
Pricing Early-Exercise and Discrete Barrier

Options by Fourier-Cosine Series Expansions

F. Fang∗, C.W. Oosterlee†

May 22, 2009

Abstract

We present a pricing method based on Fourier-cosine expansions for
early-exercise and discretely-monitored barrier options. The method works
well for exponential Lévy asset price models. The error convergence is
exponential for processes characterized by very smooth (C∞[a, b] ∈ R)
transitional probability density functions. The computational complex-
ity is O((M − 1)N log N) with N a (small) number of terms from the
series expansion, and M , the number of early-exercise/monitoring dates.
This paper is the follow-up of [22] in which we presented the impressive
performance of the Fourier-cosine series method for European options.

1 Introduction

Within stock option pricing applications, interesting numerical mathematics
questions can be found in product pricing and in calibration. Whereas the
former topic requires especially robust numerical techniques, the latter also
relies on efficiency and speed of computation.

Numerical integration methods, based on a transformation to the Fourier
domain (the so-called transform methods), are traditionally very efficient, due
to the availability of the Fast Fourier Transform (FFT) [13, 36], for the pricing of
basic European products, and thus for calibration purposes. These methods can
readily be applied to solving problems under various asset price dynamics, for
which the characteristic function (i.e., the Fourier transform of the probability
density function) is available. This is the case for models from the class of
regular affine processes of [19], which also includes the exponentially affine jump-
diffusion class of [18], and, in particular, the exponentially Lévy models.

Recently, transform methods have been generalized to solving somewhat
more complicated option contracts, like Bermudan, American or barrier options,
see, for example, [33, 21, 3, 4, 30, 42, 17, 41]. These exotic options, still with
basic features, are used in the financial industry as building blocks for more
complicated products. A natural aim for the near future with these transform

∗Delft University of Technology, Delft Institute of Applied Mathematics, Delft, the Nether-
lands, email: f.fang@ewi.tudelft.nl

†CWI – Centrum Wiskunde & Informatica, Amsterdam, the Netherlands, email:
c.w.oosterlee@cwi.nl, and Delft University of Technology, Delft Institute of Applied Math-
ematics.

1

methods is to calibrate to these exotic products and to price the huge portfolios
(at the end of a trading day) very fast.

Next to FFT-based methods, new techniques based on the Fast Gauss or
the Hilbert Transform have been introduced for this purpose [9, 10, 23]. In
this paper we will also generalize a transform method to pricing Bermudan,
American and discretely-monitored barrier options. It is the method based
on Fourier-cosine series expansions, called the COS method, introduced by us
in [22], where we showed that it was highly efficient for pricing European op-
tions. The underlying idea is to replace the transitional probability density
function by its Fourier-cosine series expansion, which has an elegant relation to
the conditional characteristic function. For many underlying asset price models,
the method is remarkably fast and the density function can be recovered easily.
Since a whole function of option values is obtained, the Greeks can be computed
at almost no additional computational cost. Here, we will show that the COS
method can also price the early-exercise and barrier options with exponential
convergence under various Lévy models.

The methods are, for these option contracts, in competition with the meth-
ods that require the solution of discrete partial (integro-) differential equation-
based operators (PIDE) [45, 11]. PIDE-based methods are traditionally used
since early-exercise and the exotic features can often be interpreted as special
payoffs or boundary conditions. They represent the state of the art for pric-
ing options under the local volatility process. Generally speaking, however, the
computational process with PIDE is rather expensive, especially for the infinite
activity Lévy processes we are interested in, because they give rise to an integral
in the PIDE with a weakly singular kernel [2, 27, 44].

We will therefore compare our results with other highly efficient transform
methods, i.e., with the Convolution (CONV) method [33], based on the FFT,
which is one of the state-of-the-art methods for pricing Bermudan and American
options. Its computational complexity for pricing a Bermudan option with M
exercise dates is O((M − 1)N log2(N)), where N denotes the number of grid
points used for numerical integration. Quadrature rule based techniques are,
however, not of the highest efficiency when solving Fourier transformed integrals.
As these integrands are highly oscillatory, a relatively fine grid has to be used for
satisfactory accuracy with the FFT. The COS method presented here requires
a substantially smaller value of N .

Especially for barrier options, another highly efficient alternative method
from [23] is based on the Hilbert transform. Its error convergence is exponential
for models with rapidly decaying characteristic functions, also with a computa-
tional complexity of O((M−1)N log2N) for a barrier option with M monitoring
dates. This method is, however, not applicable for Bermudan options.

The paper is organized as follows. In Section 2 the COS method for pricing
Bermudan and barrier options is presented. The handling of the discretely
monitored barrier options is discussed in particular in Subsection 2.4. Error
analysis is performed in Section 3. Numerical results are presented in Section 4,
where we focus on option pricing under exponential Lévy processes, in particular
under the CGMY [12] and the Normal Inverse Gaussian [5] processes.

2

2 Pricing Bermudan and Barrier Options

A Bermudan option can be exercised at pre-specified dates before maturity. The
holder receives the exercise payoff when he/she exercises the option. Between
two consecutive exercise dates the valuation process can be regarded as that for
a European option, priced with the help of the risk-neutral valuation formula.
Let t0 denote the initial time and T {t1, · · · , tM} be the collection of all exercise
dates with ∆t := (tm − tm−1), t0 < t1 < · · · < tM = T . The pricing formula for
a Bermudan option with M exercise dates then reads, for m = M,M − 1, . . . , 2:

{

c(x, tm−1) = e−r∆t
∫

R
v(y, tm)f(y|x)dy,

v(x, tm−1) = max (g(x, tm−1), c(x, tm−1)) ,
(1)

followed by

v(x, t0) = e−r∆t

∫

R

v(y, t1)f(y|x)dy. (2)

Here x and y are state variables, defined as the logarithm of the ratio of the
asset price St over the strike price K,

x := ln(S(tm−1)/K) and y := ln(S(tm)/K),

v(x, t), c(x, t) and g(x, t) are the option value, the continuation value and the
payoff at time t, respectively. Note that for vanilla options, g(x, t) equals v(x, T),
with

v(x, T) = [αK(ex − 1)]+, α =

{

1 for a call,
−1 for a put.

The probability density function of y given x under a risk-neutral measure is
denoted by f(y|x) in (2), and r is the (deterministic) risk-neutral interest rate.

Equations (1), (2) can be efficiently evaluated by the COS method in [22],
provided that the Fourier-cosine series coefficients of v(y, tm) are known.

2.1 The COS Method

The COS method is based on the insight that the Fourier-cosine series coeffi-
cients of f(y|x) are closely related to its characteristic function.

Since the density function, f(y|x), decays to zero rapidly as y → ±∞, we
can truncate the infinite integration range in the risk-neutral valuation formula
without loosing significant accuracy. Suppose that we have, with [a, b] ⊂ R,

∫

R\[a,b]

f(y|x)dy < TOL, (3)

for some given tolerance, TOL, then we can approximate c(x, tm−1) in (1) by

c1(x, tm−1) = e−r∆t

∫ b

a

v(y, tm)f(y|x)dy. (4)

(The intermediate terms, ci, are used in the error analysis in Section 3.) As a
second step, we replace the density function by its Fourier-cosine series expan-
sion on [a, b],

f(y|x) =

∞
∑′

k=0

Ak(x) cos

(

kπ
y − a

b− a

)

, (5)

3

where
∑′

indicates that the first term in the summation is multiplied by 1/2.

The series coefficients {Ak(x)}∞k=0 are defined by

Ak(x) :=
2

b− a

∫ b

a

f(y|x) cos

(

kπ
y − a

b− a

)

dy. (6)

Interchanging the summation and integration operators yields

c1(x, tm−1) =
1

2
(b− a)e−r∆t

∞
∑′

k=0

Ak(x)Vk(tm), (7)

with Vk(tm) the Fourier-cosine series coefficients of v(y, tm) on [a, b], i.e.

Vk(tm) :=
2

b− a

∫ b

a

v(y, tm) cos

(

kπ
y − a

b− a

)

dy. (8)

Truncating the infinite series gives

c2(x, tm−1) =
1

2
(b− a)e−r∆t

N−1
∑′

k=0

Ak(x)Vk(tm). (9)

As a third step, we use the relation between Ak(x) and the conditional charac-
teristic function, φ(ω;x), defined as

φ(ω;x) :=

∫

R

f(y|x)eiωydy. (10)

Coefficients Ak(x) can be written as

Ak(x) =
2

b− a
Re

{

e−ikπ a
b−a

∫ b

a

ei kπ
b−a

yf(y|x)dy
}

. (11)

where Re {·} denotes taking the real part of the input argument. With (3), the
finite integration in (11) can be approximated by

∫ b

a

ei kπ
b−a

yf(y|x)dy ≈
∫

R

ei kπ
b−a

yf(y|x)dy =: φ

(

kπ

b− a
;x

)

.

As a result, Ak(x) can be approximated by Fk(x) with

Fk(x) :=
2

b− a
Re

{

φ

(

kπ

b− a
;x

)

e−ikπ a
b−a

}

. (12)

Replacing Ak(x) in (9) by Fk(x) gives the COS formula for pricing European
options for different underlying processes:

ĉ(x, tm−1) := e−r∆t

N−1
∑′

k=0

Re

{

φ

(

kπ

b− a
;x

)

e−ikπ a
b−a

}

Vk(tm). (13)

Here the function ĉ(x, tm−1) represents the approximation of the continuation
value c(x, tm−1). An error analysis justifying the different approximations for
European options was presented in [22] and is summarized in Section 3.

4

For exponential Lévy processes, formula (13) can be simplified to

ĉ(x, tm−1) = e−r∆t

N−1
∑′

k=0

Re

{

ϕlevy

(

kπ

b− a

)

eikπ x−a
b−a

}

Vk(tm), (14)

where ϕlevy(ω) := φlevy(ω; 0), see [22]. Using this, we can also approximate
v(x, t0) in (2) by

v̂(x, t0) = e−r∆t

N−1
∑′

k=0

Re

{

ϕlevy

(

kπ

b− a

)

eikπ x−a
b−a

}

Vk(t1), (15)

provided that the series coefficients, Vk(t1), are known. We will show that the
Vk(tm), k = 0, 1, · · · , N−1, can be recovered from Vj(tm+1), j = 0, 1, · · · , N−1.

2.2 Pricing Bermudan Options

The idea of pricing Bermudan options is to compute Vk(t1), the cosine coeffi-
cients of the option value at time point t1, and insert it into (15), to obtain the
value of the option. The main contribution of this section is the derivation of
an induction formula for Vk(t1).

The integral in the definition of Vk(tm) in (8) can be split into two parts, if
we determine the early-exercise point, x∗m, at time tm, which is the point where
the continuation value equals the payoff, i.e., c(x∗m, tm) = g(x∗m, tm).

Once we have x∗m, we can split the integral that defines Vk(tm) into two
parts: One on the interval [a, x∗m] and the other on (x∗m, b], i.e.

Vk(tm) =

{

Ck(a, x∗m, tm) +Gk(x∗m, b), for a call,

Gk(a, x∗m) + Ck(x∗m, b, tm), for a put,
(16)

for m = M − 1,M − 2, · · · , 1, and

Vk(tM) =

{

Gk(0, b), for a call

Gk(a, 0), for a put,
(17)

whereby

Gk(x1, x2) :=
2

b− a

∫ x2

x1

g(x, tm) cos

(

kπ
x− a

b− a

)

dx. (18)

and

Ck(x1, x2, tm) :=
2

b− a

∫ x2

x1

c(x, tm) cos

(

kπ
x− a

b− a

)

dx. (19)

Remark 2.1 (Newton’s Method). Since the numerical approximation for c(x, tm),
denoted by ĉ(x, tm), in (14) is a semi-analytic formula which returns a numer-
ical approximation of c(x, tm) on the whole support of x, we can easily find the
derivatives of ĉ(x, tm) w.r.t. x, and can therefore employ Newton’s method to
determine x∗m. Note that, on each time lattice, there is at most one point which
satisfies ĉ(x, tm) − g(x, tm) = 0, for the option problems considered here 1. If
x∗m is not in [a, b], it is set equal to the nearest boundary point.

1Generalizations for more early-exercise points are easily determined.

5

Result 2.1. The Gk(x1, x2) in (18) can be determined analytically.

Proof. With g(x, tm) ≡ ±K(1 − ex)+, it follows for a put, with x2 ≤ 0, that

Gk(x1, x2) =
2

b− a

∫ x2

x1

K(1 − ex) cos

(

kπ
x− a

b− a

)

dx, (20)

and for a call, with x1 ≥ 0, that

Gk(x1, x2) =
2

b− a

∫ x2

x1

K(ex − 1) cos

(

kπ
x− a

b− a

)

dx, (21)

The fact that x∗m ≤ 0, for put options, and x∗m ≥ 0, for call options, ∀t ∈ T ,
gives

Gk(x1, x2) =
2

b− a
αK [χk(x1, x2) − ψk(x1, x2)] , α =

{

1 for a call,
−1 for a put,

(22)
with

χk(x1, x2) :=

∫ x2

x1

ex cos

(

kπ
x− a

b− a

)

dx, (23)

ψk(x1, x2) :=

∫ x2

x1

cos

(

kπ
x− a

b− a

)

dx. (24)

These integrals admit the following analytic solutions:

χk(x1, x2) =
1

1 +
(

kπ
b−a

)2

[

cos

(

kπ
x2 − a

b− a

)

ex2 − cos

(

kπ
x1 − a

b− a

)

ex1

+
kπ

b− a
sin

(

kπ
x2 − a

b− a

)

ex2 − kπ

b− a
sin

(

kπ
x1 − a

b− a

)

ex1

]

,

ψk(x1, x2) =

[

sin
(

kπ x2−a
b−a

)

− sin
(

kπ x1−a
b−a

)]

b−a
kπ

k 6= 0,

(d− c) k = 0.

(25)

We now derive the formulas for the Fourier cosine coefficients of the option
values, Vj(tm) with j = 0, 1, · · · , N − 1 and m = 1, 2, · · · ,M .

At time tM , these coefficients, Vj(tM), are exact, see Equation (17). At time
tM−1, from COS formula (14) we obtain approximation ĉ(x, tM−1), the contin-
uation value at tM−1, which is inserted into (19). Interchanging summation and
integration gives the following coefficients, Ĉ:

Ĉk(x1, x2, tM−1) = e−r∆tRe

N−1
∑′

j=0

ϕlevy

(

jπ

b− a

)

Vj(tM) · Mk,j(x1, x2)

,

(26)
with the coefficients Mk,j(x1, x2) defined as

Mk,j(x1, x2) :=
2

b− a

∫ x2

x1

eijπ x−a
b−a cos

(

kπ
x− a

b− a

)

dx, (27)

6

and i =
√
−1 being the imaginary unit.

For time points tm, m = M − 2,M − 3, · · · , 1, we can define

Ĉk(x1, x2, tm) := e−r∆tRe

N−1
∑′

j=0

ϕlevy

(

jπ

b− a

)

V̂j(tm+1) ·Mk,j(x1, x2)

,

(28)
which is the result of replacing Vj(tm+1) in the definition of Ck(x1, x2, tm) by

its numerical approximation V̂j(tm+1).

Replacing Ck in (16) by Ĉk gives us the numerical approximation of the
Fourier cosine coefficients of the option values at times tm, m = 1, 2, · · · ,M −1.
In vector form, it reads

V̂(tm) =

{

Ĉ(a, x∗m, tm) + G(x∗m, b), for a call,

Ĉ(x∗m, b, tm) + G(a, x∗m), for a put.
(29)

with

Ĉ(x1, x2, tm) =

{

e−r∆tRe {M(x1, x2) Λ} V(tM), m = M − 1,

e−r∆tRe {M(x1, x2) Λ} V̂(tm+1), m = 1, 2, · · · ,M − 2.
(30)

where we use bold-faced letters to denote vectors, e.g. V(tM) is the vector
(V0(tM), V1(tM), · · · , VN−1(tM))T . “M Λ” denotes a matrix-matrix multiplica-

tion with M being a matrix with elements {Mk,j}N−1
k,j=0 and Λ a diagonal matrix

with elements
{

ϕlevy

(

jπ
b−a

)}N−1

j=0
.

This matrix-vector product representation is useful for analyzing the con-
vergence properties of Bermudan option values to their American counterparts
(with M → ∞), in Section A. It should, however, not be employed to determine
the coefficients, since these matrix-vector product costs O(N2) operations and
is thus expensive.

In Section 2.3 we will present an efficient algorithm for the computation of
V̂(tm), with complexity O(N log2(N)), based on the FFT algorithm.

We first summarize the algorithm for pricing Bermudan options:
Algorithm 1: Pricing Bermudan options with the COS method.

Initialization: For k = 0, 1, · · · , N − 1,

• Vk(tM) = Gk(0, b) for call options; Vk(tM) = Gk(a, 0) for put options;

Main Loop to Recover V̂k(tm): For m = M − 1 to 1,

• Determine early-exercise point x∗m by Newton’s method;

• Compute V̂k(tm) (with the help of the FFT algorithm).

Final step: Reconstruct v̂(x, t0) by inserting V̂k(t1) into (15).

Remark 2.2 (The Greeks). To compute the Greeks, one only needs to modify
the final step in Algorithm 1, from t1 to t0, as the Greeks can be approximated
by

∆̂ = e−r∆t 2

b− a

N−1
∑′

k=0

Re

{{

ϕ

(

kπ

b− a

)

eikπ x−a
b−a

ikπ

b− a

}}

V̂k(t1)

S0
(31)

7

and

Γ̂ = e−r∆t 2

b − a

N−1
∑′

k=0

Re

{{

ϕ

(

kπ

b− a

)

eikπ x−a
b−a

[

− ikπ

b− a
+

(

ikπ

b− a

)2
]}}

V̂k(t1)

S2
0

.

(32)

2.3 Efficient Algorithm

In the following we will develop an FFT-based algorithm for computing the
matrix-vector product in (30). The main insight is that matrix M in (30) is a
sum of a Hankel and a Toeplitz matrix.

Theorem 2.1. Ĉ(x1, x2, tm) in (30) can be computed in O(N log2(N)) opera-
tions with the help of the Fast Fourier Transform (FFT) algorithm.

Proof. Replacing eiα = cos(α)+isin(α) in the definition of Mk,j(x1, x2) in (27)
gives the following representation:

Mk,j(x1, x2) = − i

π

(

Mc
k,j(x1, x2) + Ms

k,j(x1, x2)
)

, (33)

where

Mc
k,j :=

(x2 − x1)πi
(b− a)

k = j = 0,

exp

(

i(j + k)
(x2 − a)π

b− a

)

− exp

(

i(j + k)
(x1 − a)π

b− a

)

j + k
otherwise

(34)
and

Ms
k,j :=

(x2 − x1)πi
b− a

k = j,

exp

(

i(j − k)
(x2 − a)π

b− a

)

− exp

(

i(j − k)
(x1 − a)π

b− a

)

j − k
k 6= j.

(35)
After inserting (33) into (26) and (28), we obtain a matrix-vector product rep-

resentation for Ĉ(x1, x2, tm), i.e.,

Ĉ(x1, x2, tm) =
e−r∆t

π
Im {(Mc + Ms)u} , (36)

where Im {·} denotes taking the imaginary part of the input argument, and

u := {uj}N−1
j=0 , uj := ϕ

(

jπ

b− a

)

Vj(tm+1), u0 =
1

2
ϕ (0)V0(tm+1). (37)

The matrices

Mc := {Mc
k,j(x1, x2)}N−1

k,j=0 and Ms := {Ms
k,j(x1, x2)}N−1

k,j=0

have special structures, so that the FFT algorithm can be employed for the
efficient computation of matrix-vector products.

8

In particular, matrix Mc is a Hankel matrix,

Mc =

m0 m1 m2 · · · mN−1

m1 m2 · · · · · · mN

...
...

mN−2 mN−1 · · · m2N−3

mN−1 · · · m2N−3 m2N−2

N×N

(38)

and Ms is a Toeplitz matrix,

Ms =

m0 m1 · · · mN−2 mN−1

m−1 m0 m1 · · · mN−2

...
. . .

...
m2−N · · · m−1 m0 m1

m1−N m2−N · · · m−1 m0

N×N

(39)

with

mj :=

(x2 − x1)π
b− a

i j = 0

exp

(

ij
(x2 − a)π

b− a

)

− exp

(

ij
(x1 − a)π

b− a

)

j j 6= 0

(40)

This concludes the proof.

The matrix-vector product, with these special matrices, can be transformed
into a circular convolution. This is well-known for Toeplitz matrices, described
in detail, for example, in [2]. The product Msu is equal to the first N elements
of ms ⊛ us with the 2N -vectors:

ms = [m0,m−1,m−2, · · · ,m1−N , 0,mN−1,mN−2, · · · ,m1]
T ,

and us = [u0, u1, · · · , uN−1, 0, · · · , 0]
T
. For the Hankel matrix this is less known,

so we formulate it in the following result:

Result 2.2. The product Mcu is equal to the first N elements of mc ⊛ uc, in
reversed order, with the 2N -vectors: mc = [m2N−1,m2N−2, · · · ,m1,m0]

T and

uc = [0, · · · , 0, u0, u1, · · · , uN−1]
T
.

For the efficient computation of Mcu, we need to construct the following
circulant matrix, Mu,

Mu =

0 uN−1 uN−2 · · · · · · · · · 0
0 0 uN−1 uN−2 · · · · · · 0
...

. . .
. . .

...
0 · · · 0 uN−1 uN−2 · · · u0

u0 0 · · · 0 uN−1 · · · u1

u1 u0 0 · · · 0 · · · u2

...
. . .

. . .
...

uN−2 · · · u0 0 · · · 0 uN−1

uN−1 uN−2 · · · u0 0 · · · 0

(2N)×(2N)

. (41)

9

Straightforward computation shows that the first N elements of the product of
uc and mc equal Mcu, in reversed order.

A circular convolution of two vectors is equal to the inverse discrete Fourier
transform (D−1) of the products of the forward DFTs, D, i.e.,

x ⊛ y = D−1{D(x) · D(y)}.

We now summarize the algorithm of computing Ĉ(x1, x2, tm) as follows:

Algorithm 2: Computation of Ĉ(x1, x2, tm).

1. Compute mj(x1, x2) for j = 0, 1, · · · , N − 1 using (40).

2. Construct ms(x1, x2) and mc(x1, x2) using the properties of mj ’s.

3. Compute u(tm) using (37).

4. Construct us by padding N zeros to u(tm).

5. Msu = the first N elements of D−1{ D(ms) · D(us) }.

6. Mcu = reverse{ the first N elements of D−1{ D(mc) · sgn · D(us) }}.

7. Ĉ(x1, x2, tm) = e−r∆tIm {Msu + Mcu} /π.

Note that the operation D(us) is computed only once, and“reverse{x}” denotes
an x-generated vector, whose elements are the same as those of x but sorted in
reversed order.

Remark 2.3 (Efficient computation). It is worth mentioning that the compu-
tation of the exponentials takes significantly more computer clock cycles than
additions or multiplications. One can however benefit from some special prop-
erties of the mj’s, like m−j = −mj and, for j 6= 0,

mj+N =
exp

(

iN (x2−a)π
b−a

)

· exp
(

ij (x2−a)π
b−a

)

− exp
(

iN (x1−a)π
b−a

)

· exp
(

ij (x1−a)π
b−a

)

j +N
.

So, in order to construct ms and mc, the factors exp
(

ij (x2−a)π
b−a

)

and exp
(

ij (x1−a)π
b−a

)

,

for j = 0, 1 · · · , N − 1, should be computed only once.
Also, the DFT of uc and of us need not be computed separately, as the shift

property of DFTs gives D(uc) = sgn · D(us) with sgn = [1,−1, 1,−1, · · ·]T .

Remark 2.4 (Overall Computational Complexity). Since the computation of
Gk(x1, x2) is linear in N , the overall complexity of this recovery procedure is

dominated by the computation of Ĉ(x1, x2, tm), whose complexity is O(N log2N)
with the FFT. As a result, the overall computational complexity for pricing a
Bermudan option with M exercise dates is O((M − 1)N log2N), as the work
needed for the final step, from t1 to t0, is O(N).

Remark 2.5 (Use of FFT algorithm). In the main loop of the CONV method
from [33], the FFT algorithm is required five times, the same as in the COS
method presented above, and the length of the CONV input vectors is halved

10

compared to the COS method. Therefore, the CONV method would be approx-
imately twice as fast, if we did not take the method’s accuracy into account.
However, for models characterized by density functions in C∞[a, b], the COS
method exhibits an exponential convergence rate, which is superior to the second
order convergence of the CONV method. For the same level of accuracy, the
COS method is therefore significantly faster than the CONV method.

2.4 Discretely-Monitored Barrier Options

Discretely-monitored “out” barrier options are options that cease to exist if the
asset price hits a certain barrier level, H , at one of the pre-specified observation
dates. If H > S0, they are called “up-and-out” options, and “down-and-out”
otherwise. The payoff for an up-and-out option reads

v(x, T) = (max(α(ST −K), 0)−Rb)1{Sti
<H} +Rb, (42)

where α = 1 for a call and α = −1 for a put, Rb is a rebate, and 1A is the
indicator function,

1A =

{

1 if A is not empty,
0 otherwise.

With the set of observation dates, T = {t1, · · · , tM}, t1 < · · · < tM−1 < tM =
T , the price of an up-and-out option, monitored M times, satisfies the following
recursive formula

c(x, tm−1) = e−r(tm−tm−1)
∫

R
v(x, tm)f(y|x)dy,

v(x, tm−1) =

{

e−r(T−tm−1)Rb, x ≥ h,

c(x, tm−1), x < h,

(43)

where h := ln(H/K) and m = M,M − 1, · · · , 2.
Note that the recursive pricing formula (43) is very similar to that for the

Bermudan options. What makes barrier pricing easier is that the root-searching
algorithm is not needed as the barrier points are known in advance. Thus,
similar to Bermudan options, discrete barrier options can be priced in two steps:

1. Recovery of the Fourier-cosine series coefficients of the option value at t1,

2. The COS formula for European options given by (15).

Based on the derivation for Bermudan options, we have the following lemma:

Lemma 2.1 (Backward Induction for Discrete Barrier Options). By backward
recursion we find the following numerical approximation for discretely monitored
barrier options: For m = M − 1,M − 2, · · · , 1,

V̂k(tm) = Ĉk(a, h, tm) + e−r(T−tm−1)Rb
2

b− a
ψk(h, b) (44)

with Ĉk(x1, x2, tm) and ψk(x1, x2) given by (36) and (25), respectively. If h < 0,
we have

Vk(tM) =

{

2Rbψk(h, b)/(b− a) for a call,

Gk(a, h) + 2Rbψk(h, b)/(b− a) for a put.
(45)

11

For h ≥ 0, we find

Vk(tM) =

{

Gk(0, h) + 2Rbψk(h, b)/(b− a) for a call,

Gk(a, 0) for a put.
(46)

A similar recursion formula for a down-and-out option can be derived easily.

The proof is straightforward, as it goes along the lines of the derivation for
Bermudan options in the previous section.

The computation of Ĉ(a, h, tm) via (36) is less expensive than for Bermudan
options, because h is known in advance, and consequently, ψk(h, b) in (24),
Mc and Ms in (36) are known before the recursion step. Therefore, the FFT
technique is required only three times.

Barrier options with an “in” barrier, or double barrier options, can be priced
as easily with the COS method. Alternatively, one could apply the barrier parity
and symmetry results on “out” barrier options [43, 25].

We summarize the method by means of the following algorithm:
Algorithm 3: Pricing Discrete Barrier Options by the COS Method

Initialization:

• Compute Vk(tM) using (45) or (46) .

• For up-and-out: x1 = a and x2 = h, and c = h and d = b;
For down-and-out: x1 = h and x2 = b, and c = a and d = h.

• Construct ms(x1, x2) and mc(x1, x2) using the properties of mj ’s.

• d1 = D{ms(x1, x2)}, d2 = sgn · D{mc(x1, x2)}

• G = 2
b−a

Rb {ψk(c, d)}N−1
k=0 .

Main Loop to Recover V̂(tm−1): For m = M to 2,

1. Compute u(tm) using Equation (37).

2. Construct us by padding N zeros to u(tm).

3. Msu = the first N elements of D−1{ d1 · D(us) }.

4. Mcu = reverse{ the first N elements of D−1{ d2 · D(us) } }.

5. Ĉ(tm−1) = e−r∆t/πIm {Msu + Mcu}.

6. V̂(tm−1) = Ĉ(tm−1) + e−r(T−tm−1)G

Finalization: Compute v̂(t0, x) according to (15); Or Greeks by (31) and (32).

3 Error Analysis

In this section, we analyze the rate of convergence as well as the stability of the
COS method.

12

3.1 Convergence for European Options

We define ǫ as
ǫ (x;N, [a, b]) := c(x) − ĉ (x;N, [a, b]) , (47)

An upper bound for this local error with respect to the truncation range as well
as the convergence rate of ǫ in dependence on N , the number of leading terms
in the Fourier cosine series, have been derived in [22]. Here we recall the main
conclusions.

The COS formula for European options was derived in three steps in Section
2.1. Thus, error ǫ is decomposed in three components:

1. The integration range truncation error:

ǫ1 (x; [a, b]) := c(x) − c1(x; [a, b]) =

∫

R\[a,b]

v(y)f(y|x)dy. (48)

2. The series truncation error on [a, b]:

ǫ2 (x;N, [a, b]) := c1(x; [a, b])−c2(x;N, [a, b]) =
1

2
(b−a)e−r∆t

∞
∑

k=N

Ak(x)·Vk .

(49)

3. The error related to approximating Ak(x) by Fk(x) in (12):

ǫ3 (x;N, [a, b]) := c2 (x;N, [a, b]) − ĉ (x;N, [a, b])

= e−r∆t

N−1
∑′

k=0

Re

{

∫

R\[a,b]

eikπ
y−a

b−a f(y|x)dy
}

Vk. (50)

Since the option value, v(y), is bounded on [a, b], we have

ǫ1 (x; [a, b]) ∼ O

(

∫

R\[a,b]

f(y|x)
)

∼ O(TOL),

according to (3). To study the impact of x on ǫ1, we use the property f(y|x) =
f(y − x), which holds for Lévy processes. After a change of variables on (48),
we find

|ǫ1 ([a, b])| =

∣

∣

∣

∣

∣

∫

R\[a−x,b−x]

v(x+ z)f(z)dz

∣

∣

∣

∣

∣

∼ O

(

∫

R\[a−x,b−x]

f(z)dz

)

. (51)

So, when [a, b] is centered around x, or min(|a| , |b|) >> x, the influence of x
on ǫ1 can be ignored, and ǫ1 only depends on the size of the truncation range:
Larger intervals [b − a] result in smaller values of ǫ1. Numerical experiments
supporting this are presented in Figure 1. The definition of a proper truncation
range is given in Section 3.3.

The second error component, ǫ2, converges exponentially for probability den-
sity functions of class C∞([a, b]), given a value of x [8, 22], i.e.,

|ǫ2| < P · exp(−(N − 1)ν), (52)

13

where ν > 0 is a constant and P is a term which varies less than exponentially
with N . When the probability density function has a discontinuous derivative,
the Fourier-cosine expansion converges algebraically, i.e.

|ǫ2| <
P̄

(N − 1)β−1
, (53)

where P̄ is a constant and β ≥ n ≥ 1 (and n is the algebraic index of convergence
of the series coefficients).

For Lévy processes, a non-zero x corresponds to a shift, f(z := y−x), and is
thus not related to the smoothness of f(z). As a result, the convergence speed,
ν in (52) or β in (53), does not depend on x.

The third error component, ǫ3, consists of the integration range related trun-
cation error [22], and can be bounded by

|ǫ3| < |ǫ1| +Q

∣

∣

∣

∣

∣

∫

R\[a,b]

f(y|x)dy
∣

∣

∣

∣

∣

, (54)

where Q is some constant independent of N . Applying a change of variables
as for ǫ1, it is clear that also here the choice of x has no impact on ǫ3, if
min(|a| , |b|) >> x or if [a, b] is centered around x.

Collecting the three error components and applying the triangle inequality,
we can bound the local error, ǫ, as follows:

|ǫ (x;N, [a, b])| ≤ |c− c1| + |c1 − c2| + |c2 − ĉ|

≤ Q̄ ·
∣

∣

∣

∣

∣

∫

R\[a,b]

f(y|x)dy
∣

∣

∣

∣

∣

+ |ǫ2 (x;N)| , (55)

with Q̄ some constant not depending on [a, b] and N . With integration inter-
val [a, b] chosen sufficiently wide, the series truncation error, ǫ2(N), dominates
the overall error, which implies that for smooth density functions, ǫ converges
exponentially; otherwise it goes algebraically.

3.2 Error Propagation in the Backward Recursion

In this section we study the error in the Fourier coefficients,

ε(k, tm) := Vk(tm) − V̂k(tm), (56)

and its propagation in the backward recursion, which is directly related to the
error in the Bermudan option values. We focus on put options here and assume
that the error resulting from applying Newton’s method is not significant, i.e.,
the early-exercise points are determined exactly. For ease of presentation, we
analyze the case that the underlying density function is infinitely differentiable.
Similar analysis can be done for other cases.

Theorem 3.1. With [a, b] ⊂ R sufficiently large and a probability density func-
tion in C∞ ([a, b]), error ε(k, tm) converges exponentially in N .

14

Proof. The proof is obtained by an induction argument. At time tM−1, we
compare (29) and (16), and find

ε(k, tM−1) = Ck(x∗M−1, b, tM−1) − Ĉk(x∗M−1, b, tM−1),

=

∫ b

x∗

M−1

(c(x, tM−1) − ĉ(x, tM−1)) cos

(

kπ
x− a

b− a

)

dx. (57)

Since Vk(tM) is exact, ĉ(x, tM−1) resulting from the COS formula only consists
of local error ǫ(x;N, [a, b]). So,

ε(k, tM−1) =

∫ b

x∗

M−1

ǫ (x;N, [a, b]) cos

(

kπ
x− a

b− a

)

dx. (58)

This equation can be seen as an inner product of two square-integrable functions.
With the Cauchy-Schwarz inequality, we bound error ε(k, tM−1) as follows:

|ε(k, tM−1)| ≤

√

√

√

√

∫ b

x∗

M−1

ǫ2 (x;N, [a, b]) dx ·

√

√

√

√

∫ b

x∗

M−1

cos2
(

kπ
x− a

b− a

)

dx. (59)

We assume that the integration interval [a, b] is chosen sufficiently large, so that
the local error, ǫ, is dominated by the series truncation error ǫ2. Based on the
analysis in Section 3.1, it then follows that, for density functions belonging to
C∞([a, b]), error ǫ(x;N) converges exponentially w.r.t. N , i.e.,

|ǫ(x;N, [a, b])| ≤ P (x,N) exp (−(N − 1)ν) ,

where ν > 0 is a constant not depending on N and x, and P (x,N) > 0 is a
function which varies less than exponentially in N . With

p(N) := max
x∈[a,b]

P (x,N), (60)

it then holds that

∫ b

x∗

M−1

ǫ2 (x;N, [a, b]) dx ≤ (b − x∗M−1) · (p(N) · exp(−(N − 1)ν))
2
.

Since cos2(α) ≤ 1, we have

∫ b

x∗

M−1

cos2
(

kπ
x− a

b− a

)

dx ≤ (b − x∗M−1).

After inserting these parts, Equation (59) can be written as:

|ε(k, tM−1)| ≤ (b− x∗M−1) · p(N) · exp(−(N − 1)ν), (61)

for k = 0, 1, · · · , N − 1.
This indicates that the convergence behaviour of ε(k, tM−1) in N is as the

local error for pricing European options. Written in vector form, with

ε(tM−1) := (ε(0, tM−1), ε(1, tM−1), · · · , ε(N − 1, tM−1))
T
,

15

it follows that

|ε(tM−1)|∞ ≤ (b− x∗M−1) · p(N) · exp(−(N − 1)ν). (62)

As a second step, we prove that if the theorem holds for time tm+1, i.e.

|ε(tm+1)|∞ ≤ p(N) exp (−(N − 1)ν) , (63)

with p(N) as in (60), then it follows that

|ε(tm)|∞ ∼ O (exp(−(N − 1)ν)) ,

for m = M − 2,M − 3, · · · , 1.
At time tm, the definition of error ε(k, tm) gives

ε(k, tm) =

∫ b

x∗

m

(c(x, tm) − c̄(x, tm)) cos

(

kπ
x− a

b− a

)

dx, (64)

where c̄(x, tm) is obtained by inserting V̂k(tm+1) into the COS formula. So,

c̄(x, tm) = e−r∆t

N−1
∑′

j=0

Re

{

ϕ

(

jπ

b− a

)

eijπ x−a
b−a

}

(Vj(tm+1) − ε(j, tm+1))

= ĉ(x, tm) − e−r∆t

N−1
∑′

j=0

Re

{

ϕ

(

jπ

b− a

)

eijπ x−a
b−a

}

ε(j, tm+1).

Inserted in Equation (64), we find that ε(k, tm) consists of two parts: One
related to the local error, as for the European options, and a second related to
ε(k, tm+1), i.e.

ε(k, tm) =

∫ b

x∗

m

(ǫ(x;N, [a, b]) + ǭ(x, tm+1)) cos

(

kπ
x− a

b− a

)

dx, (65)

where

ǭ(x, tm+1) := e−r∆t

N−1
∑′

j=0

Re

{

ϕ

(

jπ

b− a

)

eijπ x−a
b−a

}

ε(j, tm+1). (66)

Interchanging summation in (66) with integration in (65) gives the matrix-
vector product form for the errors:

ε(tm) = ε1(tm) + e−r∆tRe {M(x∗m, b) Λ} ε(tm+1), (67)

where the matrices M and Λ are the same as in (30). Error ε1 is an N -vector
with as k-th element,

∫ b

x∗

m

ǫ(x;N, [a, b]) cos

(

kπ
x− a

b− a

)

dx, k = 0, 1, · · · , N − 1.

Equation (67) explains how ε1(tm) and ε(tm+1) evolve in the backward recur-
sion. To bound ε1, we can repeat the steps from (58) to (62), to find:

|ε1(tm)|∞ ≤ (b− x∗m) · p(N) · exp (−(N − 1)ν) . (68)

16

For the term e−r∆tRe {M(x∗m, b) Λ} ε(tm+1), whose k-th element reads
∫ b

x∗

m

ǭ(x, tm+1) cos

(

kπ
x− a

b− a

)

dx,

we start with the definition of ǭ(x, tm+1) in (66) and apply the Cauchy-Schwarz
inequality, as follows

(

er∆tǭ(x, tm+1)
)2 ≤

N−1
∑′

j=0

(

Re

{

ϕ

(

jπ

b− a

)

eijπ x−a
b−a

})2 N−1
∑′

j=0

ε2(j, tm+1). (69)

From Aj(x) and Fj(x), as defined in (11) and (12), respectively, we have

Re

{

ϕ

(

jπ

b− a

)

eijπ x−a
b−a

}

=
1

2
(b−a)

[

Aj(x) +

∫

R\[a,b]

f(y|x) cos

(

jπ
y − a

b− a

)

dy

]

.

Since f(y|x) ∈ R
+, it is clear that f(y|x) cos(α) ≤ f(y|x), and thus,

(

Re

{

ϕ

(

jπ

b− a

)

eijπ x−a
b−a

})2

≤ 1

4
(b − a)2

[

A2
j (x) + 2Aj(x)

∫

R\[a,b]

f(y|x)dy

+

(

∫

R\[a,b]

f(y|x)dy
)2

 . (70)

Assuming now that the interval of integration is set sufficiently large, so that
the related truncation error can be neglected, and including the leading term
of (70) into (69), one finds

(

er∆tǭ(x, tm+1)
)2 ≤ 1

4
(b − a)2

N−1
∑′

j=0

A2
j(x)

N−1
∑′

j=0

ε2(j, tm+1).

For density functions belonging to C∞([a, b]), the series coefficients Aj(x) con-

verge exponentially in j, see [8], so that
∑′N−1

j=0
A2

j(x) represents the sum of a

geometric series and is therefore bounded. Define

W := max
x∈[a,b]

N−1
∑′

j=0

A2
j(x).

With Assumption (63) one obtains:

|ǭ(x, tm+1)| ≤
1

2
(b− a)e−r∆t

√
NWp(N)e−(N−1)ν . (71)

Application of the Cauchy-Schwarz inequality results in:
∣

∣

∣

∣

∣

∫ b

x∗

m

ǭ(x, tm+1) cos

(

kπ
x− a

b− a

)

dx

∣

∣

∣

∣

∣

≤ (b − x∗m)p̄(N)e−(N−1)ν , (72)

or, in vector form:

e−r∆t |Re {M(x∗m, b) Λ} ε(tm+1)|∞ ≤ (b− x∗m)p̄(N)e−(N−1)ν , (73)

where p̄(N) := 1
2 (b − a)e−r∆t

√
NWp(N). Inserting (68) and (73) in (67) com-

pletes the proof.

17

Summarizing, when the local error evolves through time, via the backward
recursion, the method’s convergence rate does not change. This is an indication
for the method’s stability.

Similarly, we can prove that if the local error converges algebraically, so does
ε(k, tm).

Remark 3.1. The choice of integration range, [a, b], is quite important. An
interval which is chosen too small will lead to a significant integration-range
truncation error, whereas an interval which is set very large would require a
large value for N to achieve a certain level of accuracy, as determined in (68)
and (73).

3.3 Choice of Truncation Range

As a rule of thumb, we propose to use the following formula to define the range
of integration in (3):

[a, b] :=

[

(c1 + x0) − L
√

c2 +
√
c4, (c1 + x0) + L

√

c2 +
√
c4

]

, (74)

where x0 := ln(S0/K) and L depends on the user-defined tolerance level, TOL,
as given in (3). c1, . . . , c4 are the cumulants, based on the characteristic function
of the underlying process, and detailed in Appendix B.

Cumulant c4 is included in (74), because, for short maturities, the density
functions of many Lévy processes have sharp peaks and flat tails, and this
behavior can be well captured by the inclusion of c4.

Here, we analyze the relation between TOL and L in (74) via numerical
experiments, aiming to determine one value of L for different exponential Lévy
asset price processes. We present the observed error for different values of L in
Figure 1. With N large, e.g. N = 214, the series truncation error is negligible
and the integration range error, which has a direct relation to the user-defined
TOL, dominates. The results in Figure 1 can therefore be used as a guidance
for setting parameter L, given a tolerance TOL. In the figure, and throughout
this paper, BS denotes the Black-Scholes model (Geometric Brownian Motion),
VG stands for the Variance Gamma model [34], CGMY denotes the model from
[12], NIG is short for the Normal Inverse Gaussian Lévy process [5], Merton de-
notes the jump-diffusion model developed in [35], and Kou is the jump-diffusion
model from [31]. We see in Figure 1 that the integration range error decreases
exponentially with L. The use of L = 8 seems appropriate for all the Lévy
processes considered. This value is used in all numerical experiments to follow.
Via experiments, we also found that formula (74), together with a proper choice
of L, defines an appropriate truncation range for any maturity time longer than
0.1 years. For even shorter maturities, one can use a larger value of L.

4 Numerical Results

We will show the method’s impressive convergence by pricing Bermudan, Amer-
ican and discretely-monitored barrier options. In the following, we present nu-
merical results for the BS, CGMY and NIG models. Extensive tests (not given
here) have demonstrated that the COS method also shows excellent performance

18

6 8 10
−16

−14

−12

−10

−8

−6

L

Lo
g 10

 (
 A

bs
ol

ut
e

E
rr

or
)

BS

6 8 10
−16

−14

−12

−10

−8

−6

L

Lo
g 10

 (
 A

bs
ol

ut
e

E
rr

or
)

VG

6 8 10
−16

−14

−12

−10

−8

−6

L

Lo
g 10

 (
 A

bs
ol

ut
e

E
rr

or
)

CGMY

6 8 10
−16

−14

−12

−10

−8

−6

L

Lo
g 10

 (
 A

bs
ol

ut
e

E
rr

or
)

NIG

K=80 K=100 K=120

6 8 10
−16

−14

−12

−10

−8

−6

L

Lo
g 10

 (
 A

bs
ol

ut
e

E
rr

or
)

Merton

6 8 10
−16

−14

−12

−10

−8

−6

L

Lo
g 10

 (
 A

bs
ol

ut
e

E
rr

or
)

Kou

Figure 1: L versus the logarithm of the absolute errors for pricing calls by the
COS method with N = 214, T = 1 year and three different strike prices.

for other Lévy processes. The characteristic functions as well as the cumulants
for several exponential Lévy asset price processes are listed in Appendix B.

The computer used has an Intel Pentium 4 CPU, 2.80GHz with cache size
1024 KB; The code is written in Matlab 7.4. The CPU times for all experiments
to follow are averaged over 100 repeated tests.

In order to observe the exponential error convergence, we define a ratio,

ratio =
ln
(∣

∣err(2d+1)
∣

∣

)

ln (|err(2d)|) , d ∈ Z
+, (75)

where err(2d) denotes the error between reference solution and approximation
obtained with N = 2d. If err(N) = C1 exp(−P1N) with C1 and P1 not depend-
ing on N , this ratio should be equal to 2; If the error convergence is algebraic,
i.e. err(N) = C2N

−P2 with C2 and P2 not depending on N , this ratio should
equal (d+ 1)/d.

Next to the series and the integration range truncation error, another error
for Bermudan options is related to the stopping criterion of the root-searching
algorithm, i.e., Newton’s method. With an initial guess x∗m+1 = x∗m, m =
M − 2, . . . , 2 (and x∗M−1 = 0), this error becomes sufficiently small, of O(10−7)
in 4 Newton iterations and of O(10−10) in 5 iterations. In the experiments to
follow, we use 5 iterations.

4.1 Bermudan and American Options

Here we price Bermudan put options with 10 exercise dates. Test parameters
for two test cases are given in Table 1. These parameters are related to the
characteristic functions presented in Table 8 and the cumulants from Table 9.

19

Table 1: Test parameters for pricing Bermudan options

Test No. Model S0 K T r σ Other Parameters

1 BS 100 110 1 0.1 0.2 –
2 CGMY 100 80 1 0.1 0 C = 1, G = 5, M = 5, Y = 1.5

The CPU times are reported in milli-seconds, and all reference values are
obtained by another method, i.e., by the CONV method from [33], setting
N = 220.

10 20 30 40 50
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

milliseconds

lo
g 10

|e
rr

or
|

BS

COS, L=8, N=32*d, d=1:5
CONV, δ=20, N=2d, d=8:12

(a) BS (Test No. 1)

10 20 30 40 50 60
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

milliseconds

lo
g 10

|e
rr

or
|

CGMY

COS, L=8, N=32*d, d=1:5
CONV, δ=20, N=2d, d=8:12

(b) CGMY with Y = 1.5 (Test No. 2)

Figure 2: Error versus CPU time for pricing Bermudan put options under (a)
BS and (b) CGMY model, comparing the COS and the CONV method.

The first test is for the classical BS model with as the reference value
10.479520123. In Figure 2a it is shown that a highly accurate solution is ob-
tained in less than 20 milli-seconds with exponential convergence (the log-error
plot displays a straight line). Compared to the quadrature-rule based CONV
method, which exhibits a second-order convergence, we see a significant im-
provement in the CPU time.

As the second test, we consider a Lévy process of infinite activity, i.e., the
CGMY model with Y > 1 (Test 2 in Table 1). For this set of CGMY parameters
it is now well-known that PIDE-based methods have convergence difficulties [2,
44]. The reference value is found to be 28.829781986 The performance of
the COS method for this test, shown in Figure 2b is highly efficient. Again, in
less than 20 milli-seconds, the solution is accurate to 9 digits, compared to the
reference value. Also here, we observe the exponential error convergence of the
COS method.

Remark 4.1 (VG and Algebraic Convergence). In [22] it was shown that for
certain sets of parameters the Variance Gamma (VG) process gives rise to a
probability density function which is not in C∞(R), and thus option pricing
under VG with these parameter sets exhibits only an algebraic convergence. This
is observed for contracts with T < ν, where ν denotes the variance of the VG

20

model, see the characteristic function in Appendix B.
When dealing with Bermudan options this also implies that we will encounter

algebraic convergence when the time between two exercise dates, ∆t < ν.

The prices of American options can be obtained by applying a Richardson
extrapolation on the prices of a few Bermudan options with small M [15], as
demonstrated, for example, in [33]. Let v(M) denote the value of a Bermudan
option withM early exercise dates. We will use the following 4-point Richardson
extrapolation scheme,

vAM (d) =
1

21

(

64v(2d+3) − 56v(2d+2) + 14v(2d+1) − v(2d)
)

, (76)

where vAM (d) denotes the approximated value of the American option.
Now we price an American option using (76) with the 4-point Richardson

extrapolation on Bermudan puts and vary the number of exercise dates. The
parameters, presented in Table 2, are taken from [1] and the reference value
given was V (0) = 0.112152. We deal with the pure Lévy CGMY jump model
(σ = 0) and no dividend payment (q = 0) here.

Table 2: Parameters for American put options under the CGMY model

Test No. S0 K T r Other Parameters

3 1 1 1 0.1 C = 1, G = 5, M = 5, Y = 0.5

We compare the results of the COS method with those obtained by the
CONV method using the same extrapolation. For the COS method, N = 512
and the number of Newton iterations is 5; For the CONV method N = 4096 to
reach a very similar accuracy. The accuracy of the American prices then mainly
depends on parameter d in the extrapolation (76). Results are summarized in
Table 3. We can see that large values of d give highly accurate results. The
COS method in combination with Richardson extrapolation gives, however, a
very satisfactory accuracy within 75 milli-seconds.

Table 3: Errors and CPU times for pricing American puts under CGMY model, Test No. 3

d in Eq. (76)
COS CONV

error time (milli-sec.) error time (milli-sec.)

0 4.41e-05 71.41 4.37e-05 134.4

1 7.69e-06 109.2 7.01e-06 198.0

2 9.23e-07 219.3 1.05e-06 336.7

3 3.04e-07 438.9 1.29e-07 610.9

4.2 Barrier Options

Now we price monthly-monitored (M = 12) up-and-out call and put options,
(UOC) and (UOP), down-and-out call and put options, (DOC) and (DOP),

21

by the COS method. The test parameters are in Table 4, again related to the
characteristic functions in Table 8. We solve the same problems as in [23] with
the barrier level, H = 120 for the up-and-out and H = 80 for the down-and-out
options.

Table 4: Test parameters for pricing barrier options

Test No. Model S0 K T r q Other Parameters

4 CGMY 100 100 1 0.05 0.02 C = 4, G = 50, M = 60, Y = 0.7

5 NIG 100 100 1 0.05 0.02 α = 15, β = −5, δ = 0.5

The numerical results under the CGMY model (Test 4) are presented in
Table 5. The CPU times are again measured in milli-seconds, and the reference
values are obtained by the CONV method [33], withN = 215. Note that “ratio”,
as presented in the table, is different from the commonly used ratio defining the
rate of convergence. In (75), it is the ratio of the logarithm of two consecutive
errors. This ratio should be equal to two in the case of exponential convergence.

As expected, the COS method is more efficient for discrete barrier options
than for Bermudan options, because the barrier levels are known in advance.

Exponential error convergence is observed, as the ratios (75) are around 2,
in less than 5 milli-seconds with the results accurate up to 8 decimal places.

Table 5: Errors and CPU times for pricing monthly-monitored barrier options under the
CGMY model (Test No. 4)

Option Type Ref. Val. N time (milli-sec.) error ratio

DOP 2.339381026

24 2.8 2.23e-1 –

25 2.7 1.98e-2 2.6

26 3.4 3.23e-4 2.0

27 4.6 7.20e-9 2.3

DOC 9.155070561

24 2.7 5.06e-2 –

25 2.9 5.67e-3 1.7

26 3.3 1.99e-4 1.6

27 4.7 5.55e-9 2.2

UOP 6.195603554

24 3.0 5.58e-2 –

25 2.9 8.98e-3 1.6

26 3.6 1.96e-4 1.8

27 4.8 2.23e-8 2.1

UOC 1.814827593

24 2.8 3.38e-1 –

25 2.8 1.24e-2 4.0

26 3.5 3.45e-6 2.9

27 4.7 1.93e-8 1.4

Next, we focus on the NIG model (Test 5) and repeat the barrier option
tests in Table 6. To reach the same level of accuracy as for CGMY, we need
a slightly larger value of N under the NIG model. This is because the NIG
density function is more peaked with the parameters from Table 4, as shown

22

in Figure 3a. Consequently, one typically requires some more terms in the se-
ries to reconstruct the density function from its Fourier-cosine series expansion.
Nevertheless, the performance of the COS method is still excellent: In less than
ten milli-seconds, the accuracy is up to the 7-th decimal place.

Table 6: Errors and CPU times for pricing monthly-monitored barrier options under the
NIG model (Test No. 5)

Option Type Ref. Val. N time (milli-sec.) error ratio

DOP 2.139931117

26 3.1 4.25e-2 –

27 3.7 1.28e-3 2.1

28 5.4 4.65e-5 1.5

29 8.4 1.39e-7 1.6

210 14.7 1.38e-12 1.7

DOC 8.983106036

26 3.1 1.26e-2 –

27 3.7 1.09e-3 1.6

28 5.3 3.99e-5 1.5

29 8.3 9.47e-8 1.6

210 14.8 5.61e-13 1.7

UOP 5.995341168

26 3.4 4.84e-3 –

27 3.7 1.14e-3 1.3

28 5.3 7.50e-5 1.4

29 8.3 1.52e-7 1.7

210 14.7 1.24e-12 1.7

UOC 2.277861597

26 3.1 3.83e-2 –

27 3.7 1.10e-3 2.1

28 5.5 8.67e-5 1.4

29 8.6 7.98e-8 1.7

210 15.1 7.38e-13 1.7

Note that, the smaller the value of ∆t, the larger the value of N needs
to be chosen to reach the same level of accuracy. This is because many Lévy
processes have highly peaked density functions for very small ∆t. An example is
presented in Figure 3b, where the recovered density functions of the NIG model
for monthly-, weekly- and daily-monitored barrier options are plotted. We can
see that for ∆t = 1/252 the density is highly peaked, compared to ∆t = 1/12.
Nevertheless, as long as the density function is in C∞(R), the error convergence
rate is exponential.

We now price daily-monitored DOP and DOC options under the NIG model
with the parameters from Test 5 in Table 4. The reference values are taken
from [23]. The results with the COS method are summarized in Table 7. We
observe that, as expected, the convergence rate of the COS method is exponen-
tial, but the values of N are somewhat larger than in the previous numerical
experiments. The almost linear computational complexity of the method can
clearly be observed from this table.

For results accurate up to the 4th digit, the COS method needs about 0.2
seconds for the daily-monitored DOP as well as for the DOC.

Remark 4.2 (Comparison to Hilbert Transform Method). The complexity of

23

−0.5 0 0.5
0

2

4

6

8

10

12

x

de
ns

ity
 v

al
ue

∆ t=1/12 years

NIG; Test No. 6
CGMY; Test No. 5

(a) NIG and CGMY with ∆t = 1
12

−0.1 −0.05 0 0.05 0.1 0.15
0

20

40

60

80

100

120

140

160

x

de
ns

ity
 v

al
ue

∆ t = 1/12 years
∆ t = 1/48 years
∆ t = 1/252 years

(b) NIG with ∆t = 1
12

, 1
48

, and 1
252

Figure 3: The recovered density functions for (a) the NIG and the CGMY mod-
els and monthly-monitored barrier options and (b) the NIG model for monthly-,
weekly- and daily-monitored barrier options.

Table 7: Errors and CPU times for pricing daily-monitored (M = 252) barrier options under
the NIG model (Test 5).

Option Type Ref. Val. N time (milli-sec.) error ratio

DOP 1.88148753

29 130 1.25e-2 –

210 230 2.20e-3 1.4

211 460 1.32e-4 1.5

212 1170 1.98e-6 1.5

213 2560 4.70e-8 1.3

DOC 8.96705248

29 140 3.67e-4 –

210 230 9.18e-5 1.2

211 460 3.14e-5 1.1

212 950 2.00e-6 1.3

213 2430 5.73e-9 1.4

the COS method is O((M − 1)N log2(N)), as the length of the induction loop
(in which the FFT is employed) is M − 1, and the final step uses N opera-
tions. Additionally, its error convergence is exponential for models with density
function in the class C∞([a, b]). By considering both complexity and error con-
vergence, the COS method is as efficient as the Hilbert transform method in [23].
The experiments above show that the COS method is as fast in terms of CPU
time (although we have a slower CPU and the code is written in Matlab). That
method cannot be used to price Bermudan options, as the information of the
early-exercise points is not known in advance. Moreover, the COS method uses
more-or-less the same CPU time for different types of barrier options, which is
not the case in [23].

24

5 Conclusions and Discussion

In this paper, we have generalized the COS option pricing method, based on
Fourier-cosine expansions, to Bermudan and discretely-monitored barrier op-
tions. The method can be used whenever the characteristic function of the
underlying price process is available (i.e., for regular affine diffusion processes
and, in particular, for exponential Lévy processes).

The main insights in the paper are that the COS formula for European op-
tions from [22] can be used for pricing Bermudan and barrier options, if the
series coefficients of the option values at the first early-exercise (or monitor-
ing) date are known. These coefficients can be recursively recovered from those
of the payoff function. The computational complexity is O((M − 1)N log2N),
for Bermudan and barrier options with M exercise, or monitoring, dates. The
COS method exhibits an exponential convergence in N for density functions in
C∞[a, b] and an impressive computational speed. With a small N , it typically
produces highly accurate results. For example, with N = 128, results are ac-
curate up to the 8th digit in less than 20 milli-seconds for 10-times exercisable
Bermudan options and less than 10 milli-seconds for monthly-monitored barrier
options. We expect a further factor of three gain in computational speed when
replacing the Matlab implementation by an implementation in C.

However, the smaller the time interval between two consecutive dates, the
more peaked the underlying density function, and thus larger values of N are
required for a similar accuracy. For problems with small time intervals, like
daily-monitored barrier options, the COS method shows a similar performance
as the Hilbert transform based method [23].

Compared to the CONV method [33], which is one of the fast methods
for Bermudan options, the COS method converges significantly faster to the
same level of accuracy. Pricing American options can be done by a Richardson
extrapolation method on Bermudan options with a varying number of exercise
dates.

References

[1] Almendral A. and Oosterlee C.W., Accurate evaluation of European
and American options under the CGMY process., SIAM J. Sci. Comput.
29: 93-117, 2007.

[2] Almendral A. and Oosterlee C. W., On American options under the
Variance Gamma process, Appl. Math. Finance, 14(2):131-152, 2007.

[3] Andricopoulos A.D., Widdicks M., Duck P.W. and Newton D.P.,

Universal option valuation using quadrature methods, J. Fin. Economics,
67: 447-471, 2003.

[4] Andricopoulos A.D., Widdicks M., Duck P.W. and Newton D.P.,

Extending quadrature methods to value multi-asset and complex path de-
pendent options, J. Fin. Economics, 2006.

[5] Barndorff-Nielsen O. E. Normal inverse Gaussian distributions and
stochastic volatility modelling, Scand. J. Statist., 24:1-13, 1997.

25

[6] Bender C.M. and Orszag S.A., Advanced mathematical methods for
scientists and engineers. McGraw-Hill, New York, 1978.

[7] Boyarchenko, S.I. and Levendorskĭı, S.Z., Non-Gaussian Merton-
Black-Scholes theory, Vol. 9 Advanced Series on Statist. Science & Appl.
Probability., World Scient. Publ. Co. Inc., River Edge, NJ, 2002.

[8] Boyd J.P., Chebyshev & Fourier spectral methods. Springer-Verlag, Berlin,
1989.

[9] Broadie M. and Yamamoto Y., Application of the fast Gauss transform
to option pricing, Management Science, 49(8): 1071-1088, 2003.

[10] Broadie M. and Yamamoto Y., A double-exponential fast Gauss trans-
form for pricing discrete path-dependent options, Operations Research,
53(5): 764-779, 2005.

[11] Cariboni J. and Schoutens W., Pricing credit default swaps under
Lévy models. J. Comp. finance, 10(4) 71-91, 2008.

[12] Carr P.P., Geman H., Madan D.B. and Yor M., The fine structure
of asset returns: An empirical investigation. J. of Business, 75: 305-332,
2002.

[13] Carr P.P. and Madan D.B., Option valuation using the Fast Fourier
Transform. J. Comp. Finance, 2:61-73, 1999.

[14] Chourdakis K., Option pricing using the Fractional FFT. J. Comp. Fi-
nance 8(2), 2004.

[15] Chang C-C, Chung S-L and Stapleton R.C., Richardson extrapo-
lation technique for pricing American-style options. J. Futures Markets,
27(8): 791-817, 2007.

[16] Cont R. and Tankov P., Financial modelling with jump processes, Chap-
man and Hall, Boca Raton, FL, 2004.

[17] Dempster M.A.H. and Hong S.S.G., Spread option valuation and the
Fast Fourier transform. Techn. Rep. WP 26/2000, the Judge Inst. Manag.
Studies, Univ. Cambridge, 2000.

[18] Duffie D., Pan J. and Singleton K.J., Transform analysis and asset
pricing for affine jump-diffusions. Econometrica, 68: 1343–1376, 2000.

[19] Duffie D., Filipovic D. and Schachermayer W., Affine processes
and applications in finance. Ann. of Appl. Probab., 13(3): 984-1053, 2003.

[20] Evans G.A. and Webster J.R., A comparison of some methods for the
evaluation of highly oscillatory integrals. J. of Comp. Applied Math. 112:
55-69, 1999.

[21] Eydeland A., A fast algorithm for computing integrals in function spaces:
financial applications. Computational Economics 7(4): 277-285, 1994.

26

[22] Fang, F. and Oosterlee, C.W. A novel option pricing method based
on Fourier-cosine series expansions. SIAM J. Sci. Comput. 31(2), 826-848,
2008.

[23] Feng L. and Linetsky V., Pricing discretely monitored barrier options
and defaultable bonds in Lévy process models: a fast Hilbert transform
approach. Math. Finance, 18(3), 337-384, 2008.

[24] Haug E.G., The complete guide to option pricing formulas. McGraw-Hill,
1998.

[25] Haug E.G., Barrier put-call transformations, see
http://www.smartquant.com/references/OptionPricing/option27.pdf

[26] Heston S., A closed-form solution for options with stochastic volatility
with applications to bond and currency options. Rev. Financ. Studies, 6:
327-343, 1993.

[27] Hirsa A. and Madan D.B., Pricing American options under Variance
Gamma. J. Comp. Finance, 7, 2004.

[28] S. Howison, A matched asymptotic expansions approach to continuity
corrections for discretely sampled options. Part 2: Bermudanoptions. Appl.
Math. Finance, 14(1):91–104, 2007.

[29] Hull J.C. Options, futures and other derivatives. Prentice Hall. 4th ed.,
2000.

[30] Jackson K., Jaimungal S. and Surkov V., Option pricing with
regime switching Lévy processes using Fourier space time-stepping. Proc.
4th IASTED Intern. Conf. Financial Engin. Applic., 92-97, 2007.

[31] Kou S. G., A jump diffusion model for option pricing. Management Sci-
ence, 48(8): 1086-1101, 2002.

[32] Lewis A. A simple option formula for general jump-diffusion and other
exponential Lévy processes. SSRN working paper, 2001. Available at:
http//ssrn.com/abstract=282110.

[33] Lord R., Fang F., Bervoets F. and Oosterlee C.W., A fast and
accurate FFT-based method for pricing early-exercise options under Lévy
processes. SIAM J. Sci. Comput., 30: 1678-1705, 2008.

[34] Madan D. B., Carr P. R. and Chang E. C. The Variance Gamma
process and option pricing. European Finance Review, 2: 79-105, 1998.

[35] Merton R. Option pricing when underlying stock returns are discontinu-
ous, J. Financial Economics, 3: 125-144, 1976.

[36] O’Sullivan C., Path dependent option pricing under Lévy pro-
cesses EFA 2005 Moscow Meetings Paper, Available at SSRN:
http://ssrn.com/abstract=673424, 2005.

[37] Piessens R. and Poleunis F., A numerical method for the integration
of oscillatory functions. BIT, 11: 317-327, 1971.

27

[38] Raible S., Lévy processes in finance: Theory, numerics and empiri-
cal facts. PhD Thesis, Inst. für Math. Stochastik, Albert-Ludwigs-Univ.
Freiburg, 2000.

[39] Sato, K-I., Basic results on Lévy processes, In: Lévy processes, 3–37,
Birkhäuser Boston, Boston MA, 2001.

[40] Schoutens, W., Lévy processes in finance: Pricing financial derivatives.
Wiley, 2003.

[41] Singleton K.J. and Umantsev L., Pricing coupon-bond options and
swaptions in affine term structure models. Math. Finance, 12(4): 427-446,
2002.

[42] Surkov V., Parallel option pricing with Fourier space time-stepping
method on graphics processing units. Preprint Univ. of Toronto, 2007. See:
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1020207

[43] Taleb N., Dynamic Hedging. John Wiley & Sons, New York, 2002.

[44] Wang I., Wan J.W. and Forsyth P., Robust numerical valuation of
European and American options under the CGMY process. J. Comp. Fi-
nance, 10(4): 31-70, 2007.

[45] Wilmott P., Derivatives: The theory and practice of financial engineer-
ing. Wiley Frontiers in Finance Series, 1998.

A From Bermudan to American Options

In this section, we discuss the behaviour of the error if M , the number of early-
exercise dates, goes to infinity. We also check how the Bermudan option prices
converge to their American option counterparts.

American options can, in this framework, be priced basically by two ap-
proaches. One can either price a Bermudan option with very many exercise
dates, or employ extrapolation methods. Whereas the latter approach is much
more practical, in terms of CPU time, and has been used in Section 4.1, the
former approach is interesting from a stability point-of-view. Here we therefore
consider the pricing of Bermudan options with many exercise dates, for reasons
of stability. It is interesting to consider the limit case, and check whether the
method presented is still applicable.

The series truncation error, ǫ2, may be problematic at first sight, for ∆t → 0.
For small time intervals the transitional probability density function tends to
become highly peaked. However, by letting the number of terms in the Fourier-
cosine expansion increase, for ∆t → 0, the method can deal with such highly
peaked functions, as long as they are in C∞[a, b]. Moreover, the size of the
integration range is, by means of the cumulants involved in (74), automatically
adapted to the shape of the function.

28

A.1 Density Recovery: Influence of Adapted Truncation

Range

From the discussion above it is clear that the recovery of the probability density
functions of the Lévy processes, for ∆t → 0, from their Fourier cosine series
expansion, is crucial. Figure 4 shows the importance of the proper adaptive
choice of the integration range, by means of the cumulants in (74). For several
values of ∆t, with even ∆t = 10−7, the density recovery with a fixed and an
adapted integration range are compared, for GBM as well as for NIG. It is
clear that the adaptive choice of integration range is superior for the recovery.
Whereas, we see that for GBM the density can be recovered on the adapted
integration range without significant difficulties, when ∆t → 0, it is less trivial
for the NIG process. For this latter process, the recovery gets difficult for the
smallest time interval, even with the interval adaptation.

5 10 15

−15

−10

−5

0

d, N=2d

lo
g 10

 |
er

ro
r

|

Fixed truncation range

∆ t=1
∆ t=0.01
∆ t=0.001
∆ t=1e−005
∆ t=1e−007

5 10 15

−15

−10

−5

0

d, N=2d

lo
g 10

 |
er

ro
r

|

∆ t adapted truncation range

(a) GBM

5 10 15 20
−15

−10

−5

0

5

10

d, N=2d

lo
g 10

 |
er

ro
r

|

Fixed truncation range

∆ t=1
∆ t=0.01
∆ t=0.001
∆ t=1e−005
∆ t=1e−007

5 10 15 20
−15

−10

−5

0

5

10

d, N=2d

lo
g 10

 |
er

ro
r

|

∆ t adapted truncation range

(b) NIG

Figure 4: The recovered density functions for ∆t → 0; (a) the GBM model with
fixed and adapted integration range, (b) the NIG model with fixed and adapted
ranges.

A.2 Stability of the Method

Based on Theorem 3.1 and its proof in Section 3.2, we saw an exponential
convergence in N . Inequality (73) indicates that the proportionality constant

29

in the convergence estimate may grow with the number of exercise dates, M , so
that with N fixed the error may increase substantially for increasing M .

However, the error convergence is as fast as exponential in N , so that one
can achieve very high accuracy by slightly increasing N .

We show here, by means of some numerical experiments that the resulting
error in V̂(t1) is bounded. In Figure 5, we present the convergence for Bermudan
call options under GBM with a varying number of exercise dates with respect
to the number of terms in the cosine series, N . Shown is the logarithm of the
error, log10 |err|, versus N . The dividend rate is set to zero, so that there are
no early-exercise opportunities, i.e. x∗m = b for m = 0, 1, · · · ,M − 1, and thus,
the Bermudan call options have the same values as their European counter-
parts. The other parameters are as in Table 1. The truncation range is defined
according to the description in Section 3.3.

We see a convergence of extreme accuracy, because the reference values are
also obtained by the COS method for European options, and therefore the error
related to the truncation range cannot be observed.

5 6 7 8 9 10 11
−30

−25

−20

−15

−10

−5

0

5

d, N=2d

lo
g 10

 |e
rr

or
|

M=10
M=50
M=200
M=500

(a) T = 1 year

5 6 7 8 9 10 11
−35

−30

−25

−20

−15

−10

−5

0

5

d, N=2d

lo
g 10

 |e
rr

or
|

M=10
M=50
M=200
M=500

(b) T = 0.1 year

Figure 5: Error convergence for increasing M and N .

For two maturities, T = 1 year and short maturity T = 0.1 year, relatively
large values of M do not show any significant impact on the error convergence
with respect to N . Merely, the start of convergence shifts to larger values of
N as M increases, which confirms the intuition that higher values for N can
compensate for the higher peakedness of the density function. With N small,
however, the error presented remains bounded.

A.3 Convergence of Bermudan to American Option Prices

It is also interesting to study the convergence of the Bermudan option prices
to their American equivalents, by increasing M , fixing N . In Figure 6, the
logarithm of the difference in values of Bermudan put options with 2000 exercise
times and with M (varying) between 0 and 1000 exercise dates is presented,
under the GBM and CGMY models. We set T = 0.1 year maturity and use
N = 212. Other parameters are given in Table 1.

The figure shows that, when N is sufficiently large, the COS method con-
verges for the problems presented. The convergence of Bermudan to American
option prices is evident from the figures. We observe a linear convergence of the

30

0 200 400 600 800 1000
−8

−7

−6

−5

−4

−3

−2

M, number of early−exercise points

lo
g 10

 |
v(

M
)−

v(
20

00
)

|

(a) GBM

0 200 400 600 800 1000
−12

−11

−10

−9

−8

−7

−6

−5

M, number of early−exercise points

lo
g 10

 |
v(

M
)−

v(
20

00
)

|

(b) CGMY

Figure 6: Convergence of Bermudan options to American options as M → ∞

Bermudan options, with an increasing number of exercise dates, to the Ameri-
can price by means of the quantity q(M) = [v̄AM − v̄(M)]/[v̄AM − v̄(2M)]. We
find q(M) = 2 for both GBM and the CGMY test case, which indicates linear
convergence with respect to ∆t. The convergence speed, however, is model-
dependent, and is related to the decay rate of the characteristic function. For a
Bermudan call option without any dividend payment, as an example, (29) reads

V̂(tm) = Ĉ(a, b, tm) =

{

Re {M(a, b) Λ}V(tM) m = M − 1

Re {M(a, b) Λ} V̂(tm+1) m = 1, 2, · · · ,M − 2.

and thus,
V̂(t1) = (Re {M(a, b) Λ})M−1

V(tM). (77)

Since neither the matrix M nor V(tM) depends on the type of underlying
process, the important matrix here is Λ, the diagonal matrix with the elements
being related to the characteristic function.

A.3.1 Extrapolation and American Option Pricing

In the present article the price of an American option is computed from the
Bermudan option prices by means of the repeated Richardson extrapolation
scheme by Chang, Chung, and Stapleton [15]. Let v̂(M) be the price of a
Bermudan option with a maturity of T years and M exercise dates, which are
∆t = T/M years apart. It is assumed that v̂(M) can be expanded as

v̂(M) = v̂(0) +

∞
∑

i=1

ai(∆t)
γi , (78)

with 0 < γi < γi+1. v̂(0) ≡ vAM (0) represents the price of the American option.
Repeated Richardson extrapolation is a well-known technique for improving the
accuracy of a solution. It will converge highly satisfactory if γi ≥ 1 in (78).
Classical extrapolation procedures assume that the exponents γi are known,
which means that we can use n+ 1 Bermudan prices with varying ∆t in order
to eliminate n of the leading order terms in (78). The only paper considering
an expansion of the Bermudan option price in terms of ∆t is [28], finding that
γ1 = 1 for the Black-Scholes model. Numerical tests also indicate that the

31

assumption γi = i produces highly satisfactory results for the Lévy models in
this paper.

B Characteristic Functions and Cumulants

The COS method requires from the underlying process the characteristic func-
tion to be known. The method fits therefore well to exponential Lévy models,
whose characteristic functions are available in closed form. The motivation be-
hind using general Lévy processes for the underlying is the fact that the Black-
Scholes model is not able to reproduce the volatility skew or smile present in
most financial markets, whereas it has been shown that several exponential Lévy
models can, at least to some extent.

In exponential Lévy models the asset price is modeled as an exponential
function of a Lévy process L(t):

S(t) = S(0) exp(L(t)). (79)

A process L(t), with L(0) = 0, is a Lévy process if:

1 it has independent increments;

2 it has stationary increments;

3 it is stochastically continuous, i.e., for any t ≥ 0 and ǫ > 0 we have

lim
s→t

P(|L(t) − L(s)| > ǫ) = 0. (80)

Each Lévy process can be characterized by a triplet (µ, σ, ζ) with µ ∈ R, σ ≥ 0
and ζ a measure satisfying ζ(0) = 0 and

∫

R

min (1, |x|2)ζ(dx) <∞. (81)

In terms of this triplet the characteristic function of the Lévy process is available
in closed form, due to the celebrated Lévy-Khinchine formula. We recall the
formulas for the characteristic function for several exponential Lévy processes
in Table 8. For more background information on these processes we point you
to [16, 40] for the usage of Lévy processes in a financial context and to [39] for a
detailed analysis of Lévy processes in general. With respect to the parameters
for the various processes in Table 8 we also basically follow the books [16, 40].

Given the characteristic functions, the cumulants, defined in [16], can be
computed via

cn(X) =
1

in
∂n(tΨ(ξ))

∂ξn

∣

∣

∣

∣

ξ=0

,

where tΨ(ξ) is the exponent of the characteristic function ϕ(ξ, t), i.e.

ϕ(ξ, t) = etΨ(ξ), t ≥ 0.

The formulas for the cumulants are summarized in Table 9. They have been
confirmed with the help of Mathematica.

32

Table 8: Characteristic functions of ln(St/K) for various models.

BS ϕ(ξ, t) = exp (iξµt − 1
2
σ2ξ2t)

NIG ϕ(ξ, t) = exp (iξµt − 1
2
σ2ξ2t)φNIG(ξ, t;α, β, δ)

φNIG(ξ, t;α, β, δ) = exp
h

δt
“

p

α2 − β2 −
p

α2 − (β + iξ)2
”i

Kou ϕ(ξ, t) = exp (iξµt − 1
2
σ2ξ2t)φKou(ξ, t; λ, p, η1, η2)

φKou(ξ, t; λ, p, η1, η2) = exp
h

λt
“

pη1

η1−iξ
−

(1−p)η2

η2+iξ
− 1

”i

Merton ϕ(ξ, t) = exp (iξµt − 1
2
σ2ξ2t)φMerton(ξ, t; λ, µ̄, σ̄)

φMerton(ξ, t) = exp
ˆ

λt
`

exp(iµ̄ξ − 1
2
σ̄2ξ2) − 1

´˜

VG ϕ(ξ, t) = exp (iξµt)φV G(ξ, t;σ, ν, θ)

φV G(ξ, t; σ, ν, θ) = (1 − iξθν + 1
2
σ2νξ2)−t/ν

CGMY ϕln(St/K)(ξ, t; x) = exp (iξµt − 1
2
σ2ξ2t)φCGMY (ξ, t; C, G, M, Y)

φCGMY (ξ, t; C, G, M, Y) = exp(CtΓ(−Y)[(M − iξ)Y − MY + (G + iξ)Y − GY])

Table 9: Cumulants of ln(St/K) for various models.

BS c1 = (µ − 1
2
σ2)t, c2 = σ2t, c4 = 0

NIG c1 = (µ − 1
2
σ2 + w)t + δtβ/

p

α2 − β2

c2 = δtα2(α2 − β2)−3/2

c4 = 3δtα2(α2 + 4β2)(α2 − β2)−7/2

w = −δ(
p

α2 − β2 −
p

α2 − (β + 1)2)

Kou c1 = t
“

µ + λp
η1

+ λ(1−p)
η2

”

c2 = t

„

σ2 + 2λp

η2

1

+ 2λ(1−p)

η2

2

«

c4 = 24tλ

„

p
η4

1

+ 1−p
η4

2

«

w = λ
“

p
η1+1

−
1−p

η2−1

”

Merton c1 = t(µ + λµ̄) c2 = t
`

σ2 + λµ̄2 + σ̄2λ
´

c4 = tλ
`

µ̄4 + 6σ̄2µ̄2 + 3σ̄4λ
´

VG c1 = (µ + θ)t c2 = (σ2 + νθ2)t

c4 = 3(σ4ν + 2θ4ν3 + 4σ2θ2ν2)t w = 1
ν

ln(1 − θν − σ2ν/2)

CGMY c1 = µt + CtΓ(1 − Y)
`

MY −1 − GY −1
´

c2 = σ2t + CtΓ(2 − Y)
`

MY −2 + GY −2
´

c4 = CtΓ(4 − Y)
`

MY −4 + GY −4
´

w = −CΓ(−Y)[(M − 1)Y − MY + (G + 1)Y − GY]

where w is the drift correction term that satisfies exp(−wt) = ϕ(−i, t).

33

