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Abstract

In this article we propose an efficient Monte Carlo scheme for simulating the stochastic
volatility model of Heston [14] enhanced by a non-parametric local volatility compo-
nent. This hybrid model combines the main advantages of the Heston model and the
local volatility model introduced by Dupire [8] and Derman & Kani [7]. In particular,
the additional local volatility component acts as a “compensator” that bridges the
mismatch between the non-perfectly calibrated Heston model and the market quotes
for European-type options. By means of numerical experiments we show that our
scheme enables a consistent and fast pricing of products that are sensitive to the
forward volatility skew. Detailed error analysis is also provided.

Key words: Heston Stochastic-Local Volatility, HSLV, Stochastic Volatility, Local
Volatility, Heston, Hybrid Models, Calibration, Monte Carlo.

1 Introduction

For many years the local volatility (LV) model presented by Dupire [8] and Derman &
Kani [7] is considered to be a standard model for pricing and managing risks of structured
products. The main advantage of the LV model is its natural modeling of the market
implied volatilities for plain vanilla options. As the input for the LV model is an implied
Black-Scholes volatility surface, it can be calibrated exactly to any given set of arbitrage-
free European vanilla option prices. Although well-accepted the LV model has certain
limitations, for example, it generates flattening implied forward volatilities [21]. This
may lead to a mispricing of financial products like forward-starting or cliquet options.
This problem is often addressed by adopting a so-called sticky-skew technique which is
based on the forward volatilities “as seen today”. Alternatives for pricing such products
are stochastic volatility (SV) models, like the Heston [14] and Schöbel-Zhu [24] models,
where volatility is driven by an additional stochastic differential equation. The SV models
are considered to be more accurate choices [9, 11] for pricing forward volatility sensitive
derivatives. Additionally, the volatilities in the SV models “move”, to a certain extent,
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independently of a change in spot prices– a property which local volatility models do not
have [22]. Although the SV models have desired features for pricing they often cannot
be very well calibrated to a given set of arbitrage-free European vanilla option prices. In
particular, the accuracy of the Heston model for pricing short-maturity options in the
equity market is typically unsatisfactory [9].

In this article we consider a hybrid model which includes stochastic as well as lo-
cal volatility. We focus on the Heston stochastic volatility model enhanced by a non-
parametric local volatility component. Such a model, by construction, allows a high-
quality calibration to plain vanilla options, even for an initial set of Heston parameters
which is not very well calibrated to market data.

The evaluation of these stochastic-local volatility (SLV) models is however not trivial.
As the stock’s overall volatility consists of two different types of volatilities (the stochastic
and the local) it is challenging to account, in the calibration process, for the correlation
between these two.

Although the SLV hybrid models are rather new in the financial industry a number of
attempts for efficient model evaluation have been made already. Ren et al. [22] proposed a
stochastic volatility model driven by a lognormal volatility process and developed a tailor-
made algorithm for solving the corresponding Kolmogorov forward PDE. An extension of
this technique to the Heston SLV was presented in [9] where a finite volume scheme for
the model evaluation was used. Although the PDE-discretization techniques are common
practice in the financial industry in the context of the local-volatility component, explicit
in time discretization methods are typically stable for a very large number of time-grid
points requiring significant computational burden. Tian et al. engaged a parallel GPU
platform to accelerate these computations [27].

The author in [19] moved away from the direct solution of the SLV model and derived
via the Markovian projection closed-form approximations to prices of European options on
various underlyings. Work on Markovian projections in the context of the SLV models has
also been presented in [13], where a so-called “effective local volatility” was derived. The
Markovian projections can be widely applied but require a number of conditional expec-
tations to be determined. Very often these expectations are not available analytically and
brute-force assumptions need to be imposed so that approximations can be defined [18].
Although mathematically appealing the Markovian projection technique preserves only
marginal densities and does not keep marginal distributions of orders higher than one
intact. Due to this, prices of securities depending on stock values at multiple times, such
as American options and barriers, may significantly differ between the original model and
the projected model.

Another attempt for solving the SLV model was presented in [26] where a Levenberg-
Marquardt optimization technique for a non-linear Fokker-Planck equation was applied.
Another approach for simulation was proposed in [6] by Deelstra and Rayée. By assuming
zero correlation between the volatility process and the underlying asset it is possible to
efficiently simulate the extended Schöbel-Zhu model.

In this article we solve all necessary model components numerically.
We present a Monte Carlo approach for efficient calibration of the Heston SLV model.

In particular, we develop a non-parametric numerical scheme for efficient model evalua-
tion. The scheme is model independent and can be applied to all SLV hybrids, including
those based on the SABR model. The technique introduced does not require any advanced
methods which makes it intuitive and easy to implement.

The outline of this paper is as follows. In Section 2 we derive the full-scale SLV model
and highlight the issues related to efficient model evaluation. Section 3 constitutes the
core of this article. We show there how, for a Monte Carlo simulation scheme, nontrivial
conditional expectations can be evaluated efficiently. We also discuss the simulation of
the full-scale model and present how the “unbiased” Monte Carlo scheme for the Heston
model [1] can be adopted to the Heston SLV (HSLV) model. In Section 4 some numerical
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examples are presented. We particularly concentrate on forward-volatilities implied by the
Heston SLV model. Section 5 focuses on the theoretical assessments of the model error
and Section 6 concludes.

2 Stochastic-Local Volatility model

The stochastic-local volatility (SLV) model under consideration is driven by the following
system of Stochastic Differential Equations (SDEs):

dS(t)/S(t) = rdt+ σ(t, S(t))ψ(V (t))dWx(t), (2.1)
dV (t) = av(t, V (t))dt+ bv(t, V (t))dWv(t), (2.2)

dWx(t)dWv(t) = ρx,vdt, (2.3)

with correlation ρx,v between the corresponding Brownian motions, σ(t, S(t)) is the local
volatility component, ψ(V (t)) controls the stochastic volatility, parameters av(t, V (t)) and
bv(t, V (t)) determine the drift and diffusion of the variance process, respectively, and r is
a constant interest rate.

Note that the general SLV model described by the system of the SDEs in (2.1) and (2.2)
can collapse to either the pure SV model or to the LV model. If we set the local volatility
component σ(t, S(t)) = 1, then the model boils down to a pure stochastic volatility model.
On the other hand, if the stochastic component of the variance bv(t, V (t)) is equal to 0, the
model reduces to a local volatility model. Two popular stochastic volatility models which
fit into our framework are the Heston SV model [14] with the variance process driven by
the CIR dynamics [4], ψ(V (t)) =

√
V (t) with av(t, V (t)) = κ(v̄ − V (t)) and bv(t, V (t)) =

γ
√
V (t), and the Schöbel-Zhu model [24] with ψ(V (t)) = V (t) and av(t, V (t)) = κ(v̄ −

V (t)), bv(t, V (t)) = γ. Parameter κ controls the speed of mean-reversion, v̄ controls a
long-term mean and γ determines the volatility of the process V (t).

The SLV model described by Equations (2.1) and (2.2) is yet incomplete as σ(t, S(t))
is left unspecified. This function can take different forms. It can be, for example, given by
the constant elasticity of variance model, i.e. σ(t, S(t)) = σ̂Sβ(t), which is a well-known
parametric form for describing the volatility movements in terms of the underlying asset
S(t). Choosing a parametric form for the local volatility, σ(t, S(t)) , although very flexible
and well-accepted, has an undesired feature which is the need for model calibration, i.e.
one needs to determine the SV parameters and the LV parameters in the calibration
procedure. As the calibration may not always guarantee a sufficiently-well fit to market
data we concentrate on non-parametric forms for σ(t, S(t)) here.

The main concept for deriving a non-parametric LV component σ(t, S(t)) is as follows:
it is well-known that from market data for the European-style options one can determine
the market implied density1, f̂S(x), of the stock S(T ). Furthermore, by deriving the
Kolmogorov forward equation for the underlying model we are able to determine the
density, fS(x), of the stock driven by the SDEs (2.1) and (2.2). In a general setting these
densities differ and only for a perfectly calibrated model they are identical. As in the SLV
framework we have one free parameter available, namely σ(t, S(t)), we may choose the
local component so that the densities implied from the market and the model are equal.
In the following we derive an expression for the local volatility component σ(t, S(t)) in the
stochastic-local volatility model.

2.1 Specifying σ(t, S(t))

Let us start with a European call option whose price is given by:

C(t0, t, S(t0),K) =
M(t0)

M(t)
E
[
(S(t)−K)+ |F(t0)

]
,

1This result is shown in Lemma 2.1
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where the expectation is evaluated under the risk-neutral measure Q and the money-
savings account M(t) is given by dM(t) = rM(t)dt (with constant interest rate r and
M(t0) = 1). In the following derivations, we leave filtration F(t0) out in the notation and
we introduce the short-hand notation C(t,K) := C(t0, t, S(t0),K).

In order to obtain the dynamics of the call option price, we apply Itô’s lemma:

dC(t,K) =

(
d

1

M(t)

)
E
[
(S(t)−K)+]+

1

M(t)
dE
[
(S(t)−K)+]

= − r

M(t)
E
[
(S(t)−K)+] dt+

1

M(t)
E
[
d (S(t)−K)+] , (2.4)

where Fubini’s theorem justifies the equality dE
[
(S(t)−K)+] = E

[
d (S(t)−K)+] . Re-

garding the right-hand side in (2.4), we cannot apply Itô’s lemma for the evaluation of
d (S(t)−K)+, as the convex function h(x) = (x−a)+ is not differentiable at point x = a.
Therefore, we will make use of a generalized version of Itô’s lemma known as the Tanaka-
Meyer formula [15,20]:

Theorem 2.1 (Tanaka-Meyer formula). Given a probability space (Ω,F ,Q), t0 ≤ t <∞,
let X(t) = X(t0)+M̃(t)+V (t) be a continuous semimartingale, where M̃ = {M̃(t),F(t)}
is a continuous local martingale2, V = {V (t),F(t)} is a càdlàg adapted process3 of locally
bounded variation. Then, for h(x) = (x− a)+ with a ∈ R:

h(X(t)) = h(X(t0)) +

∫ t

t0

1X(u)>adM̃(u) +

∫ t

t0

1X(u)>adV (u) +
1

2

∫ t

t0

h′′(X(u))(dM̃(u))2.

Proof. A full proof can be found in Tanaka [25].

Applying the Tanaka-Meyer formula4, we get

(S(t)−K)+ = (S(t0)−K)+ +

∫ t

t0

1S(u)>KdS(u) +
1

2

∫ t

t0

δ (S(u)−K) (dS(u))2,

which in a differential form is given by:

d(S(t)−K)+ = 1S(t)>KdS(t) +
1

2
δ (S(t)−K) (dS(t))2.

Substituting the dynamics of S(t), we obtain:

d (S(t)−K)+ = 1S(t)>K

(
rS(t)dt+ σ(t, S(t))ψ(V (t))S(t)dWx(t)

)
+

1

2
δ (S(t)−K)σ2(t, S(t))ψ2(V (t))S2(t)dt.

The dynamics of the call price can be written as:

dC(t,K) = − r

M(t)
E
[
(S(t)−K)+] dt

+
1

M(t)
E
[
1S(t)>K

(
rS(t)dt+ σ(t, S(t))ψ(V (t))S(t)dWx(t)

)]
+

1

2M(t)
E
[
δ (S(t)−K)σ2(t, S(t))ψ2(V (t))S2(t)

]
dt.

2M̃ is a local martingale provided that there is a nondecreasing sequence {τk} of stopping times with
the property that P(τk → ∞ as k → ∞) = 1 and such that for each k the stopped process M̃(t)(k) =

M̃(t ∧ τk)− M̃(t0) is a martingale.
3V (t) is defined on the real numbers (or a subset of them) and is everywhere right-continuous and has

left limits everywhere.
4By taking X(t) := S(t) we immediately notice that S(t) is a semimartingale, as S(t) = S(t0) +

r
∫ t

t0
S(u)du+ M̃(t), where

∫ t

t0
S(u)du is a càdlàg adapted process of locally bounded variation and M̃(t)

is an H1 martingale and thus a local martingale as well (every martingale is a local martingale).
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We simplify this equation by using the equality

E
[
(S(t)−K)+] = E

[
1S(t)>K (S(t)−K)

]
= E

[
1S(t)>KS(t)

]
−KE

[
1S(t)>K

]
.

This gives us the following preliminary result:

Result 2.1. The dynamics of the European call option price C(t,K) := C(t0, t, S(t0),K)
with S(t) and V (t) following the dynamics as given in (2.1) and (2.2), respectively, are
given by

dC(t,K) =
rK

M(t)
E
[
1S(t)>K

]
dt+

1

2M(t)
E
[
δ (S(t)−K)σ2(t, S(t))ψ2(V (t))S2(t)

]
dt,

where each expectation is conditional on F(t0).

In the following, we use another result in our derivations:

Lemma 2.1. The European call option price C(t,K) := C(t0, t, S(t0),K) with S(t) and
V (t) following dynamics as given in (2.1) and (2.2), respectively, satisfies

−∂C(t,K)

∂K
=

1

M(t)
E
[
1S(t)>K |F(t0)

]
and − ∂C2(t)

∂K2
=
fS(K)

M(t)
,

where fS is the marginal probability density function of S(t).

Proof. For a proof, see Appendix A.

We return to the dynamics of the call price given in Result 2.1 where we include the
results from Lemma 2.1, i.e.

dC(t,K) = −rK ∂C(t,K)

∂K
dt+

1

2M(t)
E
[
δ (S(t)−K)σ2(t, S(t))ψ2(V (t))S2(t)

]
dt,

which is equivalent to:

2M(t)

(
dC(t,K) + rK

∂C(t,K)

∂K
dt
)

= E
[
δ (S(t)−K)σ2(t, S(t))ψ2(V (t))S2(t)

]
dt =: A(t)dt.

We denote by A(t),

A(t) =

∫∫
R
δ (s−K)σ2(t, s)ψ2(u)s2fV,S(u, s)dsdu

=

∫
R
ψ2(u)

(∫
R
δ(s−K)s2σ2(t, s)fV,S(u, s)ds

)
du. (2.5)

Using properties of the Dirac delta function 5 the inner integral simplifies to:∫
R
δ(s−K)s2σ2(t, s)fV,S(u, s)ds = K2σ2(t,K)fV,S(u,K). (2.6)

Then the expression for A(t) is given by

A(t) = K2σ2(t,K)

∫
R
ψ2(u)fV,S(u,K)du, (2.7)

which is equivalent to:

A(t) = K2σ2(t,K)fS(K)E
[
ψ2(V (t))|S(t) = K

]
.

5∫
R δ(t− T )f(t)dt = f(T )
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The dynamics are given by:

dC(t,K) = −rK ∂C(t,K)

∂K
dt+

1

2M(t)
K2σ2(t,K)fS(K)E

[
ψ2(V (t))|S(t) = K

]
dt.

Using the second equation in Lemma 2.1, we obtain:

dC(t,K) =

(
−rK ∂C(t,K)

∂K
− 1

2
K2σ2(t,K)E

[
ψ2(V (t))|S(t) = K

] ∂2C(t,K)

∂K2

)
dt, (2.8)

which can be expressed as:

σ2(t,K)E
[
ψ2(V (t))|S(t) = K

]
=

∂C(t,K)
∂t + rK ∂C(t,K)

∂K

1
2K

2 ∂
2C(t,K)
∂K2

=: σ2
LV(t,K),

where σLV(t,K) denotes Dupire’s local volatility [8]. We eventually find the following
relation:

σ2(t,K) =
σ2

LV(t,K)

E [ψ2(V (t))|S(t) = K]
. (2.9)

The local volatility component σ2(t,K) consists of two ingredients: the deterministic local
volatility σLV(t,K) and the conditional expectation E[ψ2(V (t))|S(t) = K]. Numerical
evaluation of σLV(t,K) is already well-established in the literature, see for example [2,3,5].
On the other hand, the efficient computation of the conditional expectation in (2.9) is not
yet established. The difficulty lies in the fact that the joint distribution of the variance
V and the stock S, fV,S , is unknown. This is due to the fact that the stock process,
S(t), contains a local-volatility component σLV(t, S) which is also not known analytically.
The evaluation of the unknown expectation can be either derived by solving a Kolmogorov
forward PDE (e.g. [6,9]) or by applying a Markovian projection approximation [13,18,19].
In this article we concentrate on Monte Carlo evaluation of the stochastic-local volatility
model. In the next section we present a numerical method which leads to efficient Monte
Carlo model evaluation.

3 Novel technique for E
[
ψ2(V (t))|S(t) = K

]
In this section we present a new efficient evaluation of a general stochastic-local volatility
model. In particular, by an Euler discretization we simulate the SLV model (2.1)-(2.2) as
follows:

si+1,j = si,j + rsi,j∆ + σ(ti, si,j)si,jψ(vi,j)
√

∆Zx, s0,j = S(t0), (3.1)

vi+1,j = vi,j + av(ti, vi,j)∆ + bv(ti, vi,j)
√

∆Zv, v0,j = v(t0), (3.2)

for j = 1, . . . , N and i = 0, . . . ,M where Zx = Z1, Zv = ρx,vZ1 + (1− ρ2
x,v)

1/2Z2, with Z1

and Z2 two independent standard normal variables. Further, ∆ is the equidistant time-
step given by ∆ = i TM with M indicating the number of time steps and T stands for final
time. N corresponds to the total number of Monte Carlo paths.

Using expression (2.9) for σ(t, S), System (3.1)-(3.2) becomes:

si+1,j = si,j + rsi,j∆ +

√
σ2

LV(ti, si,j)

E [ψ2(V (ti))|S(ti) = si,j ]
si,jψ(vi,j)

√
∆Zx, (3.3)

vi+1,j = vi,j + av(ti, vi,j)∆ + bv(ti, vi,j)
√

∆Zv. (3.4)

To determine the values of the paths for the next time-step, ti+1, one needs to establish
two main components, σ2

LV(ti, si,j) and E
[
ψ2(V (ti))|S(ti) = si,j

]
. As indicated efficient

evaluation of σ2
LV(ti, si,j) is already well-established in the literature [2,5]. This is not the
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case for evaluation of the conditional expectation. The main difficulty in its evaluation
is that the conditioning has to be performed on each individual stock realization si,j ,
i.e. as we simulate a discretized system for (S, V ), each realization of si,j has exactly
one corresponding realization of the variance vi,j and this makes the evaluation of the
conditional expectation difficult.

In the next subsection we present a non-parametric method for evaluating the condi-
tional expectation.

3.1 Non-parametric method

Suppose that for a given time ti, i = 1, . . . ,M we have N pairs of Monte Carlo realizations
(si,1, vi,1), (si,2, vi,2), . . . , (si,N , vi,N ) for which we wish to evaluate the conditional expec-
tation in (3.3). As for each si,j we have exactly one value vi,j the conditional expectation
will always be equal to ψ2(vi,j), which is undesired. Such a problem is a natural con-
sequence of discretization of the continuous system (S, V ). Obviously, in order to obtain
an accurate estimate we would need to have an infinite set of paths, which is practically
unfeasible.

The idea to overcome this problem is to group the pairs of realizations into bundles
which would provide a more accurate estimate for the desired expectation. Let us divide
the range of S(ti) into ` mutually exclusive bins (b1, b2], (b2, b3], . . . , (b`, b`+1], with b1 ≥ 0
and b`+1 <∞.

Now, for any particular stock realization si,j , for which si,j ∈ (bk, bk+1] for some
k ∈ {1, 2, . . . , `} we introduce the following approximation:

E
[
ψ2(V (ti))|S(ti) = si,j

]
≈ E

[
ψ2(V (ti))|S(ti) ∈ (bk, bk+1]

]
. (3.5)

If we define the left and right boundaries of (bk, bk+1] to be si,j−ε and si,j+ε, respectively,
we obtain the following:

E
[
ψ2(V (ti))|S(ti) = si,j

]
= lim

ε→0+
E
[
ψ2(V (ti))|S(ti) ∈ (si,j − ε, si,j + ε]

]
= lim

ε→0+

E
[
ψ2(V (ti))1S(ti)∈(si,j−ε,si,j+ε]

]
Q [S(ti) ∈ (si,j − ε, si,j + ε]]

. (3.6)

In the limiting case where both boundaries of the bin are equal to si,j the approximation
of the conditional expectation boils down to its exact value. This is an indication for the
appropriateness of the approximation in (3.5). The open question that remains is how to
choose proper bin boundaries bk for k = 1, . . . , `+ 1. We consider two following choices in
a Monte Carlo simulation framework.

We first order all the stock paths si,1, si,2, . . . , si,N and obtain the following sequence:
s̄i,1 ≤ s̄i,2 ≤ · · · ≤ s̄i,N , where s̄i,1 and s̄i,N are the minimal and maximal values at
time-step i, respectively. Then, we choose the bin boundaries bi,k, k = 1, . . . , ` + 1. A
straightforward way is specifying these such that the bins have the same size. We can also
choose the boundaries depending on the number of paths per bin. These two choices are
established as follows:

1. Define the bins with respect to an equidistant grid specified on the domain s̄i,1 =
bi,1 < bi,2 < · · · < bi,`+1 = s̄i,N such that for any u, v ∈ {1, . . . , `}, u 6= v, bi,u+1 −
bi,u = bi,v+1 − bi,v. This is established by:

bi,k = s̄i,1 +
k − 1

`
(s̄i,N − s̄i,1), k = 1 . . . `+ 1. (3.7)

2. Specify the bins so that each bin contains an approximately equal number of Monte
Carlo paths:

bi,1 = s̄i,1, bi,`+1 = s̄i,N , bi,k = s̄i,(k−1)N/`, k = 2 . . . `. (3.8)
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After determination of the bins, each pair (si,j , vi,j) is assigned to a bin according to its
si,j value. Let us denote the path numbers corresponding to the kth bin Bk at time ti by
Ji,k, that is Ji,k := {j|(si,j , vi,j) ∈ Bk}. Further, Nk is defined as the number of paths in
the kth bin, so Nk = |Ji,k|. We then have:

E
[
ψ2(V (ti))

∣∣S(ti) = si,j
]
≈

E
[
ψ2(V (ti))1S(ti)∈(bi,k,bi,k+1]

]
Q [S(ti) ∈ (bi,k, bi,k+1]]

≈
1
N

∑N
j=1 ψ

2(vi,j)1si,j∈(bi,k,bi,k+1]

Q [S(ti) ∈ (bi,k, bi,k+1]]

=
1

Nα(k)

∑
j∈Ji,k

ψ2(vi,j), (3.9)

where α(k) := Q [S(ti) ∈ (bi,k, bi,k+1]] represents the probability of the stock being in the
kth bin. The second approximation is established by switching between the expectation
and the average, which is based on a finite number of (si,j , vi,j)-pairs. The value of α(k)
depends on the way the bins are chosen:

α(k) =

{
Nk/N, k = 1 . . . ` for bins defined as in (3.7),

1/` for bins defined as in (3.8).

Remark 3.1. As it will be shown in Section 5.3, the choice of bins affects the convergence
of the non-parametric method. If we define the bins according to (3.8), bins close to the
mean of the joint density are much smaller than bins in the tails. This is desirable as the
region close to the mean contains many more observations, requiring a higher accuracy and
thus smaller bin sizes. We will choose bins according to (3.8) in numerical experiments.

We summarize the non-parametric method in Algorithm 1.

for each time-step ti, i = 1 . . .M do
1 Generate N pairs of observations (si,j , ψ

2(vi,j)), j = 1 . . . N .
2 Order the elements s̄i,j : s̄i,1 ≤ s̄i,2 ≤ · · · ≤ s̄i,N .
3 Determine the boundaries of ` bins (bi,k, bi,k+1], k = 1 . . . ` according to either (3.7)

or (3.8).
4 For the kth bin approximate the conditional expectation by

E
[
ψ2(V (ti))

∣∣S(ti) ∈ (bi,k, bi,k+1]
]
≈ 1

Nα(k)

∑
j∈Ji,k

ψ2(vi,j), where Ji,k is the set of
path numbers j for which the observations are in the kth bin at the ith time-step
and α(k) represents the probability of the stock being in the kth bin, which is
determined by the choice of bins.

end

Algorithm 1: Non-parametric method

We present two illustrative examples where this method for calculating the conditional
expectation is applied. Error analysis will be discussed in Section 5.

Experiment 3.1 (Illustrative examples). In order to illustrate how the introduced algo-
rithm works we present two experiments. First, we consider a simple Monte Carlo simula-
tion consisting of 9 paths. In the second experiment we apply the algorithm to calculate
the conditional expectation for the Heston model. We start with some assumptions. The
initial values for the stock and variance process are S(t0) = s0 = 1 and V (t0) = v0 = 0.1,
respectively.

In order to obtain path realizations at time t1 we need to determine the conditional
expectation E[V (t0)|S(t0) = s0], which trivially gives E[V (t0)|S(t0) = s0] = v0 = 0.1.
This holds for all paths in this experiment. To determine the paths at time t2 we calculate
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the expectation E[V (t1)|S(t1) = s1,j ], j = 1 . . . 9, as follows. First, we choose the number
of bins, ` = 3, and sort the pairs (s1,j , v1,j) according to their s1,j values. Then, we assign
each pair to a bin – also according to the s1,j values. Finally, we calculate for each bin an
approximation of the conditional expectation. The procedure is illustrated in the tables
below:

j t0 t1
(s0, v0) E[V (t0)] (s1,j , v1,j)

1 (1, 0.1) 0.1 (1.9, 0.09)
2 (1, 0.1) 0.1 (0.9, 0.15)
3 (1, 0.1) 0.1 (1.2, 0.15)
4 (1, 0.1) 0.1 (0.5, 0.20)
5 (1, 0.1) 0.1 (1.6, 0.06)
6 (1, 0.1) 0.1 (1.1, 0.07)
7 (1, 0.1) 0.1 (1.7, 0.05)
8 (1, 0.1) 0.1 (1.2, 0.08)
9 (1, 0.1) 0.1 (0.4, 0.25)

⇒

j t1
(s1,j , v1,j)

9 (0.4, 0.25)
4 (0.5, 0.20)

2 (0.9, 0.15)

6 (1.1, 0.07)
3 (1.2, 0.15)

8 (1.3, 0.08)

5 (1.6, 0.06)
7 (1.7, 0.05)

1 (1.9, 0.09)

⇒ E[V (t1)|S(t1) ∈ (0, 0.9]]
≈ 1

3

∑
j v1,j = 0.2,

⇒ E[V (t1)|S(t1) ∈ (0.9, 1.3]]
≈ 1

3

∑
j v1,j = 0.1,

⇒ E[V (t1)|S(t1) ∈ (1.3, 1.9]]
≈ 1

3

∑
j v1,j = 0.067.

Let us consider a more practical example. We consider the Heston stochastic volatility
model. In this model ψ(x) =

√
x and the conditional expectation reads E [V (ti)|S(ti) = si,j ].

The reason for considering the pure Heston model is that we are able to determine the
conditional expectation by the 2D-COS method [23]. A discussion about this calculation
is provided in Section 5.2.

In Figure 3.1 we compare the results for the conditional expectation from the proposed
scheme and the reference obtained by Fourier expansions. Each plot includes a contour plot
of the recovered density, the corresponding conditional expectation, and its approximation.
In the simulations we considered 1e5 Monte Carlo paths paths with 2, 5 and 20 bins,
respectively. We choose bins that contain equal numbers of realizations. This yields
smaller bins close to the mean of the joint density, see also Remark 3.1. The approximation
obtained by the algorithm introduced converges to the reference.
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Figure 3.1: The approximation obtained by the non-parametric method converges to the
conditional expectation recovered by the COS method as the number of bins increases (2,
5 and 20 respectively).

Remark 3.2. An alternative method for estimating E
[
ψ2(V (ti))|S(ti) = si,j

]
is by pro-

jecting ψ2(V (ti)) on a set of orthogonal polynomials ζk(·), k = 1 . . . n : ψ2(V (ti)) =∑n
k=1 βkζk(S(ti)) + ε. By regressing ψ2(V (ti)) on functions ζk(·) the conditional expecta-

tion can be calculated, as

E
[
ψ2(V (ti))|S(ti) = si,j

]
≈ E

[
n∑
k=1

βkζk(S(ti))
∣∣∣S(ti) = si,j

]
=

n∑
k=1

βkζk(si,j). (3.10)
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The above approximation for ψ2(V (ti)) is based on the assumption that the conditional
expectation is an element of the L2-space of square integrable functions (relative to a
particular measure). The conditional expectation can be represented as a linear function
of elements of a countable orthonormal basis. Applying the approximation in (3.10) the
discrete scheme described by (3.3) and (3.4) becomes:

si+1,j = si,j + rsi,j∆ +

√
σ2

LV(ti, si,j)∑n
k=1 βkζk(si,j)

si,jψ(vi,j)
√

∆Zx,

vi+1,j = vi,j + κ(v̄ − vi,j)∆ + γ
√
vi,j
√

∆Zv, (3.11)

where κ is the speed of mean-reversion, v̄ is the long-run variance and γ is the volatility
of the variance process (‘vol-vol’). Although intuitive and straightforward, the regression-
based alternative possesses the drawback that the Feller condition must be satisfied to guar-
antee a positive conditional expectation for the whole range of arguments. We show a
numerical test in Figure 3.2, where we consider a simple quadratic polynomial: ζ1(x) = 1,
ζ2(x) = x and ζ3(x) = x2.
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Figure 3.2: The regression-based alternative: Feller satisfied (left) and not satisfied (right).
Feller must be satisfied in order to guarantee a non-negative approximation of the condi-
tional expectation. The non-parametric method does not suffer from this restriction, as
we see on the right.

Since in practice the Feller condition is often violated, regression-based methods require
additional tuning like including high-order polynomials or constraining of regression coef-
ficients. As such model improvements need to be done on case-by-case basis we consider
the non-parametric approach as preferable and use it throughout this article.

3.2 Continuous approximation

As the theoretical conditional expectation is continuous, we want its approximation to
satisfy this property too. Furthermore, at the right-hand side of Figure 3.2 we observe
that at the left boundary of the strike range the fit of the non-parametric approxima-
tion to the reference may be improved. In order to obtain a continuous approximation
that establishes this, we consider a linearization of the estimated expectation obtained
by the non-parametric method. This can be done by connecting the mid-points of the
approximations of the non-parametric method, see Figure 3.3.
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Figure 3.3: The continuous approximation (‘CA’) gives a better fit to the theoretical
conditional expectation, which is recovered by the COS method.

In the following we refer to the continuous approximation as ‘non-parametric method’.

3.3 Efficient simulation scheme

The CIR-type process used for the dynamics of the variance in the Heston model does not
allow for negative realizations. Unfortunately, when applying the basic Euler discretization
scheme the variance process can become negative with non-zero probability. Although
several fixes like “absorption at zero” for handling negative variance realizations are known
in the literature (see [16] for an overview), these improved methods are typically not free
of bias.

In this section we adopt the Quadratic Exponential (QE) scheme introduced by Ander-
sen [1] and apply it for simulating the Heston SLV model. The main difference for Monte
Carlo simulation between the pure Heston and the Heston SLV models lies in the fact that
the variance of the latter is not only driven by the stochastic volatility, but also by the
local volatility component, which is state-dependent. This requires an additional “freezing
approximation", which is not present in the derivation of the original QE scheme. Numeri-
cal experiments show that the additional approximation still yields an accurate simulation
scheme.

We start by recalling the dynamics of the Heston SLV model expressed in terms of
independent Brownian motions:

dS(t)/S(t) = rdt+ σ(t, S(t))
√
V (t)

(
ρx,vdW̃v(t) +

√
1− ρ2

x,vdW̃x(t)
)
,

dV (t) = κ(V̄ − V (t))dt+ γ
√
V (t)dW̃v(t),

where ρx,v denotes correlation between the S(t) and V (t) processes. The discretization of
X(t) := log(S(t)) (“log-stock”) with σ̂(t,X(t)) := σ(t, eX(t)) reads:

X(t+ ∆) = X(t) +

∫ t+∆

t

(
r − 1

2
σ̂2(s,X(s))V (s)

)
ds (3.12)

+ρx,v

∫ t+∆

t
σ̂(s,X(s))

√
V (s)dW̃v(s) +

√
1− ρ2

x,v

∫ t+∆

t
σ̂(s,X(s))

√
V (s)dW̃x(s).

The variance process V (t+ ∆) follows a scaled non-central chi-squared distribution, i.e.

V (t+ ∆) ∼ c(∆)χ2(d, λ(t, V (t))),
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with

c(∆) =
γ2

4κ
(1− e−κ∆), d =

4κV̄

γ2
, λ(t, V (t)) =

4κe−κ∆

γ2(1− e−κ∆)
V (t) (3.13)

and χ2(d, λ(t, V (t))) representing a noncentral chi-squared distribution with d degrees of
freedom and non-centrality parameter λ(t, V (t)). Furthermore, by integrating the variance
process, we find:∫ t+∆

t

√
V (s)dW̃v(s) =

1

γ

(
V (t+ ∆)− V (t)− κV̄∆ + κ

∫ t+∆

t
V (s)ds

)
. (3.14)

In the last integral in (3.12) the local and stochastic volatilities are coupled. This compli-
cates the simulation as we are not able to directly use the integrated variance from (3.14).
As any Monte Carlo simulation involving a local-volatility component requires many time-
steps, we perform local-freezing of σ̂(s,X(s)) in (3.12), i.e.∫ t+∆

t
σ̂(s,X(s))

√
V (s)dW̃v(s) ≈ σ̂(t,X(t))

∫ t+∆

t

√
V (s)dW̃v(s). (3.15)

Due to the approximation in (3.15) we can use (3.14) in (3.12):

X(t+ ∆) ≈ X(t) +

∫ t+∆

t

(
r − 1

2
σ̂2(s,X(s))V (s)

)
ds

+
ρx,vσ̂(t,X(t))

γ

(
V (t+ ∆)− V (t)− κV̄∆ + κ

∫ t+∆

t
V (s)ds

)
(3.16)

+
√

1− ρ2
x,v

∫ t+∆

t
σ̂(s,X(s))

√
V (s)dW̃x(s).

In the Euler discretization all integrals w.r.t. time can be approximated by
∫ b
a f(x)dx ≈

(b− a)f(a). The discretized process for X(t) then reads:

X(t+ ∆) ≈ X(t) + r∆− 1

2
σ̂2(t,X(t))V (t)∆

+
1

γ
ρx,vσ̂(t,X(t))

(
V (t+ ∆)− V (t)− κV̄∆ + κV (t)∆

)
+
√

1− ρ2
x,v

∫ t+∆

t
σ̂(s,X(s))

√
V (s)dW̃x(s).

Furthermore, by the Itô isometry we have∫ t+∆

t
σ̂(s,X(s))

√
V (s)dW̃x(s) ∼ Z̃x

√∫ t+∆

t
σ̂2(s,X(s))V (s)ds, (3.17)

where Z̃x ∼ N(0, 1). The integral at the right-side of (3.17) can also be approximated by
the Euler discretization, i.e.

∫ t+∆
t σ̂2(s,X(s))V (s)ds ≈ σ̂2(t,X(t))V (t)∆. With this, the

discretization scheme becomes

vi+1,j ∼ c(∆)χ2(d, λ(ti, vi,j)),

xi+1,j = xi,j + r∆− 1

2
σ̂2(ti, xi,j)vi,j∆ +

ρx,v
γ
σ̂(ti, xi,j) (vi+1,j − κv̄∆ + vi,jc1)

+ρ1

√
σ̂2(ti, xi,j)vi,j∆Z̃x,

with ρ1 = (1 − ρ2
x,v)

1/2, c1 = κ∆ − 1, where c(∆), d and λ(t, V (t)) are defined in (3.13)
and

σ̂2(ti, xi,j)
def
= σ2(ti, e

xi,j ) =
σ2

LV(ti, si,j)

E [V (ti)|S(ti) = si,j ]
. (3.18)

12



In (3.18) we compute Dupire’s local volatility,

σ2
LV(ti, si,j) =

∂C(t, s)

∂t
+ rs

∂C(ti, s)

∂s

1
2s

2
∂2C(ti, s)

∂s2

∣∣∣∣∣∣∣∣
s=si,j ,t=ti

by using the following finite difference approximations:

∂C(t, si,j)

∂t

∣∣∣
t=ti
≈ C(ti + h1, si,j)− C(ti, si,j)

h1
,
∂C(ti, s)

∂s

∣∣∣
s=si,j

≈ C(ti, si,j + h2)− C(ti, si,j)

h2
,

and
∂2C(ti, s)

∂s2

∣∣∣∣
s=si,j

≈ C(ti, si,j + h2)− 2C(ti, si,j) + C(ti, si,j − h2)

h2
2

. (3.19)

For stability reasons the derivatives are often expressed in terms of implied volatilities [6].
As in practice a continuum of European call prices in time-to-maturity and strike is not
available, some interpolation may be required. Detailed discussion on this is provided in
the literature (e.g. [2]).

Numerical comparisons between the Euler and the original QE scheme have been
provided in the literature [1]. We perform an experiment with our version of the Monte
Carlo scheme in the follow-up section, because our scheme is slightly different due to the
local volatility component which requires an additional approximation (local freezing of
the state-dependent local volatility).

Experiment 3.2 (Efficient simulation scheme). We compare the scheme we propose with
the basic Euler discretization scheme. We consider parameter values based on Case III
of Andersen [1], i.e. for T = 5 we consider the Heston SLV model with κ = 1.05, γ =
0.95, v̄ = 0.0855, v0 = 0.0945, ρx,v = −0.315 and r = 0. We perform a Monte Carlo
simulation consisting of 20 seeds, 5e4 paths per seed. The number of bins is set to 20.

For different time-step sizes ∆ and strikes K we calculate the absolute error in implied
volatilities |σ̄market − σ̄SLV|, where σ̄market and σ̄SLV denote volatilities implied by the
market and the HSLV model, respectively.

Results are presented in Table 1. The efficient (‘low-bias’) simulation scheme outper-
forms the Euler scheme: it gives a higher accuracy and we observe faster convergence to
the reference for a decaying time-step size.

Error (%): |σ̄market − σ̄SLV|
K 70% 100% 150%
∆ Euler Low-bias Euler Low-bias Euler Low-bias
1 6.05 (0.08) 5.91 (0.11) 6.06 (0.09) 5.65 (0.11) 5.23 (0.17) 4.67 (0.16)
1/2 3.81 (0.12) 1.53 (0.14) 4.12 (0.12) 1.37 (0.17) 3.51 (0.19) 0.86 (0.25)
1/4 2.70 (0.12) 0.64 (0.14) 3.01 (0.13) 0.55 (0.14) 2.66 (0.20) 0.31 (0.24)
1/8 1.71 (0.13) 0.31 (0.19) 1.92 (0.15) 0.25 (0.20) 1.74 (0.23) 0.13 (0.25)
1/16 0.98 (0.16) 0.22 (0.17) 1.08 (0.17) 0.19 (0.19) 1.04 (0.22) 0.13 (0.27)
1/32 0.41 (0.26) 0.15 (0.18) 0.45 (0.30) 0.12 (0.18) 0.37 (0.42) 0.07 (0.23)

Table 1: Average error |σ̄market − σ̄SLV| from Monte Carlo simulations of the HSLV model
with the Euler and efficient (‘low-bias’) schemes using 20 random seeds, for multiple time-
step sizes ∆ and strikes K. Numbers in parentheses are standard deviations over the
seeds.
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4 Numerical results

Using the simulation scheme introduced in the previous section, we perform Monte Carlo
experiments for the pricing of European call and forward-starting options with the Heston
SLV model. The results are compared against the Heston and the standard local volatility
models.

In this experiment we investigate the performance of the Heston SLV model with
respect to the quality of a pre-calibrated Heston model. In the case the Heston model is
well calibrated we expect a limited contribution of the local volatility component. On the
other hand, if the underlying Heston model is not sufficiently well calibrated, the local
volatility contribution should be more pronounced. We then expect the quality of the fit
to be more sensitive to the estimation of the conditional expectation discussed in previous
sections. In the simulations we thus distinguish between two cases: a case in which the
Heston model is well calibrated and one in which it is insufficiently well calibrated. Each
of these variants of the Heston model is used in the Heston SLV model.

The simulation of the European-style options is performed for maturities (in years)
T = {0.5, 2, 5, 8, 10}, while the pricing of the forward starting options will be done for
the following pairs: {T1, T2} = {2, 4} and {T1, T2} = {6, 8}. Our Monte Carlo simulation
is performed with 5e5 paths and 100 time-steps per year. The number of bins is set to
20. In Section 5.3 we show that the accuracy of the non-parametric method is already
satisfactory for a smaller number of bins.

4.1 European call options

In this experiment we consider real-life examples. As described the input for the Heston
SLV model is a calibrated Heston model. It is therefore important to check how well the
Heston SLV model performs depending on the quality of the pre-calibrated Heston model.
In this section we consider two scenarios where the Heston model is well and insufficiently
calibrated to market data.

In the first experiment we consider the Heston SLV model with the well-calibrated
underlying Heston model. For times to maturity 2 and 8 years we display the results in
Figure 4.1. As the mismatch between the pure Heston model and the market is small, the
contribution of the local-volatility component σLV(t, S(t)) is limited in the first test.
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Figure 4.1: Implied volatility European call option. T = 2 (left), T = 8 (right), well
calibrated Heston model.

In Figure 4.2 we display results of the second experiment, in which the Heston model
is insufficiently calibrated. We observe that in this case the local volatility term can
compensate for the large gap between the market and the Heston model.
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Figure 4.2: Implied volatility European call option. T = 2 (left), T = 8 (right), insuffi-
ciently calibrated Heston model.

For times to maturity 0.5, 2, 5, 8 and 10 years results are given in Table 2 where we
display the market implied volatility σ̄market and the error in implied volatilities εmodel :=
σ̄market − σ̄model, where σ̄model denotes the volatility implied by a particular model. We
observe a good fit of the LV model as well as the Heston SLV model to the quotes.

4.2 Forward starting options

With the pricing of European call options we see that the local volatility term in the Heston
SLV model acts a compensator that bridges the gap between the market and calibrated
Heston SV prices – even in the case of an unsatisfactory calibration. In this experiment we
price forward starting options that start at time T1 years and mature at time T2. As prices
of forward starting options are not observable in the market, we discriminate between the
LV, SLV and the calibrated Heston models. We first consider the case with T1 = 2, T2 = 4
and a well calibrated Heston model, see the plot on the left side in Figure 4.3. We observe
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Figure 4.3: Implied volatility forward starting option. T1 = 2, T2 = 4, well calibrated
(left) and insufficiently well calibrated (right) Heston model.

that the volatility implied by the LV model is much flatter than the volatilities implied
by the Heston SV and SLV models. Although it has approximately the same value at the
lower and upper bounds of the strike range, this does not hold in the ATM region. As
the Heston model is almost perfectly calibrated, it is no surprise that the Heston and SLV
implied volatilities are almost identical.
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European call options – error in implied volatilities [%]
Case I Case II

T Strike σ̄market εLV εSLV εH εSLV εH

0.81 25.17 0.05 0.06 -0.32 -0.04 -1.87
0.90 21.75 -0.03 0.01 -0.47 -0.15 -3.03

0.5y 1.00 17.70 -0.11 -0.06 -0.63 -0.32 -4.45
1.11 15.26 -0.12 -0.01 -0.28 -0.24 -3.71
1.24 16.00 -0.10 -0.08 0.16 0.21 0.18
0.73 23.38 0.00 0.08 -0.33 -0.04 -1.82
0.81 20.82 -0.02 0.05 -0.39 -0.09 -2.46

2y 1.00 15.28 -0.01 0.02 -0.45 -0.20 -3.44
1.24 13.65 0.01 0.10 0.08 -0.06 0.07
1.53 15.94 0.03 -0.18 0.42 0.06 4.15
0.60 22.70 0.02 0.12 -0.16 -0.04 -0.39
0.75 19.23 0.01 0.09 -0.22 -0.09 -0.99

5y 1.00 14.69 0.01 0.07 -0.24 -0.13 -1.45
1.32 12.79 0.02 0.09 0.14 -0.12 0.97
1.75 14.41 0.06 -0.09 0.46 -0.06 4.44
0.52 22.46 -0.01 0.08 -0.06 -0.05 0.49
0.70 19.16 -0.01 0.06 -0.12 -0.08 -0.09

8y 0.99 14.88 -0.01 0.05 -0.15 -0.10 -0.55
1.41 12.76 -0.01 0.05 0.17 -0.09 1.38
1.87 13.66 -0.02 -0.09 0.45 -0.06 4.14
0.48 22.40 0.03 0.08 -0.02 -0.04 0.87
0.66 19.22 0.02 0.06 -0.08 -0.06 0.30

10y 0.98 15.09 0.01 0.04 -0.12 -0.07 -0.18
1.46 12.82 0.01 0.04 0.18 -0.06 1.46
2.17 13.83 -0.02 -0.20 0.50 0.00 4.62

Table 2: Errors in implied volatilities for the local volatility (εLV), Heston SLV (εSLV) and
the pure Heston (εH) models for a well (Case I) and insufficiently (Case II) calibrated
Heston model for multiple times to maturity and strikes.

For the case where the Heston model is insufficiently calibrated, we observe that the
SLV model provides a forward smile that is located between the ones implied by the Heston
and the LV models. One may consider the results by the SLV model to represent somehow
“advanced interpolation” between the Heston and the local volatility models. For T1 = 6
and T2 = 8 similar results are observed, see Figure 4.4.

4.3 Calculation time

Considering the speed of the non-parametric method, we calculate the time it takes to
evaluate the conditional expectation for a given number of paths or bins. First, we inves-
tigate the relation between calculation time and the number of bins. We fix the number
of paths at 1e5. Table 3 shows that the calculation time behaves linearly in the number
of bins. This also holds for the relation between the calculation time and the number of
paths (the number of bins is fixed at 20), see Table 4.

In our numerical experiments we choose 20 bins and 1e5 paths, which implies that the
calculation of the conditional expectation by the non-parametric method takes less than
2.5e-2 seconds per time step6. In Section 5.3 we consider the dependence of the accuracy
and the number of bins in more detail for the non-parametric method. A result of this
analysis is that the accuracy of the method is quite insensitive to the number of bins.

6Theoretically, both experiments should result in exactly the same calculation time, i.e., the second
time in Table 3 should be equal to the first time in Table 4. This is not the case due to Monte Carlo noise.
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Figure 4.4: Implied volatility forward starting option. T1 = 6, T2 = 8, well calibrated
(left) and poorly calibrated (right) Heston model.

#Bins 10 20 30 40 50 60 70 80 90 100
Time [ms] 15.6 23.7 32.9 41.6 49.9 59.0 67.9 75.9 84.5 93.9

Table 3: Timing results for different numbers of bins (number of paths fixed at 1e5).

5 Error analysis

In Section 3 we tested the performance of the non-parametric method (and the regression-
based alternative) for a pure Heston SV model. We considered this model, as the 2D-COS
method [23] provided us with an accurate approximation of the conditional expectation.
In particular, we compared an approximation from the non-parametric method to the
recovered conditional expectation. However, our main interest lies in the Heston SLV
model. In the Monte Carlo pricing of European call options and forward starting options
a bias is introduced, which is due to three error sources. The first error originates from
approximations in the calculation of Dupire’s local volatility term (3.18). In particular, we
use finite differences for the three derivatives in (3.19). Further, the discretization of the
continuous dynamics to the efficient simulation scheme introduced a discretization error.
Last, at each time step we approximate E [V (t)|S(t) = s] by means of the non-parametric
method. These three sources of error generate an error e = C − C̃, where C is the call
price from the “original” Heston SLV model and C̃ is the price obtained by the discrete
Heston SLV model.

Ignoring the bias originating from the finite differences and the discretization (since
these errors are well understood), the price mismatch is driven by the difference in con-
ditional expectations ||g − ĝ||, based on the governing PDEs, as in [12]. Here g(s) :=
E [V (t)|S(t) = s] denotes the theoretical conditional expectation (in the Heston SLVmodel)
and ĝ is its piecewise linear continuous approximation we obtain by the non-parametric
method. We now provide a pricing error bound that is implied by the mismatch between
g and ĝ.

5.1 Bound on pricing error

In this section we turn to classical PDE error analysis, to make some statements about
the approximation errors encountered.

By non-arbitrage assumptions, one can derive the HSLV PDE which defines the value
of a European-style option:
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#Paths [1e5] 1 2 3 4 5 6 7 8 9 10
Time [ms] 28.0 51.1 77.9 105.0 131.5 158.9 185.9 214.1 244.3 269.0

Table 4: Timing results for different numbers of paths (number of bins fixed at 20).

0 =
∂C

∂t
+ rs

∂C

∂s
+ κ(V̄ − V )

∂C

∂V
+

1

2
V s2σ

2
LV(t, s)

g(s)

∂2C

∂s2
+

1

2
γ2V

∂2C

∂V 2

+ρx,vγV s

√
σ2

LV(t, s)

g(s)

∂2C

∂s∂V
− rC, (5.1)

with t ∈ [0, T ), g(s) = E[V (t)|S(t) = s] and spatial coordinates {s, V } ∈ [0,+∞) ×
[0,+∞). Of course, we will solve the discrete version of the PDE on a finite domain.

Since the expectation in (5.1) is not known analytically we can estimate it by means
of Monte Carlo simulation. The resulting, approximating pricing PDE then reads:

0 =
∂C̃

∂t
+ rs

∂C̃

∂s
+ κ(V̄ − V )

∂C̃

∂V
+

1

2
V s2σ

2
LV(t, s)

ĝ(s)

∂2C̃

∂s2
+

1

2
γ2V

∂2C̃

∂V 2

+ρx,vγV s

√
σ2

LV(t, s)

ĝ(s)

∂2C̃

∂s∂V
− rC̃, (5.2)

with the pre-calibrated function ĝ(s) as described in Section 3.1. The PDEs in (5.1)
and (5.2) can be written, in shorthand notation, as follows:

∂C

∂t
+ L1C = 0,

∂C̃

∂t
+ L2C̃ = 0, (5.3)

with the corresponding operators L1, as in (5.1) and L2, as in (5.2). Again, C is the
solution from the full-scale HSLV PDE, whereas C̃ is the solution from the approximating
PDE with the estimated function ĝ(t). Both PDEs are accompanied by the same boundary
and final conditions. For the error, e := C − C̃, we find:

∂e

∂t
+ L1C − L2C̃ = 0, (5.4)

which can be re-written as:

∂e

∂t
+ L1C −

(
L1C̃ + (L2 − L1)C̃

)
= 0, (5.5)

and we arrive at the following equation:

∂e

∂t
+ L1e = (L2 − L1)C̃, (5.6)

subject to homogeneous boundary and final conditions. Notice that the right-hand side
of the equation serves as a source term.

Based on the form in (5.6), multiplying both sides by e, and integration over domain
Ω, gives us: ∫

Ω
e
∂e

∂t
dΩ +

∫
Ω
eL1edΩ =

∫
Ω
e(L2 − L1)C̃dΩ. (5.7)

Integration by parts, as follows,∫
Ω
e
∂e

∂t
dΩ =

1

2

d

dt

∫
Ω
e2dΩ =

1

2

d

dt
‖e‖2L2(Ω), (5.8)
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inserted in Equation (5.7), results in:

1

2

d

dt
‖e‖2L2(Ω) = −

∫
Ω
eL1edΩ +

∫
Ω
e(L2 − L1)C̃dΩ. (5.9)

Applying classical PDE theory, in particular the Lax-Friedrich inequality and Grönwall’s
lemma (for more details, see [12,17]), gives:

‖e‖L2(Ω) ≤
∫ t

0
‖(L2 − L1)C̃‖L2(Ω)e

α(s−t)ds

≤ 1

α

(
1− e−αt

)
sup
s∈(0,t)

‖(L2 − L1)C̃‖L2(Ω)

≤ 1

α
sup
s∈(0,t)

‖(L2 − L1)C̃‖L2(Ω),

where α is some positive constant, related to the V−ellipticity of the form
∫

Ω eL1edΩ [17].
We use the notation U := (L2 − L1)C̃ and find the following operator:

U =
1

2
V σ2

LV(t, s)s2

[
ĝ(s)− g(s)

ĝ(s)g(s)

]
∂2C̃

∂s2
+ ρx,vγV sσLV(t, s)

[√
ĝ(s)−

√
g(s)√

ĝ(s)g(s)

]
∂2C̃

∂s∂V
.

Assessing the appropriate norm yields:

‖U‖L2(Ω) =
∥∥∥1

2
V σ2

LV(t, s)s2

[
ĝ(s)− g(s)

ĝ(s)g(s)

]
∂2C̃

∂s2

+ρx,vγV sσLV(t, s)

[√
ĝ(s)−

√
g(s)√

ĝ(s)g(s)

]
∂2C̃

∂s∂V

∥∥∥
L2(Ω)

,

which can be bounded by:

‖U‖L2(Ω) ≤
1

2
s2

maxV |σ2
LV(t, s)|

∣∣∣ ĝ(s)− g(s)

ĝ(s)g(s)

∣∣∣ ‖∂2C̃

∂s2
‖L2(Ω)

+|ρx,v|γsmaxV |σLV(t, s)|
∣∣∣√ĝ(s)−

√
g(s)√

ĝ(s)g(s)

∣∣∣‖ ∂2C̃

∂s∂V
‖L2(Ω).

Then, we have:

‖e‖L2(Ω) ≤
1

α
sup
s∈(0,t)

(
1

2
s2

maxV |σ2
LV(t, s)|

∣∣∣ ĝ(s)− g(s)

ĝ(s)g(s)

∣∣∣ ‖∂2C̃

∂s2
‖L2(Ω)

+|ρx,v|γsmaxV |σLV(t, s)|
∣∣∣√ĝ(s)−

√
g(s)√

ĝ(s)g(s)

∣∣∣‖ ∂2C̃

∂s∂V
‖L2(Ω)

)
. (5.10)

This latter inequality bound gives a representation of the parameters and functions that
have an impact on the error made when solving for C̃, as an approximation for C. As
both ∂2C̃

∂s∂V and ∂2C̃
∂s2

are small for large V -values, the error is governed by the difference
between the conditional expectation g from the HSLV model and its approximation ĝ,
which is obtained from the non-parametric method, as discussed in Section 3.1.

Regarding the difference in conditional expectations g and ĝ, it is clear that the ac-
curacy of the approximation ĝ improves if the number of paths and bins simultaneously
approach infinity, i.e.

lim
N→∞, `→∞

||g − ĝ|| = 0,

where N and ` denote the number of paths and bins, respectively. In the following, we
quantify the performance of the non-parametric method by considering the pure Heston
SV model.
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5.2 Performance

To assess the performance of the non-parametric method, we need to determine a highly
accurate reference value. As pointed out, it is difficult to find this conditional expecta-
tion explicitly. One could of course assume ρx,v = 0, which would immediately imply
E[V (t)|S(t) = s] = E[V (t)] leading to an analytic solution. On the other hand, with
nonzero correlation between the volatility and the underlying asset, we can analyze the
performance of approximating the conditional expectation for the case of the pure Heston
model, i.e. the case where σLV(t, s) = 1.

We make use of the COS method [10,23]. This introduces a well-understood error be-
tween the recovered and the theoretical conditional expectation for the Heston SV model.
For a more detailed discussion on this, see [10]. Let gH(s) be the conditional expectation
in the Heston SV model, obtained by the 2D-COS method. We determine an approx-
imation ĝH by means of the non-parametric method. To measure the performance of
the non-parametric method, we are interested in the mismatch in conditional expecta-
tions ||gH − ĝH||. In the L2-norm, the mismatch from the Monte Carlo simulation can be
written as:

M∑
i=1

||gH − ĝH||2L2(Ω) =

M∑
i=1

∑̀
k=1

∫
Bi,k

(gH(s)− ĝH(s))2ds, (5.11)

where Ω is the s domain and Bi,k denotes the kth bin at the ith time-step, k = 1 . . . `,
i = 1 . . .M . Note that gH is a smooth function, whereas ĝH is piecewise linear.

We now specify the error
∫
Bi,k(gH(s)− ĝH(s))2ds for one particular bin and time-step,

which we state in a lemma.

Lemma 5.1. For an arbitrary bin B with boundaries [bl, br], the error between gH and ĝH
has size

||gH − ĝH||2L2(B) = c2
1∆s+

1

12

(
c2

2 − 2c1g
(2)
H (sm)

)
∆s3

+
1

240

(
2(g

(2)
H (sm))2 − c1g

(4)
H (sm)− c2g

(3)
H (sm)

)
∆s5 +O(∆s7),

where sm denotes the midpoint of [bl, br] and ∆s := br − bl, ∆ĝH := ĝH(br) − ĝH(bl),
c1 := 1

2

(
(gH(bl)− ĝH(bl)) + (gH(br)− ĝH(br))

)
and c2 := −g(1)

H (sm) + ∆ĝH
∆s .

Proof. For a proof, see Appendix B.

5.3 Numerical experiment: choice of bins

We now discuss the performance of the non-parametric method with respect to the choice
of bins. In particular, we consider the error |gH(K) − ĝH(K)| for K = 40%, K = 100%
and K = 160%. The bins are either chosen with respect to an equidistant grid – see (3.7)
– or are equally weighted as in (3.8). Parameter values are γ = 0.2, κ = 0.2, r = 0,
ρx,v = −0.6, S0 = 1, v0 = 0.04, v̄ = 0.04 and we consider the error at particular time
t = 2. We choose the number of bins between 1 and 20. Our Monte Carlo simulation is
performed with 1e6 paths. Results are displayed in Figure 5.1.

For deep in-the-money and out-the-money strikes the choice of bins does not affect
the performance of the non-parametric method. However, at K = 100% choosing equally
weighted bins yields a faster convergence to the reference gH(100) than when we choose
bins equidistantly. This is due to the natural weighting of the bins defined by (3.8), which
provides highest accuracy in the ATM region. Further, for all strikes we note that in order
to have a high-quality estimate of the conditional expectation, it is not required to use a
large number of bins.

20



0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

A
bs

ol
ut

e 
er

ro
r

Comparison of methods: K = 40%

 

 

Number of bins

Equally weighted
Equidistant

0 5 10 15 20
0

0.002

0.004

0.006

0.008

0.01

0.012

Number of bins

Comparison of methods: K = 100%

 

 

A
bs

ol
ut

e 
er

ro
r

Equally weighted
Equidistant

0 5 10 15 20
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Number of bins

A
bs

ol
ut

e 
er

ro
r

Comparison of methods: K = 160%

 

 

Equally weighted
Equidistant

Figure 5.1: Convergence of the non-parametric method for two choices of bins.

In Figure 5.1 we observe highly satisfactory convergence up to 15 bins. With a further
increase of the number of bins convergence may stagnate since there is an insufficient
number of paths in each bin. In such a case the number of Monte Carlo paths may need
to be increased and we should improve the interpolation (continuous approximation, see
Section 3.2).

6 Conclusion

In this article we have presented a new Monte Carlo scheme for efficient evaluation of a gen-
eral Stochastic-Local Volatility model. We have considered the Heston Stochastic-Local
Volatility model in numerical experiments. For evaluating this model we have approxi-
mated a problematic conditional expectation in a non-parametric way, which is intuitive
and easy to implement. This approximation is embedded in a simulation scheme that
is strongly based on the QE scheme of Andersen [1] and introduces less bias than more
common Euler schemes. By means of numerical experiments and an error analysis we
have shown that European-style options can accurately be priced by our method. Fur-
thermore, it enables a consistent and fast pricing of products that are sensitive to the
forward volatility smile.
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A Proof of Lemma 2.1

For notational purposes, we leave out the filtration F(t0). We first calculate the derivative
of C(t,K) := C(t0, t, S(t0),K) with respect to K:

∂C(t,K)

∂K
=

1

M(t)

∂

∂K
E
[
(S(t)−K)+] =

1

M(t)

∂

∂K

∫ ∞
K

(s−K)fS(s)ds, (A.1)

where fS is the marginal probability density function of the process S(t). Applying Leib-
niz’ integration rule on (s−K)fS(s) yields:

∂

∂K

∫ ∞
K

(s−K)fS(s)ds = −(K −K)fS(K)
∂

∂K
K +

∫ ∞
K

∂

∂K
(s−K)fS(s)ds

=

∫ ∞
K

∂

∂K
(s−K)fS(s)ds

=

∫ K

∞
fS(s)ds.

Continuing with (A.1) we obtain

∂C(t,K)

∂K
=

1

M(t)

∂

∂K

∫ ∞
K

(s−K)fS(s)ds =
1

M(t)

∫ K

∞
fS(s)ds.

Now, for a digital option,∫ K

∞
fS(s)ds = −Q [S(t) > K] = −E

[
1S(t)>K

]
and thus

−∂C(t,K)

∂K
=

1

M(t)
E
[
1S(t)>K

]
.

So, we have
∂C(t,K)

∂K
=

1

M(t)

∫ K

∞
fS(s)ds.

Then, by Leibniz’ integration rule, we obtain

∂2C(t,K)

∂K2
=
fS(K)

M(t)
.

B Proof of Lemma 5.1

For an arbitrary bin B with boundaries [bl, br], the piecewise linear continuous approxi-
mation of g(s) can be specified by

ĝH(s) =
∆ĝH
∆s

s+
ĝH(bl)br − ĝH(br)bl

∆s
, (B.1)
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where ĝH(bl) and ĝH(br) are approximations of gH(bl) and gH(br), respectively, and ∆s :=
br − bl and ∆ĝH := ĝH(br) − ĝH(bl). As gH(s) is smooth, we can express it as a Taylor
series around the midpoint of [bl, br], which we call sm:

gH(s) = gH(sm) +
∞∑
n=1

g
(n)
H (sm)

n!
(s− sm)n. (B.2)

Assuming ∆s to be small, we compute the square of the local L2 error

||gH − ĝH||2L2(B) =

∫
B

(gH(s)− ĝH(s))2ds =

∫ br

bl

(gH(s)− ĝH(s))2ds, (B.3)

where we use (B.1) and (B.2) up to some significant order. Combining (B.2) and (B.3):

||gH − ĝH||2L2(B) =

∫ br

bl

(
gH(sm)− ĝH(s) +

∞∑
n=1

g
(n)
H (sm)

n!
(s− sm)n

)2

ds. (B.4)

We now derive an expression for gH(sm)− ĝH(s). The first step is plugging in (B.1). This
gives:

gH(sm)− ĝH(s) = gH(sm)− ∆ĝH
∆s

s− ĝH(bl)br − ĝH(br)bl
∆s

. (B.5)

Using the Taylor series expression in (B.2), we have for an arbitrary s:

gH(sm) = gH(s)−
∞∑
n=1

g
(n)
H (sm)

n!
(s− sm)n.

Expanding gH(sm) at the boundary points and by plugging this result into (B.5) we find

gH(sm)− ĝH(s) =
1

2
(gH(bl) + gH(br))−

1

2

( ∞∑
n=1

g
(n)
H (sm)

n!
(−1

2
∆s)n +

∞∑
n=1

g
(n)
H (sm)

n!
(
1

2
∆s)n

)

−∆ĝH
∆s

s− ĝH(bl)br − ĝH(br)bl
∆s

,

where we have used the relations bl − sm = −1
2∆s and br − sm = 1

2∆s. Odd terms in the
two Taylor series cancel each other out. Even terms are equal. This results in:

gH(sm)− ĝH(s) =
1

2
(gH(bl) + gH(br))−

∑
n=2,4,6

g
(n)
H (sm)

n!
(
1

2
∆s)n − ∆ĝH

∆s
s− ĝH(bl)br − ĝH(br)bl

∆s
.

Now, after some algebraic manipulations we end up with

gH(sm)− ĝH(s) = −
∑

n=2,4,6

g
(n)
H (sm)

2n · n!
(∆s)n − (s− sm)∆ĝH

∆s
+ c1 +O(∆s8),

where
c1 :=

1

2

(
(gH(bl)− ĝH(bl)) + (gH(br)− ĝH(br))

)
.

The constant c1 can be considered as the average error at the boundaries of the interval.
Plugging this result into (B.4) yields

||gH − ĝH||2L2(B) = (B.6)∫ br

bl

(
6∑

n=1

g
(n)
H (sm)

n!
(s− sm)n −

∑
n=2,4,6

g
(n)
H (sm)

2n · n!
(∆s)n − (s− sm)∆ĝH

∆s
+ c1 +O(∆s8)

)2

ds

Evaluating (B.6) yields the result in Lemma 5.1.
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