆ =

∫ ∆
0

(
σ

(ε)
t
)2dt

is now given by

A(ε)
∆ = A(0)

∆ + εA(1)
∆ + ε2 A(2)

∆ + ε3 A(3)
∆ + ε4 A(4)

∆ + O(ε5) (3.15)

where

A(0)
∆ = σ2

0 ∆,

A(1)
∆ = ∂A(ε)

∆
∂ε

∣∣∣
ε=0

= 2σ0
∫ ∆

0
∂σ

(0)
t

∂ε dt,

A(2)
∆ = ∂2 A(ε)

∆
∂ε2

∣∣∣
ε=0

=
∫ ∆

0

(( ∂σ
(0)
t

∂ε

)2 + σ0
∂2σ

(0)
t

∂ε2

)
dt,

A(3)
∆ = ∂3 A(ε)

∆
∂ε3

∣∣∣
ε=0

=
∫ ∆

0

(
∂σ

(0)
t

∂ε
∂2σ

(0)
t

∂ε2 + 1
3 σ0

∂3σ
(0)
t

∂ε3

)
dt,

A(4)
∆ = ∂4 A(ε)

∆
∂ε4

∣∣∣
ε=0

=
∫ ∆

0

(
1
4

(
∂2σ

(0)
t

∂ε2

)2
+ 1

3
∂σ

(0)
t

∂ε
∂3σ

(0)
t

∂ε3 + 1
12 σ0

∂4σ
(0)
t

∂ε4

)
dt.

Proof. The above result is a natural extension of Proposition 3.1. One can easily check the validity of
the above expression by a derivation from a different point-of-departure, i.e.,

A(ε)
∆ =

∫ ∆

0

(
σ

(ε)
t
)2dt

=
∫ ∆

0

(
σ0 + ε

∂σ
(ε)
t

∂ε

∣∣∣
ε=0

+
1
2

ε2 ∂2σ
(ε)
t

∂ε2

∣∣∣
ε=0

+
1
6

ε3 ∂3σ
(ε)
t

∂ε3

∣∣∣
ε=0

+
1
24

ε4 ∂4σ
(ε)
t

∂ε4

∣∣∣
ε=0

+ O(ε5)

)2

dt.

Expand the inner quadratic expression and collect the terms up to order O(ε4) gives us the expansion
above.

Based on the expressions above, the first conditional moment of A(ε)
∆ , given W2(·) at terminal

time ∆, can be computed by substituting the expansion terms (3.14) in Identity (3.15):

E
[
A(ε)

∆ |W2,∆
]

=E
[
A(0)

∆ + εA(1)
∆ + ε2 A(2)

∆ + ε3 A(3)
∆ + ε4 A(4)

∆ + O(ε5)|W2,∆

]
=E
[
σ2

0 ∆ + 2εσ2
0 α̃
∫ ∆

0
W2,tdt + ε2σ2

0 α̃2
∫ ∆

0

(
2W2

2,t − t
)
dt + ε3σ2

0 α̃3
∫ ∆

0

(4
3

W3
2,t − 2W2,tt

)
dt

+ ε4σ2
0 α̃4

∫ ∆

0

(2
3

W4
2,t − 2W2

2,tt +
t2

2

)
dt + O(ε5)|W2,∆

]
=σ2

0 ∆ + 2εσ2
0 α̃

1
2

W2,∆∆ +
1
3

ε2σ2
0 α̃2(2W2

2,∆∆− ∆2

2
)
+

1
3

ε3σ2
0 α̃3(W3

2,∆∆−W2,∆∆2)
+ ε4σ2

0 α̃4
(

2
15

W4
2,∆∆− 3

10
W2

2,∆∆2 +
2
5

∆3
)

+ O(ε5)

=σ2
0 ∆
{

1 + εα̃W2,∆ +
1
3

ε2α̃2(2W2
2,∆ −

∆
2
)
+

1
3

ε3α̃3(W3
2,∆ −W2,∆∆

)
+

1
5

ε4α̃4
(2

3
W4

2,∆ −
3
2

W2
2,∆∆ + 2∆2

)}
+ O(ε5), (3.16)

where the derivations involving the computation of the time integral of the Wiener processes can
be found in Kahl [18] (Table 4.1). The expressions for E[

∫ ∆
0 W4

2,tdt|W2,∆] and E[
∫ ∆

0 W2
2,ttdt|W2,∆] have

not been provided in [18], but have been derived by ourselves as a straightforward (but tedious)
extension of the derivations in [18].

Finally, we substitute α = εα̃ back in the expressions, collect the first three terms of the expansion
to approximate the solution of the original model.

REMARK. The expansion for the conditional mean (3.16) has to be performed up to fourth order, because
the third-order solution gives rise to negative values (for negative values of W2,∆), see Figure 3. However the
variance should be non-negative, and the same holds for the integrated variance.
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Figure 3: Illustration of formula (3.16) for the conditional mean E[A∆|W2,∆]; including the first three
order terms versus the first four terms.

The computation of the conditional variance is however involved. Nevertheless, we identify the
leading term as E

[
ε2(A(1)

∆ − E[A(1)
∆ ]
)2|W2,∆

]
:

Var[A(ε)
∆ |W2,∆] =E

[(
A(ε)

∆ − E[A(ε)
∆ ]
)2|W2,∆

]
=E
[(

A(0)
∆ + εA(1)

∆ +
1
2

ε2 A(2)
∆ + O(ε3)− E[A(0)

∆ + εA(1)
∆ +

1
2

ε2 A(2)
∆ + O(ε3)]

)2|W2,∆
]

=E
[(

ε
(

A(1)
∆ − E[A(1)

∆ ]
)
+

1
2

ε2(A(2)
∆ − E[A(2)

∆ ]
)
+ O(ε3)

)2
|W2,∆

]
=E
[
ε2(A(1)

∆ − E[A(1)
∆ ]
)2|W2,∆

]
+ O(ε3).

So, we find:

E
[
ε2(A(1)

∆ − E[A(1)
∆ ]
)2|W2,∆

]
=4σ4

0 α2E
[( ∫ ∆

0
W2,tdt

)2|W2,∆
]
− 4σ4

0 α2E[
∫ ∆

0
W2,tdt|W2,∆]2

=4σ4
0 α2
(

E
[(

W2,∆∆−
∫ ∆

0
tdW2,t

)2|W2,∆
]
− E

[(
W2,∆∆−

∫ ∆

0
tdW2,t

)
|W2,∆

]2)
=4σ4

0 α2
(

W2
2,∆∆2 − 2W2,∆∆

1
2

W2,∆∆ + E
[( ∫ ∆

0
tdW2,s

)2|W2,∆
]
− 1

4
W2

2,∆∆2
)

=4σ4
0 α2
(1

4
W2

2,∆∆2 +
1
12

∆3 − 1
4

W2
2,∆∆2

)
=

1
3

σ4
0 α2∆3, (3.17)

In the derivation above we have used the relation d(Wt · t) = Wtdt + tdWt.
The conditional variance does not depend on W2,∆, which suggests that the conditional distribu-

tion of the integrated variance is ‘shifted by the time ∆ realization of the Brownian motion W2’, but
its variance is not affected by W2,∆.

3.5.2 Conditional moment-matched log-normal sampling scheme

Under common market conditions, i.e. σ0 < 1 and α < 1, the conditional variance is a very small
value, for small ∆. In other words, the randomness of the conditional distribution of A(ε)

∆ is low in
this situation. This suggests that one can accurately reproduce the conditional distribution of the
integrated variance, A(ε)

∆ , by an approximate distribution having the same mean and variance. One
could choose a Gaussian distribution for this purpose, however, a disadvantage is that in that case
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Figure 4: Quality of the approximation of the conditional moment-matched log-normal density com-
pared to the true density of integrated variance, A∆. The parameters chosen are σ0 = 0.4, α = 0.5.
In the LHS plot, T = 1; in the RHS plot T = 2.

large weights are assigned to the negative part of the real axis (whereas A∆ cannot be negative).
Therefore, we choose a (conditional) moment-matched log-normally distributed random variable to
approximate the conditional distribution of A(ε)

∆ .

More precisely, we denote the conditional mean and variance of A(ε)
∆ obtained from formula (3.16)

and (3.17) by:

m = σ2
0 ∆
(

1 + αW2,∆ + 1
3 α2(2W2

2,∆ −
∆
2
)
+ 1

3 α3(W3
2,∆ −W2,∆∆

)
+ 1

5 α4
(

2
3 W4

2,∆ −
3
2 W2

2,∆∆ + 2∆2
))

v = 1
3 σ4

0 α2∆3,
(3.18)

respectively. Then, we define a log-normal random variable, log(X) ∼ N(µ, σ), with mean and
variance m and v, respectively, i.e., E[X] = and Var[X] = v. Parameters µ and σ can be easily
obtained if the values of mean and variance are known:

µ = ln(m)− 1
2

ln
(
1 +

v
m2

)
, σ2 = ln

(
1 +

v
m2

)
.

The quality of this approximation is compared with simulation results for two time intervals, ∆ = 1
and ∆ = 2, in Figure 4. The shape of the density function for X is ‘flatter’ for larger values of ∆
which reflects a higher uncertainty in the realizations of integrated variance A∆.

As W2,∆ is normally distributed with variance ∆, it is straightforward to compute the joint density

of W2,∆ and A(ε)
∆ by recalling:

Pr
(

A∆, W2,∆
)
≈ Pr

(
A(ε)

∆ , W2,∆
)

= Pr
(

A(ε)
∆ |W2,∆

)
Pr
(
W2,∆

)
.

The above formula suggests that if we first draw normal random numbers, W2,∆, and then sample
the integrated variance from the conditional distribution, A∆ given one realization of W2,∆, the joint
realization of A∆ and W2,∆ reconstructs the desired joint density.

3.6 Discretization scheme for a full SABR model

We combine the two components described above and arrive at the unbiased scheme for the SABR
model with a correlation structure. We start from the SABR model as in Eq. (2.1) with calibrated
parameters α β and ρ. With an initial asset price and volatility at time 0, i.e. S0 and σ0, we simulate
the discrete paths with an absorbing boundary at zero for the next time point, ∆, as follows:

1. Draw samples from a normal distribution, W2,∆ ∼ N(0,
√

∆), The volatility at time step ∆
reads:

σ∆ = σ0 exp
(

αW2,∆ −
1
2

α2∆
)

.
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2. Compute the asymptotic conditional mean, m, and variance, v, for the integrated variance,
A(ε)

∆ , by

m = σ2
0 ∆
(

1 + αW2,∆ + 1
3 α2(2W2

2,∆ −
∆
2
)
+ 1

3 α3(W3
2,∆ −W2,∆∆

)
+ 1

5 α4
(

2
3 W4

2,∆ −
3
2 W2

2,∆∆ + 2∆2
))

,

v = 1
3 σ4

0 α2∆3

3. Compute the parameters of the moment-matched log-normal distribution by

µ = ln(m)− 1
2

ln
(
1 +

v
m2

)
, σ2 = ln

(
1 +

v
m2

)
.

4. Draw (a vector of) uniform random numbers, U1, and determine their inverse according to the
log-normal distribution (defined by µ and σ):

A∆ = exp
(
σ · N−1(U1) + µ

)
.

5. Insert A∆ and σ∆ in the algorithm described in Sec. 3.4.1 to sample the conditional CEV process.

4 Numerical experiments

To analyze the validity and efficiency of our discretization schemes numerically, we price some
European options based on the parameter sets in Table 3.

The first two test cases represent two limiting cases for the SABR model, i.e., with β = 1 and α =
0, respectively. Our aim is here to check the efficiency of two components of the scheme proposed,
i.e. the moment-matched log-normal integrated variance sampling scheme and the direct inversion
scheme for the conditional CEV process. In Case I, β = 1, the asset price follows a basic geometric
Brownian motion and there is no complication with the absorbing boundary at zero. The main
pricing bias will then be from the moment-matching algorithm to sample the integrated variance.
In Case II, we set α = 0, so that we isolate the part which is related to the simulation of the CEV
process. In this second test, we give special attention to the martingale property of the simulated
path.

For Test Case I, we use the option prices generated by a small time step Euler Monte Carlo
simulation as reference prices, whereas for Test Case II we use an analytic option pricing formula,
derived by Schroder [31], as the reference.

Next to these two tests, we also consider two practically relevant, yet challenging, parameter
sets, i.e. Cases III and IV, with parameters often observed in fixed income instrument pricing. Pa-
rameter set III is representative for a low interest rate market, as observed for example in Japan. This
parameter set is often embedded in the popular power-reverse dual contract. In this set, the impact
of the behavior at the zero boundary on the price should be clearly visible. Parameter set IV then
describes volatile market conditions as a high volatility-of-volatility parameter gives rise to a heavy
tailed distribution of the asset prices.

Table 3: Parameters in Test Cases I to IV for the numerical experiments.

Set I Set II Set III Set IV
S0 4% 4% 0.5% 7%
σ0 20% 20% 20% 40%
α 0.3 0 0.3 0.8
β 1 0.4 0.7 0.4
ρ −0.5 0 −0.3 −0.6

The benchmark Monte Carlo schemes, for the unbiased scheme proposed here, are the Full Trun-
cation Euler scheme from [24]. All Monte Carlo simulations have been performed simulating 105

paths.
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Figure 5: Result of the conditional moment-matching log-normal sampling scheme for the integrated
variance, simulating 5 and 10 year call option prices under a double log-normal model. A compari-
son is made with the truncated Euler Monte Carlo scheme, and Hagan’s asymptotic SABR formula.
Parameters used are α = 0.3, ρ = −0.5, S0 = 0.04, σ0 = 0.2.

Table 4: Results of the unbiased SABR scheme with β = 1, Test Case I.

K 40% 80% 100% 120% 160% 200%
∆ T= 5

Euler 1/200 0.02077 0.00889 0.00512 0.00279 0.00083 0.00029

Unbiased 1/2 0.02079 0.00887 0.00510 0.00277 0.00082 0.00029
1/4 0.02076 0.00890 0.00512 0.00279 0.00082 0.00029

Hagan 0.02083 0.00894 0.00514 0.00279 0.00082 0.00030
T= 10

Euler 1/200 0.02198 0.01124 0.00758 0.00503 0.00234 0.00125

Unbiased 1/2 0.02196 0.01122 0.00756 0.00502 0.00233 0.00124
1/4 0.02198 0.01124 0.00758 0.00504 0.00235 0.00126

Hagan 0.02230 0.01154 0.00781 0.00521 0.00248 0.00139
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Figure 6: Comparison for the CEV process of the implied volatilities generated by different methods;
Maturities are 2 and 10 years, and parameters α = 0.0, S0 = 0.04, σ0 = 0.2 and β = 0.4.

4.1 Results for test case I

As in a double log-normal model (i.e. β = 1) St = 0 cannot be reached, the Euler scheme performs
well. It is also reasonable to expect that the Euler Monte Carlo scheme with a sufficiently large
number of time steps is stable and converges to the correct solution. Here, we perform two tests,
with T = 5 and T = 10, respectively.

Table 4 shows that the conditional moment-matched integrated variance sampling scheme pro-
duces a significantly smaller bias for a practical number of time steps, like 2 or 4 time steps per
year. The accuracy of the unbiased scheme is comparable to that of an Euler scheme with 50 times
more time steps. To illustrate the accuracy of the conditional moment-matching scheme, we present
the implied option volatilities from the moment-matching scheme with 4 time steps a year together
with the 200 time steps Euler scheme and Hagan’s asymptotic formula in Figure 5. In the two fig-
ures, we observe that the difference between the implied volatilities from the 200 time steps Euler
scheme and the unbiased SABR scheme with 4 time steps is negligible, whereas Hagan’s asymp-
totic formula produces a visible pricing error for the 5 year maturity and is inexact for the 10 year
maturity.

4.2 Results for test case II

With α = 0, the stochastic volatility part vanishes and the system reduces to a plain CEV model. An
option pricing formula for the CEV model is known in closed form [31]. More recently, Lesniewski [22]
provided a classification (and an explicit option pricing formula) for the CEV process with absorbing
and with reflecting boundaries. Hence, we have an analytic reference value so that we can deter-
mine the accuracy of our discretization scheme and the price impact of the assumptions related to
the boundary condition at zero. In this subsection, we also examine the martingale property of the
discrete process in the algorithm proposed here.

In detail, we have implemented an Euler scheme with full truncation at zero, i.e. Ŝ∆ = max(Ŝ∆, 0),
the direct inversion scheme for the CEV process but with a reflecting boundary as well as our pro-
posed unbiased scheme. We present the implied volatilities obtained by these numerical schemes
and compare them to the exact CEV option pricing formula with absorbing boundaries in [22], in
Figure 6. We also include Hagan’s formula in the comparison by choosing a very small volatility-
of-volatility parameter and a small correlation coefficient 3, i.e. α = 0.0001 and ρ = 0.0001. In all
experiments the Euler scheme consists of 50 times more time steps than the unbiased SABR scheme.

From Figure 6, we see that:

• The unbiased scheme has a low bias for all strikes and maturities. In most of the cases the
implied volatilities obtained by the unbiased scheme are highly accurate when compared to
the exact solution. The unbiased scheme is essentially free of bias with merely four time steps a
year, whereas the Full Truncation Euler scheme requires more than 200 time steps to converge.

3This makes sense because the CEV model is a special case of the SABR model with a zero volatility-of-volatility parameter.
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Table 5: Martingale properties of several discretization schemes for a pure CEV process; Test Case II.
The Full Truncation Euler schemes considered are implemented with 50 times more time steps than
the unbiased scheme.

Unbiased Truncated Euler Reflecting
∆ T = 5

1/2 4% 4.05% 4.39%
1/4 4% 4.06% 4.22%
1/8 4% 4.07% 4.13%
1/16 4% 4.04% 4.07%

T = 10
1/2 4.01% 4.09% 4.47%
1/4 3.99% 4.05% 4.25%
1/8 4% 4.02% 4.16%

T = 15
1/2 3.99% 4.06% 4.47%
1/4 4.01% 4.04% 4.31%
1/8 4% 3.99% 4.15%

• The unbiased scheme with the reflecting boundary agrees very well with the exact solution
and with the proposed unbiased scheme for strikes that are far away from zero. For small
strike values there is a substantial miss-pricing by the direct inversion scheme with reflecting
boundary and its pricing bias increases with maturity.

• Hagan’s formula is not an accurate approximation for the CEV model in the parameter range
of small β (i.e. β ≤ 0.5).

• The small time step Full Truncation Euler scheme performs reasonably well for all maturi-
ties, in particular for short maturities. However, we observe an upward shift in the implied
volatility curve (the shift is larger for long maturities). This upward ‘bias’ is the result of the
truncation and can not be removed completely, not even by smaller time steps ∆.

• The pricing biases from the Full Truncation Euler scheme as well as from the direct inversion
scheme with reflecting boundary are most significant for small values of the strike.

We focus on the martingale property of the discretized processes generated by the different sim-
ulation schemes. In Table 5 we see that the direct inversion scheme with reflecting boundary gives
rise to a positive drift which decreases with smaller time steps. In contrast, the proposed unbiased
SABR scheme does not generate any statistically significant drift, and the martingale property is pre-
served. The Euler scheme with Full Truncation does not preserve the martingale property, although
the drift decreases (but does not disappear) with smaller time step ∆.

To show the order of convergence of the unbiased SABR scheme, we compute the root-mean-
squared (RMS) errors of at-the-money (ATM) option prices obtained by the Euler and the unbiased
SABR scheme for different numbers of time steps, see Figure 7. The convergence behavior of the
unbiased scheme appears to be superior (which is also the case for other K-values, not shown).

4.3 Results for cases III and IV

For Test Cases III and IV, we consider the full correlation SABR model and some practical yet chal-
lenging parameter settings, like rates almost zero or high volatility.

Parameter set III is particularly challenging for the Euler discretization scheme and for Hagan’s
SABR formula, because the initial rates are close to zero. It is known that when initial asset prices are
close to zero, many paths may reach negative values. The Full Truncation Euler scheme will project
the negative values to zero. The drawback is that the truncated Gaussian process is not a martingale
anymore, and an increasing number of time steps has to be employed to reduce the resulting bias.
On the other hand, the asymptotic SABR formula by Hagan is not valid for strikes K → 0. The
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Figure 7: Test Case II; Convergence of the estimated RMS error for call options with decreasing time
step ∆.

Table 6: Martingale bias of discrete processes for Test Case III.

∆ T = 2 T = 5 T = 10
Unbiased Euler Unbiased Euler Unbiased Euler

1 0.005 0.0057 0.005 0.0064 0.005 0.007
1/2 0.005 0.0054 0.005 0.0059 0.005 0.0061
1/4 0.005 0.0052 0.005 0.0054 0.005 0.0054
1/8 0.005 0.0051 0.005 0.0052 0.005 0.0052
1/16 0.005 0.0051 0.005 0.0051 0.005 0.0051

formula is a result of keeping log
(

f /K
)

constant and taking T → 0. However, when K → 0, it

follows that log
(

f /K
)
→ ∞, which is an incorrect way of approaching the asymptotic limit. As a

result, Hagan’s formula is not accurate for very low strike values.
In the unbiased SABR scheme, option pricing at low strike values does not pose any problem.

Since an accurate reference value is lacking for Test Case III, we use the martingale property, E[ŜT ] =
Ŝ0, of the discrete process to analyze the accuracy of the unbiased scheme. For comparison, we also
simulate with the Full Truncation Euler scheme with the same number of time steps (see Table 6).

The results in Table 6 show that the unbiased scheme with the absorbing boundary does not
generate any bias for this test. For the Euler scheme the drift decreases rapidly with the number of
time steps.

For Test Case IV, due to the absence of reference values (by a semi-closed form solution or an
accurate approximation), we make use of the following result to determine the convergence order
of our algorithm:

RESULT 4.1 (Weak Convergence Order without an Exact Solution [30]). 1) If a discrete approximation
X̂ to a continuous process X with time step ∆ has a weak convergence order γ for some positive constant K1,
i.e.: ∣∣E[g(X(T)

)]
− E

[
g
(
X̂(T, ∆)

)]∣∣ ≤ K1∆γ (4.1)

Then, there exists a positive constant, K2, such that:∣∣∣∣E[g(X̂(T, ∆)
)]
− E

[
g
(
X̂(T,

∆
2

)
)]∣∣∣∣ ≤ K2∆γ. (4.2)

23



0 5 10 15 20 25 30 35
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Step size (∆)

R
el

at
iv

e 
er

r 
(ε

)

 

 
Unbiased
Euler

0.5 1 1.5 2 2.5 3 3.5
−7.5

−7

−6.5

−6

−5.5

−5

−4.5

−4

Lo
g(

ε)

Log(∆)

 

 
Unbiased
Euler

Figure 8: Convergence of relative errors; Test Case IV.

2) Conversely, if it is known that the discretization is weakly convergent and Eq. (4.2) holds for some positive
constant K2, then the weak convergence order is γ. The proof can be found in Schmitz-Abe & Shaw [30].

For Test Case IV the resulting call option prices are presented in Table 7. We apply Formula (4.2)
to the Monte Carlo prices of the ATM options with 5 years maturity from Table 7, and define the
relative error to be

ε =
∣∣∣∣Ĉ(Ŝ(T, ∆)

)
− Ĉ

(
Ŝ(T,

∆
2

)
)∣∣∣∣ .

Here, Ĉ denotes the Monte Carlo estimate of the call option price for underlying discrete process
Ŝ. Clearly, the unbiased scheme produces convergent Monte Carlo prices (see Figure 8) and has
a higher order of convergence than the truncated Euler scheme. Again, the relative error of the
unbiased scheme with only 2 time steps per year is comparable to that of the Euler scheme with
more than 32 time steps per year.

4.4 Computational time

From the numerical results presented, the accuracy of the unbiased scheme has been confirmed. In
addition, the CPU time to compute one sample path is of great importance for practical application.
The CPU time required for the unbiased scheme is largely dependent on the value of parameter
β. Computations are faster for β ≈ 1 and somewhat slower for β ≈ 0. This can be seen from the
space transform employed in the derivation of the unbiased SABR scheme, Y = S2−2β/(1− β)2.
With β ≈ 1, Y tends to infinity and the distribution approaches a Gaussian distribution. Most of the
sample paths will then be drawn from the ‘cheap to evaluate’ quadratic Gaussian approximation.
On the contrary, when β ≈ 0, most of the draws would be performed by the direct inversion scheme,
which takes more CPU time.

For reference, Table 8 presents CPU times for the Full Truncation Euler and the unbiased schemes
used in Cases III and IV. In these two cases, the difference in CPU time for one time step in the
unbiased scheme is roughly a factor of 20. Despite this, we argue that it is still preferable to choose
the unbiased scheme in the latter case (β ≈ 0, S0 small) since for this parameter setting the Euler
scheme is significantly biased 4. This bias can not be reduced, not even by 80− 100 time steps per
year. The unbiased scheme is then more efficient to reach the same level of accuracy.

5 Conclusion

In this paper we have presented an unbiased SABR simulation scheme. We firstly reviewed some
analytic properties of the CEV process, which is a space-transformed squared Bessel process, and

4The probability of hitting zero is high, so that a large number of truncations of the negative paths are expected.
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Table 7: Estimated call option price for Test Case IV.

K = 40% K = 100% K = 160%
∆ Unbiased Euler Unbiased Euler Unbiased Euler

T = 2
1 0.0803 0.0922 0.0645 0.0714 0.0510 0.0538

1/2 0.0688 0.0838 0.0535 0.0649 0.0405 0.0489
1/4 0.0642 0.0771 0.0492 0.0596 0.0366 0.0449
1/8 0.0619 0.0708 0.0474 0.0546 0.0352 0.0409

1/16 0.0610 0.0673 0.0468 0.0518 0.0347 0.0388
1/32 0.0604 0.0643 0.0463 0.0494 0.0343 0.0368

T = 5
1 0.0795 0.1074 0.0672 0.0895 0.0564 0.0735

1/2 0.0693 0.0928 0.0576 0.0767 0.0454 0.0624
1/4 0.0667 0.0827 0.0540 0.0680 0.0429 0.0550
1/8 0.0643 0.0759 0.0523 0.0621 0.0412 0.0499

1/16 0.0632 0.0702 0.0512 0.0572 0.0406 0.0457
1/32 0.0625 0.0674 0.0506 0.0548 0.0400 0.0437

T = 10
1 0.0765 0.1133 0.0665 0.0966 0.0575 0.0815

1/2 0.0678 0.0975 0.0566 0.0823 0.0466 0.0687
1/4 0.0669 0.0850 0.0550 0.0713 0.0451 0.0591
1/8 0.0652 0.0774 0.0537 0.0645 0.0434 0.0530

1/16 0.0635 0.0705 0.0523 0.0584 0.0422 0.0476
1/32 0.0630 0.0678 0.0520 0.0561 0.0421 0.0456

Table 8: Computational time (in seconds) for a 10 year option with different step sizes, ∆.

∆ 1
2

1
4

1
8

1
16

1
32

Unbiased 8.95 16.20 30.8 59.7 118.4
Euler FT 0.49 0.90 1.73 3.36 6.7

discussed the classification of boundary conditions and the associated probability density and dis-
tribution functions. As the conditional SABR process, given the terminal volatility level and the
integrated variance, is also a squared Bessel process, we can find an explicit distribution function for
the conditional SABR process.

Based on the idea of mixing conditional distributions and a direct inversion of the noncentral
chi-square distributions, we have proposed an unbiased SABR Monte Carlo scheme. The scheme
proposed can deal with the – often problematic – behavior of the CEV process in the vicinity of
the zero boundary. The unbiased scheme is stable and exhibits a highly satisfactory convergence
behavior compared to the truncated Euler scheme. The scheme is an alternative when a truncated
Euler scheme gives rise to significant bias, even with a very large number of time steps, which is the
case, for example, when S0 ≈ 0 or when the skewness parameter, β, is less than 1

2 .
A multi-dimensional extension of the present scheme is an interesting topic of future research.
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