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Abstract In this chapter we describe the pricing of Bermudan options by means of
Fourier cosine expansions. We propose a technique to price early-exercise call op-
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Direct pricing of call options with cosine expansions may give rise to some sensi-
tivity regarding the choice of the size of the domain in which the Fourier expansion
is applied. By employing the put–call parity or put–call duality relations, this can be
avoided so that call options governed by fat-tailed asset price distributions can be
priced as robust and efficiently as put options.
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1 Introduction

Numerical integration methods are traditionally very efficient for the valuation of
single asset European options. They are also referred to as “transform methods”
as a transformation, for example to the Fourier domain, is often combined with
numerical integration [8, 13, 20]. The transform methods can readily be used with
asset price models for which the characteristic function (i.e., the Fourier transform
of the probability density function) is available.

Next to Fourier-based transform methods, techniques based on the Gauss or the
Hilbert Transform have also been introduced [5, 6, 15, 24]. A contribution of our
research group to the development of the transform methods is the COS method [13,
14], which is based on Fourier cosine expansions and converges exponentially in the
number of terms in the cosine expansion.

Recently, transform methods have been generalized to pricing options with early-
exercise features. The key idea is to set up a time lattice on each early-exercise
date and view the option as “European style” between two adjacent lattices. Pricing
an early-exercisable option usually involves two steps: recovery of the probability
density function and computation of the integral that appears in the risk-neutral
valuation formula. Some of existing methods employ quadrature rules in both steps,
see for example [19, 11, 2, 3, 17]. We will detail the generalization of the COS
method to pricing Bermudan options here.

The purpose of the present chapter is two-fold. First of all, we present the COS
method, focusing on options with early-exercise features, like Bermudan and Amer-
ican options. Secondly, we present a novel component for the robust pricing of call
options, where we use the put–call parity and the put–call duality relations for the
valuation of Bermudan call options.

When pricing call options with the COS method, the method’s accuracy may
exhibit sensitivity regarding the choice of the domain in which the series expansion
is defined. A call payoff grows exponentially with the log-stock price which may
introduce significant cancellation errors for large domain sizes. Put options do not
suffer from this, as their payoff value is bounded by the strike value. For pricing
European calls, one can employ the well-known put–call parity or put–call duality
and price calls via puts. Here, we generalize this concept, so that we can also apply
the put-call parity or put–call duality when pricing Bermudan call options.

The outline of this chapter is as follows: We will introduce the COS method for
European options in Section 2, as well as the choice of computational domain. We
will focus on Lévy asset price dynamics. In Section 3 the COS method is explained
for Bermudan options and error analysis is included for call options. The generaliza-
tion of the put–call parity and put–call duality is presented in Section 4. Section 5
then presents a variety of numerical results, confirming our robust version of the
COS valuation method.
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2 Preliminaries

We will discuss asset dynamics in this section and focus on Lévy processes. We
also review the COS method for European options and the choice of computational
domain for this method.

2.1 Exponential Lévy Asset Dynamics

An asset is modeled here by an exponential Lévy process (e.g. Geometric Brownian
Motion, the Variance Gamma (VG) model [21], the CGMY model [7], the Normal
Inverse Gaussian model [4], . . . ).

The asset price can be written as an exponential function of Lévy process, Lt as
follows:

St = S0 exp(Lt). (1)

For ease of exposure we assume that the asset pays a continuous stream of dividends,
measured by the dividend rate, q. In addition, we assume the existence of a bank
account, Bt , which evolves according to dBt = rBtdt, with r being the (deterministic)
risk-free rate. Recall that a process Lt on (Ω ,J ,P), with L0 = 0, is a Lévy process
if it has independent increments, it has stationary increments, and it is stochastically
continuous, i.e., for any t ≥ 0 and ε > 0 we have

lim
s→t

P(|Lt −Ls|> ε) = 0. (2)

A Lévy process can be characterized by a triplet (µ,σ ,ν) with µ ∈ R,σ ≥ 0 and ν

a measure satisfying ν(0) = 0 and∫
R

min(1, |x|2)ν(dx) < ∞. (3)

In terms of this triplet the characteristic function of the Lévy process equals:

φ(u, t) = E[exp(iuLt)]

= exp(t(iµu− 1
2

σ
2u2 +

∫
R
(eiux−1− iux1[|x|<1]ν(dx))), (4)

the celebrated Lévy-Khinchine formula. As is common in most models nowadays
we assume that Equation (1) is formulated directly under the risk-neutral measure.
To ensure that the reinvested relative price eqtSt/Bt is a martingale under the risk-
neutral measure, we need to ensure that

φ(−i, t) = E[exp(Lt)] = e(r−q)t , (5)

which is satisfied if the drift µ is chosen as:
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µ = r−q− 1
2

σ
2−

∫
R
(ex−1− x1[|x|<1])ν(dx) (6)

Based on Equation (1) we define:

ln(St/K) = ln(S0/K)+Lt := x+Lt .

The characteristic function of ln(St/K) is denoted by ϕ(u,x; t) and reads:

ϕ(u,x; t) := eiux
φ(u, t) = eiuxE(exp(iuLt)). (7)

Characteristic functions for several exponential Lévy processes are available in [10,
23].

2.2 The Fourier Cosine Method (COS) for European options

The Fourier cosine pricing method ”COS” is based on the risk-neutral option valu-
ation formula (discounted expected payoff approach):

v(x, t0) = e−r∆ t
∫

∞

−∞

v(y,T ) f (y|x)dy, (8)

where v(x, t0) is the present option value, r the interest rate, ∆ t = T − t0 and x,y can
be any monotone function of the underlying asset at initial time t0 and the expira-
tion date T . Function v(y,T ), which equals payoff function g(y), is known, but the
transitional density function, f (y|x) in (8), typically is not.

We approximate the conditional density function on a truncated domain, by a
truncated Fourier cosine expansion, which recovers the conditional density function
from its characteristic function (see [13]) as follows:

f (y|x)≈ 2
b−a

N−1∑′

k=0

Re
(

ϕ(
kπ

b−a
,x;∆ t)exp(−i

akπ

b−a
)
)

cos(kπ
y−a
b−a

), (9)

with ϕ(u,x; t) the characteristic function of f (y|x); a, b determine the truncated
domain and Re means taking the real part of the argument. The prime at the sum
symbol indicates that the first term in the expansion is multiplied by one-half. The
size of the truncated domain can be determined with the help of the cumulants [13] 1,
discussed in Section 2.3.

Replacing f (y|x) by its approximation (9) in Equation (8) and interchanging inte-
gration and summation gives the COS formula for computing the values of European
options:

1 For example so that |
R

R f (y|x)dy−
R b

a f (y|x)dy|< TOL.
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v(x, t0) = e−r∆ t
N−1∑′

k=0

Re(ϕ(
kπ

b−a
,x;∆ t)e−ikπ

a
b−a )Vk, (10)

where:

Vk =
2

b−a

∫ b

a
v(y,T )cos(kπ

y−a
b−a

)dy,

are the Fourier cosine coefficients of v(y,T ), that are available in closed form for
several payoff functions, like for plain vanilla puts and calls, but also for example
for discontinuous payoffs like for digital options.

It was found by a rigorous analysis in [13], that, with integration interval [a,b]
chosen sufficiently wide, the series truncation error dominates the overall error. For
conditional density functions f (y|x) ∈C∞((a,b)⊂ R), the method converges expo-
nentially; otherwise convergence is algebraically [14].

Formula (10) also forms the basis for the pricing of Bermudan options [14].

2.3 Truncation Range and Put–Call Relations

The choice of integration range, [a,b], is quite important. An interval which is cho-
sen too small or too wide will lead to significant integration-range errors.

We use the definition of the integration (also called truncation) range as given [13]
and we center the domain at x0 := ln(S0/K), i.e.

[a,b] :=
[
(ξ1 + x0)−L

√
ξ2 +

√
ξ4, (ξ1 + x0)+L

√
ξ2 +

√
ξ4

]
, (11)

with L ∈ [6,12] depending on a user-defined tolerance level, TOL and ξ1, . . . ,ξ4
being the cumulants of the underlying stochastic process. The error connected to
the size of the domain decreases exponentially with L.

Given the characteristic functions, the cumulants, as defined in [10], can be com-
puted via

ξn(X) =
1
in

∂ n(tΨ(u))
∂un

∣∣∣∣
u=0

,

where tΨ(u) is the logarithm of the characteristic function φ(u, t), i.e.

φ(u, t) = etΨ(u), t ≥ 0.

However, when pricing call options, the solution’s accuracy exhibits sensitivity re-
garding the size of this truncated domain. This holds specifically for call options
under fat-tailed distributions, like under certain Lévy jump processes, or for options
with a very long time to maturity 2. A call payoff grows exponentially in log–stock
price which may introduce cancellation errors for large domain sizes. A put option

2 This is mainly the case when we consider real options or insurance products with a long life time.
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does not suffer from this (see [14]), as their payoff value is bounded by the strike
value. In [13], European call options were therefore priced by means of European
put option computations, in combination with the put-call parity:

vcall(x, t) = vput(x, t)+Ste−q(T−t)−Ke−r(T−t), (12)

where vcall(x, t) and vput(x, t) are the call and put option prices, respectively, and q
is again the dividend rate.

Alternatively, one can use the put–call duality relation (see also [12]):

vcall(S,K,r,q, t,ν) = vput(K,S,q,r, t,e−x
ν(−dx)), (13)

where 3 measure ν(dx) is the same as in (4) and (6). In the case that

ν(dx) = e−x
ν(−dx)

is satisfied (for Lévy processes without any jumps, for example), Eqn. (13) simpli-
fies:

vcall(S,K,r,q) = vput(K,S,q,r).

2.3.1 European Option Results

Figures 1 and 2 present European call option values under the infinite activity Lévy
CGMY jump model, see [7]. The option values obtained by pricing call options
directly by the COS method (solid lines) are compared to the values calculated with
the put–call parity and put–call duality relations (dotted lines), for different values of
parameter L, which determines the sizes of the truncated domain in (11). Reference
solutions are obtained on a very fine grid.

The asset price parameters read S0 = 100,K = 110,r = 0.1,q = 0.05, and the
CGMY parameters are chosen as C = 1,G = 5,M = 5. For Figure 1, with the re-
maining CGMY parameter Y = 1.5, and with T = 5, the reference value for the
European option is 66.474333 . . . and in Figure 2 we set Y = 1.98, and T = 0.1 for
which the reference value is 86.826264 . . . .

As shown in Figures 1 and 2, the errors appearing, when call prices are directly
computed with the COS method, increase for large Y - and T -values, since then the
probability density function of the underlying is governed by fat tails. The errors
grow drastically as L, i.e. the size of the computational domain, increases. It seems
that the choice L = 6 results in accurate values in these tests, but this choice is
heuristic.

The option prices obtained by the put–call parity or the put–call duality do not
deviate from the reference solutions in both test cases, for all integration ranges. The
parity and duality lead to robust formulas for pricing European call options by the
COS method.

3 Here we have a long list of arguments, as they are important for the use of the put-call duality.
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(a) Put-Call Parity (b) Put-Call Duality

Fig. 1 Comparison of European call option values, directly obtained by the COS method, with
those obtained by the put–call parity and the put–call duality, CGMY model, Y = 1.5,T = 5,
L ∈ [8,10].

(a) Put-Call Parity (b) Put-Call Duality

Fig. 2 Comparison of European call option values, directly obtained by the COS method, with
those obtained by the put–call parity or put–call duality, CGMY model, Y = 1.98,T = 0.1, L ∈
[8,10].

3 Pricing Early-Exercise Options

A Bermudan option can be exercised at pre-specified dates before maturity. The
holder receives the exercise payoff when she exercises the option. We have again t0
as initial time and {t1, · · · , tM} the collection of exercise dates with ∆ t := (tm−tm−1),
t0 < t1 < · · ·< tM = T . The pricing formula for a Bermudan option with M exercise
dates then reads, for m = M,M−1, . . . ,2:{

c(x, tm−1) = e−r∆ t
∫

R v(y, tm) f (y|x)dy,

v(x, tm−1) = max(g(x),c(x, tm−1)) ,
(14)
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followed by

v(x, t0) = e−r∆ t
∫

R
v(y, t1) f (y|x)dy. (15)

Functions v(x, t), c(x, t) and g(x) are the option value, the continuation value and
the payoff at time t, respectively. For call and put options, g(x)≡ v(x,T ), with

v(x,T ) = max [αK(ex−1),0], α =
{

1 for a call,
−1 for a put, (16)

where x and y are state variables, defined as

x := ln(S(tm−1)/K) and y := ln(S(tm)/K).

3.1 Pricing Bermudan Options by the COS Method

The continuation value in (14) can be defined by means of the COS formula. For
exponential Lévy processes it reads:

c(x, tm−1) = e−r∆ t
N−1∑′

k=0

Re
{

φ

(
kπ

b−a
,∆ t

)
eikπ

x−a
b−a

}
Vk(tm), (17)

where φ(u, t) := ϕ(u,0; t), as defined in (7).
The technique of pricing Bermudan options by the COS method is based on

the computation of the Fourier cosine coefficients of the option value at t1, Vk(t1),
which are then inserted into (15). The derivation of an induction formula for Vk(t1),
backwards in time, was the basis of the work in [14]. It is briefly explained here.

First, the early-exercise point, x∗m, at time tm, which is the point where the con-
tinuation value equals the payoff, i.e., c(x∗m, tm) = g(x∗m), is determined for example
by Newton’s method.

Based on x∗m, we can split Vk(tm) in Eqn. (17) into two parts: One on the interval
[a,x∗m] and another on (x∗m,b], i.e.

Vk(tm) =

{
Ck(a,x∗m, tm)+Gk(x∗m,b), for a call,

Gk(a,x∗m)+Ck(x∗m,b, tm), for a put,
(18)

for m = M−1,M−2, · · · ,1, where

Vk(tM) =

{
Gk(0,b), for a call,

Gk(a,0), for a put.
(19)

We have:

Gk(x1,x2) :=
2

b−a

∫ x2

x1

g(x)cos
(

kπ
x−a
b−a

)
dx, (20)
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and

Ck(x1,x2, tm) :=
2

b−a

∫ x2

x1

c(x, tm)cos
(

kπ
x−a
b−a

)
dx. (21)

For k = 0,1, · · · ,N − 1 and m = 1,2, · · · ,M, the Gk(x1,x2) in (20) admit analytic
solutions, and the challenge is to compute the Ck-coefficients efficiently.

We can generally write characteristic functions as:

ϕ(u,x;τ) = eiuxβ
φ(u,τ), (22)

with φ(u,τ) not depending on x.
By (22), we can distinguish basically two types of stochastic processes in view

of their characteristic functions. The first type, governed by β = 1, which corre-
sponds to a process with independent increments, includes the exponential Lévy
processes, for which the characteristic function can thus be written in the form
ϕ(u,x;τ) = eiuxφ(u,τ). Examples for these are the log-versions of Geometric Brow-
nian Motion, jump-diffusion processes of Kou [18] and Merton [22], infinite activ-
ity Lévy processes [10], like Variance-Gamma (VG) [21], Normal Inverse Gaussian
(NIG) [4] or CGMY [7].

For the second type of processes, φ(u,x; t) cannot be written as the product of
eiux and a function independent of x. An example is the OU mean reverting process,
for which β = e−κτ in (22), with κ a mean reversion parameter.

In the lemma to follow we will see that characteristic functions of the first type
(β = 1) are beneficial for pricing Bermudan options by the COS method as the Fast
Fourier Transform can be applied.

Lemma 3.1 (Efficient Computation). The terms Ck(x1,x2, tm) can be computed in
O(N log2 N) operations, if the stochastic process for the underlying is governed by
general characteristic function (22) with parameter β = 1.

Proof. At times tm, m = 1,2, · · · ,M, from Equations (14) and (17), we obtain an ap-
proximation for c(x, tm), the continuation value at tm, which is inserted into (21). In-
terchanging summation and integration gives the following coefficients, Ck(x1,x2, tm):

Ck(x1,x2, tm) := e−r∆ t
N−1∑′

j=0

Re
(

φ

(
jπ

b−a
,∆ t

)
Vj(tm+1) ·Hk, j(x1,x2)

)
, (23)

where φ(u,∆ t) comes from the general expression for the characteristic func-
tion (22). To get Ck(x1,x2, tm), the following integrals need to be computed:

Hk, j(x1,x2) =
2

b−a

∫ x2

x1

ei jπ βx−a
b−a cos(kπ

x−a
b−a

)dx,

with β defined in (22).
By basic calculus, we can split Hk, j(x1,x2) into two parts as
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Hk, j(x1,x2) =− i
π

(Hs
k, j(x1,x2)+Hc

k, j(x1,x2)),

where

Hc
k, j(x1,x2) =



(x2− x1)πi
b−a , if k = j = 0,

1
( jβ + k)

[
exp

(
(( jβ + k)x2− ( j + k)a)πi

b−a

)
−

exp
(

(( jβ + k)x1− ( j + k)a)πi
b−a

)]
, otherwise.

(24)
and

Hs
k, j(x1,x2) =



(x2− x1)πi
b−a , if k = j = 0,

1
( jβ − k)

[
exp

(
(( jβ − k)x2− ( j− k)a)πi

b−a

)
−

exp
(

(( jβ − k)x1− ( j− k)a)πi
b−a

)]
, otherwise.

(25)
Matrices Hs and Hc have a Toeplitz and Hankel structure, respectively, if Hs

k, j(x1,x2)=
Hs

k+1, j+1(x1,x2) and Hc
k, j(x1,x2) = Hc

k+1, j−1(x1,x2), which is the case for β ≡ 1. In
other words, pricing Bermudan options can be done highly efficiently when expo-
nential Lévy asset price models are employed. Then, the Fast Fourier Transform can
be applied directly for matrix-vector multiplication [14], and the resulting compu-
tational complexity of Ck(x1,x2, tm) is O(N log2 N). ut

We would obtain terms of the form jβ − k, jβ + k in the matrix elements in (24)
and (25), instead of terms with j− k, j + k if β 6= 1 in (22). Terms with β not being
an integer hamper an efficient computation of the matrix-vector products, leading to
computations with O(N2) complexity.

3.1.1 American Options

For the valuation of American options by the COS method, there are basically two
approaches. One is to approximate an American option by a Bermudan option with
many exercise opportunities, the other is to use repeated Richardson extrapolation
on a series of Bermudan options with an increasing number of exercise opportu-
nities. Here we will focus on the extrapolation-based method, which has been de-
scribed in detail in [9], although the approach dates back to [16].

Let here v̂(M) be the price of a Bermudan option with M exercise dates with a
maturity of T years where the exercise dates are ∆ t = T/M years apart. It is assumed
that v̂(M) can be expanded as:
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v̂(M) = vAM +
∞∑

i=1

ai(∆ t)γi , (26)

with 0 < γi < γi+1; vAM is the American option value. Classical extrapolation pro-
cedures assume that the exponents γi are known, which means that we can use n+1
Bermudan prices with varying ∆ t to eliminate the n leading order terms in (26).
The prices of American options can be obtained by applying repeated Richardson
extrapolation on the values of a few Bermudan options with small M. We use the
following 4-point repeated Richardson extrapolation scheme,

v̂AM(M) =
1

21
(64v̂(8M)−56v̂(4M)+14v̂(2M)− v̂(M)) , (27)

where v̂AM(M) denotes the approximated value of the American option 4.

3.2 Error Analysis

In this subsection we give error analysis for the COS pricing method, focusing on
Bermudan call options. First, we analyze the local error, i.e., the error in the contin-
uation values at each time step. A similar error analysis has been performed in [13],
where, however, the influence of the call payoff function on the global error con-
vergence was omitted.Here, we study the influence of the payoff function and the
integration range on the error convergence.

3.2.1 Local Error

It has been shown, [13], that the error of the COS method for the error in the con-
tinuation value consists of three parts, denoted by ε1,ε2 and ε3, respectively.

Error ε1 is the integration range error

|ε1(x, [a,b])|= e−r∆ t
∫

R\[a,b]
v(y,T ) f (y|x)dy,

which depends on the payoff function and the integration range.
Error ε2 is the series truncation error on [a,b], which depends on the smoothness

of the probability density function of the underlying processes:

ε2 (x;N, [a,b]) := e−r∆ t
∞∑

k=N

Re

{
e−ikπ

a
b−a

∫ b

a
ei kπ

b−a y f (y|x)dy

}
·Vk. (28)

4 Without any dividend payments, of course, the American call option value is equal to the Euro-
pean call option value.
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For probability density functions f (y|x) ∈ C∞[a,b], we have

|ε2(x,N, [a,b])|< Pexp(−(N−1)ν),

where N is the number of terms in the Fourier cosine expansions, ν > 0 is a constant
and P is a term which varies less than exponentially with respect to N. When the
probability density function has a discontinuous derivative, then the Fourier cosine
expansions converge algebraically,

|ε2(x,N, [a,b])|< P
(N−1)β−1 ,

where P is a constant and β ≥ 1 is the algebraic index of convergence.
Error ε3 is the error related to the approximation of the Fourier cosine coefficients

of the density function in terms of its characteristic function, which reads

|ε3(x,N, [a,b])|= e−r∆ t
N−1∑′

k=0

Re(
∫

R\[a,b]
eikπ

y−a
b−a f (y|x)dy)Vk.

It can be shown that

|ε3(x,N, [a,b])|< e−r∆ tQ1

∫
R\[a,b]

f (y|x)dy,

where Q1 is a constant independent of N and ∆ t.
We denote by

I1 =
∫

R\[a,b]
v(y,T ) f (y|x)dy, I2 =

∫
R\[a,b]

f (y|x)dy,

so that ε1 = e−r∆ t I1, ε3 < e−r∆ tQ1I2. Integral I1 then depends on the payoff function
and the integration range, whereas I2 depends only on the integration range.

We start with a discussion about the influence of the payoff function on the error
convergence and then we analyze the influence of L in (11).

For an option with a bounded payoff function, such as a put option or a swing
option studied in [25], we have ∀y, v(y,T )≤ Q2, so that it follows directly that

I1 ≤ Q2I2, (29)

and both ε1 and ε3 can be controlled by means of parameter L. This was the basis
for the detailed error analysis for Bermudan put options in [14].

However, in the case of an unbounded payoff, for instance, a call option, we have:

I1 =
∫

R\[a,b]
v(y,T ) f (y|x)dy ≥

∫
∞

b
v(y,T ) f (y|x)dy

=
∫

∞

b
(Key−K)+ f (y|x)dy ≥ K(eb−1)

∫
∞

b
f (y|x)dy. (30)
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Note that we assume that b ≥ 0, as otherwise for all y ∈ [a,b], v(y,T ) = 0 and the
option value is also zero.

Function
∫

∞

b f (y|x)dy is bounded by 0 <
∫

∞

b f (y|x)dy < 1.
Denoting by Q3 , K

∫
∞

b f (y|x)dy then

I1 ≥ Q3(eb−1).

Function eb−1 will, however, not decrease to zero as N, the number of terms in
the Fourier cosine expansion, goes to infinity. Furthermore, the larger the integration
range, the larger the value eb−1, i.e. the error in the option price. Given the fact that
ε1 = e−r∆ tQ3(eb − 1), the global error in the call option price may increase as the
integration range [a,b] (or L) increases. This implies that when we directly use the
COS formula for a call option, the value may diverge, depending on the decay rate
of f (y|x). This is not the case if a very small integration range (or a very small value
of L) is used, but by this error ε3 may increase. This is the next topic in the error
analysis.

To study the influence of truncation on the error convergence, we start the analy-
sis with the Black–Scholes model. From the cumulative density function (which is
known analytically) it follows that with L = 6, we find I2 = 1.9732×10−9 and with
L = 8, we have I2 = 1.3323×10−15, so that with L ∈ [6,8] the errors ε1 and ε3 can
be controlled. Incorporating jumps in a Lévy model gives rise to a slightly larger
value of L. As shown in [14], an integration range with L ∈ [8,10] is sufficient for
most of the Lévy processes with T > 0.1 to bound I2 (but not always for I1).

In general, from Chebyshev’s inequality we know that for any random variable X
with expected value µ and finite variance σ and for any real number k > 0, Pr(|X −
µ| ≥ kσ)≤ 1

k2 , which implies

I2(x0) =
∫

R\[a,b]
f (y|x0)dy = Pr(|XT − (ξ1 + x0)| ≥ L(ξ2 +

√
ξ4))

≤ Pr(|XT − (ξ1 + x0)| ≥ L(ξ2))≤
1
L2 .

Therefore for all processes and model parameters, I2 decays at least algebraically
with algebraic index n ≥ 2.

4 Pricing Bermudan Call Options Using the Put-Call Relations

In this section, we present two techniques to deal efficiently with the inaccurate
pricing with the COS method of Bermudan call options. With our new methods, the
Fourier cosine coefficients of call options need not to be calculated directly at each
time step, which will eliminate the error due to unbounded payoff of call options. In
Section 4.1 we discuss the use of the put-call parity relation, and in Section 4.2 we
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explain the use of the put-call duality relation. These techniques are accompanied
by error analysis in Section 4.3.

4.1 The Put–Call Parity

Here we give details of the use of the European put-call parity for the robust pricing
of Bermudan call options by means of the COS method.

At each time step we need to calculate the continuation value based on the Fourier
coefficients of the call option payoff. The continuation value is then used to deter-
mine the early–exercise points, as well as to recover the Fourier cosine coefficients
for a next time step. In these steps, the influence of an exponentially–increasing
payoff can be significant as for European call options. Here, we modify the pricing
algorithm for Bermudan call options employing put–call parity (12).

We denote the Fourier cosine coefficients for a put and a call option at tM = T by
V put

k (tM) and V call
k (tM), respectively. By (12) we then find

e−r∆ t
N−1∑′

k=0

Re(φ(
kπ

b−a
,∆ t)ei(x−a) kπ

b−a )V call
k (tM) =

Ste−q∆ t −Ke−r∆ t + e−r∆ t
N−1∑′

k=0

Re(φ(
kπ

b−a
,∆ t)ei(x−a) kπ

b−a )V put
k (tM). (31)

We have V put
k (tM) = Gput

k (a,0) and V call
k (tM) = Gcall

k (0,b), where Gput
k and Gcall

k are
the Fourier cosine coefficients for the respective payoffs. So, we can write (31) as:

e−r∆ t
N−1∑′

k=0

Re(φ(
kπ

b−a
,∆ t)ei(x−a) kπ

b−a )Gcall
k (0,b) = Se−q∆ t −Ke−r∆ t +

e−r∆ t
N−1∑′

k=0

Re(φ(
kπ

b−a
,∆ t)ei(x−a) kπ

b−a )Gput
k (a,0). (32)

Equation (32) will be used in the backward recursion.
At t = M− 1, we first determine the early–exercise point, x∗M−1, by Newton’s

method, for which the functions c,g,∂c/∂x,∂g/∂x are required. The continuation
value for the call option now reads, using (31):

c(x, tM−1) = e−r∆ t
N−1∑′

k=0

Re(φ(
kπ

b−a
,∆ t)ei(x−a) kπ

b−a )V put
k (tM)+Kexe−q∆ t −Ke−r∆ t ,(33)

with x = log(S/K), and similarly we find:
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∂c
∂x

= e−r∆ t
N−1∑′

k=0

Re(φ(
kπ

b−a
,∆ t)ei(x−a) kπ

b−a (
ikπ

b−a
))V put

k (tM)+Kexe−q∆ t . (34)

With x ≥ 0, we have g(x) = Kex−K and ∂g/∂x = Kex, whereas for x < 0 both the
payoff and its derivative are zero, for all time steps.

With the early-exercise point determined, we need to compute the values,

V call
k (tM−1) := Ccall

k (a,x∗M−1, tM−1)+Gcall
k (x∗M−1,b). (35)

Application of (33) gives us:

Ccall
k (a,x∗M−1, tM−1) =

2
b−a

∫ x∗M−1

a
c(x, tM−1)cos(kπ

x−a
b−a

)dx

=
e−r∆ t

π
Im(Hc +Hs)u+

2
b−a

Ke−q∆ t
χ(a,x∗M−1)

− 2
b−a

Ke−r∆ t
ψ(a,x∗M−1) (36)

where Im means taking the imaginary part, vector u consists of values:

u j = φ(
kπ

b−a
,∆ t)V put

j (tM), j = 1, · · · ,N−1,

and u0 = 1
2 φ(0,∆ t)V put

0 (tM). Matrices Hc,Hs are as in Equations (24) and (25), with
β = 1. Moreover,

χ(x1,x2) =
∫ x2

x1

ex cos(
kπ(x−a)

b−a
)dx, ψ(x1,x2) =

∫ x2

x1

cos(
kπ(x−a)

b−a
)dx,(37)

both of which have an analytic solution.
We further have Gcall

k (x∗M−1,b) = Gcall
k (0,b)−Gcall

k (0,x∗M−1), and ∀x∈ (0,x∗M−1)
the payoff of a call option is less than the continuation value. Therefore, Gcall

k (0,x∗M−1)
can be calculated directly and it will remain accurate, independent of the choice of
integration range. Quantity Gcall

k (0,b) will be replaced by Gput
k (a,0) via (32).

We now arrive at the following lemma:

Lemma 4.1. Quantities c(x, tm), x∗m, and Ccall
k (a,x∗, tm) can be recovered from

Ccall
k (a,x∗m+1, tm+1) in an accurate way for m = M−2, . . . ,1, with a computational

complexity of O(N log2 N) at each time step. Ccall
k (a,x∗1, t1) is then finally also re-

covered in a robust way.

Proof. At the time steps tm, m = M−2, · · · ,1, the continuation value reads
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c(x, tm) = e−r∆ t
N−1∑′

k=0

Re(φ(
kπ

b−a
,∆ t)ei(x−a) kπ

b−a )V call
k (tm+1)

= e−r∆ t
N−1∑′

k=0

Re(φ(
kπ

b−a
,∆ t)ei(x−a) kπ

b−a )(Ccall
k (a,x∗m+1, tm+1)−Gcall

k (0,x∗m+1))+

e−r∆ t
N−1∑′

k=0

Re(φ(
kπ

b−a
,∆ t)ei(x−a) kπ

b−a )Gcall
k (0,b)

= e−r∆ t
N−1∑′

k=0

Re(φ(
kπ

b−a
,∆ t)ei(x−a) kπ

b−a )(Ccall
k (a,x∗m+1, tm+1)+

Gput
k (a,0)−Gcall

k (0,x∗m+1))+Kexe−q∆ t −Ke−r∆ t , (38)

where the last step is from (32). Derivative ∂c/∂x can be obtained similarly. To-
gether with g(x) and ∂g/∂x, they are used to determine early–exercise point x∗m at
tm.

Furthermore,

Ccall
k (a,x∗m, tm) =

e−r∆ t

π
Im(Hc +Hs)u+

2
b−a

Ke−q∆ t
χ(a,x∗m)

− 2
b−a

Ke−r∆ t
ψ(a,x∗m),

where Hc,Hs are as defined earlier in Equations (24) and (25) with β = 1 and vector
u consists of elements:

u j = φ(
kπ

b−a
,∆ t)(Ccall

j (a,x∗m+1, tm+1)+Gput
j (a,0)−Gcall

j (0,x∗m+1)), (39)

and

u0 =
1
2

φ(0,∆ t)(Ccall
0 (a,x∗m+1, tm+1)+Gput

0 (a,0)−Gcall
0 (0,x∗m+1)). (40)

Regarding the computational costs, at each time step Ccall
k (a,x∗m, tm) needs to

be calculated once. Therefore we have the same computational complexity as the
original COS method, which is O(M−1)N log2 N.

Finally, the two terms Gput
k (a,0) and Gcall

k (0,x∗m) at tm admit analytic solutions.
At t0 we have
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v(x, t0) = e−r∆ t
N−1∑′

k=0

Re(φ(
kπ

b−a
,∆ t)ei(x−a) kπ

b−a )Vk(t1)

= e−r∆ t
N−1∑′

k=0

Re(φ(
kπ

b−a
,∆ t)ei(x−a) kπ

b−a )(Ccall
k (a,x∗1, t1)+Gput

k (a,0)−Gcall
k (0,x∗1))

+ Kexe−q∆ t −Ke−r∆ t , (41)

where the last step follows from (32) and we complete the robust and efficient pric-
ing of Bermudan options via the put-call parity relation. ut

4.2 The Put–Call Duality

In this section, we discuss a second possibility to price a Bermudan call with the
help of the pricing formula for a put. It is based on the put-call duality from [12].

In the COS pricing formula (10), r,q,ν(dx) are essential in the definition of the
characteristic function φ , whereas S and K enter the formula for the Fourier cosine
coefficients, Vk. Therefore, we use in this section the notation φ := φ(u, t,r,q,ν).
Moreover, we use V call

k (tm,S,K), V put
k (tm,S,K), Vk(tm) to denote the Fourier cosine

coefficients of European call options (with stock price S and strike price K), of
European put options and the Fourier cosine coefficients of a Bermudan option at
tm, respectively. We also denote e−xν(dx) by ν̃(dx).

We start at tM = T . From tM to tM−1 the direct application of (13) gives us

c(x, tM−1) = e−r∆ t
N−1∑′

k=0

Re(φ(
kπ

b−a
,∆ t,r,q,ν)ei(x−a) kπ

b−a )V call
k (tM,S,K)

= e−q∆ t
N−1∑′

k=0

Re(φ(
kπ

b−a
,∆ t,q,r, ν̃)ei(−x−a) kπ

b−a )V put
k (tM,K,S) (42)

where V call
k (tM,S,K) = Gcall

k (0,b), and

V put
k (tM,K,S) =

2
b−a

∫
(S−Sey)cos(kπ

y−a
b−a

)dy

=
2K

b−a
ex

∫
(1− ey)cos(kπ

y−a
b−a

)dy = exGput
k (a,0).

Note that for both S and K as state variables in the put–call duality formulation,
integration ranges need to be defined. We set a = min(aS,aK), b = max(bS,bK).
The use of ”−x” in the second equation in (42) appears because the state variable
log(K/S) =− log(S/K) =−x.

At tM−1 the continuation value and its derivative read:
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c(x, tM−1) = e−q∆ t
N−1∑′

k=0

Re(φ(
kπ

b−a
,∆ t,q,r, ν̃)ei(−x−a) kπ

b−a )exGput
k (a,0), (43)

∂c(x, tM−1)
∂x

= e−q∆ t
N−1∑′

k=0

Re(φ(
kπ

b−a
,∆ t,q,r, ν̃)ei(−x−a) kπ

b−a (− ikπ

b−a
))exGput

k (a,0)

+ c(x, tM−1),

which are used to calculate the early–exercise point x∗M−1 by Newton’s method, so
that

Vk(tM−1) = Ck(a,x∗M−1)+Gcall
k (x∗M−1,b)

= Ck(a,x∗M−1, tM−1)−Gcall
k (0,x∗M−1)+Gcall

k (0,b) (44)

Now, ∀x ∈ (0,x∗M−1) the payoff of the call option is less than the continuation
value. Therefore, Gcall

k (0,x∗M−1) can be calculated directly and it will be accurate
with respect to the size of the integration range; Gcall

k (0,b) can be replaced by
Gput

k (a,0), in a similar way as (42).
The computation of Ck represents again the main part of the algorithm. First, we

demonstrate how to compute Ck(x1,x2, tM−1) in (44) with the help of the Fast Fourier
Transform (FFT), then we will show that for all m = M−2, · · · ,1, Ck(x1,x2, tm) can
be recovered from Ck(x1,x2, tm+1). We denote D(x1,x2) := {Dk(x1,x2)}N−1

k=0 , with

Dk(x1,x2) = e−q∆ tRe(
N−1∑′

j=0

φ(
jπ

b−a
,∆ t,q,r, ν̃)Gput

j (a,0)Jk, j(x1,x2)) (45)

in which

Jk, j(x1,x2) :=
2

b−a

∫ x2

x1

ei jπ βx−a
b−a

cos(kπ
x−a
b−a

)dx.

where now β = −1− i(b−a)
jπ , which is different from β = 1. However, this β -value

still results in a sum of a Toeplitz plus Hankel matrix.
Application of (21) and (43) gives Ck(x1,x2, tM−1) = Dk(x1,x2), ∀k = 0, · · · ,N−

1.
First we study the structure of Jk, j then we compute D(x1,x2). From (24) and (25)

we find that
Jk, j(x1,x2) =− i

π
(Jc

k, j(x1,x2)+ Js
k, j(x1,x2)),

with
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Js
k, j(x1,x2) =

(−1)
( j− k)+ i

π
(b−a)

(exp(x2)exp(− ( j− k)x2πi
b−a

)

− exp(x1)exp(− ( j− k)x1πi
b−a

))exp(− ( j + k)aπi
b−a

)

=
(−1)

( j− k)+ i
π
(b−a)

(exp(x2)
1

exp( ( j−k)x2πi
b−a )

− exp(x1)
1

exp( ( j−k)x1πi
b−a )

)exp(
( j− k)aπi

b−a
)

1

exp( 2 jaπi
b−a )

and

Jc
k, j(x1,x2) =

(−1)
( j + k)+ i

π
(b−a)

(exp(x2)exp(− ( j + k)x2πi
b−a

)

− exp(x1)exp(− ( j + k)x1πi
b−a

))exp(− ( j− k)aπi
b−a

)

=
(−1)

( j + k)+ i
π
(b−a)

(exp(x2)
1

exp( ( j+k)x2πi
b−a )

− exp(x1)
1

exp( ( j+k)x1πi
b−a )

)exp(
( j + k)aπi

b−a
)

1

exp( 2 jaπi
b−a )

We denote u := {u j}N−1
j=0 with

u j = φ(
jπ

b−a
,∆ t,q,r, ν̃)Gput

j (a,0)
1

exp( 2 ja
b−a πi)

,

u0 =
1
2

φ(0,∆ t,q,r, ν̃)Gput
0 (a,0),

and we have

D =
e−q∆ t

π
Im{(Jc + Js)u},

where Js is a Toeplitz matrix and Jc is a Hankel matrix.
From [1] and [14] we know that matrix-vector multiplications can be performed

highly efficiently then, with the help of the FFT.
With the use of the Fast Fourier and Inverse Fast Fourier Transforms, the com-

putational complexity of Ck(a,x∗M−1, tM−1) is O(N log2 N).
We then have the following lemma:

Lemma 4.2. For m = M− 2, · · · ,1, c(x, tm), x∗m,Ck(a,x∗, tm) can all be recovered
from Ck(a,x∗m+1, tm+1) with computational complexity O(N log2 N) at each time step.
Ck(a,x∗1, t1) is recovered at the final step.

Proof. For any m = M−2, · · · ,1, the continuation value reads:



20 Bowen Zhang and Cornelis W. Oosterlee

c(x, tm) = e−r∆ t
N−1∑′

k=0

Re(φ(
kπ

b−a
,∆ t,r,q,ν)ei(x−a) kπ

b−a Vk(tm+1))

= e−r∆ t
N−1∑′

k=0

Re(φ(
kπ

b−a
,∆ t,r,q,ν)ei(x−a) kπ

b−a ) ·

(Ck(a,x∗m+1, tm+1)−Gcall
k (0,x∗m+1)+Gcall

k (0,b))

= e−r∆ t
N−1∑′

k=0

Re(φ(
kπ

b−a
,∆ t,r,q,ν)ei(x−a) kπ

b−a )(Ck(a,x∗m+1, tm+1)−Gcall
k (0,x∗m+1))

+ e−q∆ t
N−1∑′

k=0

Re(φ(
kπ

b−a
,∆ t,q,r, ν̃)ei(−x−a) kπ

b−a )exGput
k (a,0). (46)

The last step is from (13) and (42) and the fact that V put
k (K,S) = exGput

k (a,0).
Gcall

k (0,x∗m+1) and Gput
k (a,0) can be calculated directly from their analytic solutions.

By (46) the continuation value c(x, tm) is recovered from Ck(a,x∗m+1, tm+1) and
∂c(x, tm)/∂x is directly calculated with (46).

The continuation value and its derivative are then used in the Newton method to
find early–exercise point x∗m, which splits Vk(tm) as follows:

Vk(tm) = Ck(a,x∗m, tm)−Gcall
k (0,x∗m)+Gcall

k (0,b).

From (46) we now have that

Ck(a,x∗m, tm) =
2

b−a

∫ x∗m

a
c(x, tm)cos(kπ

x−a
b−a

)dx

=
e−r∆ t

π
Im((Hc(a,x∗m)+Hs(a,x∗m))u1)+

e−q∆ t

π
Im((Jc(a,x∗m)+ Js(a,x∗m))u2), (47)

where we have four matrix-vector multiplications, instead of the usual two.
Matrices Hc and Hs are defined in (24) and (25), respectively, with β = 1. More-

over, we have in (47):

u1
0 =

1
2

φ(0,∆ t,r,q,ν)(C0(a,x∗m+1, tm+1)−Gcall
0 (0,x∗m+1)),

u1
j = φ(

jπ
b−a

,∆ t,r,q,ν)(C j(a,x∗m+1, tm+1)−Gcall
j (0,x∗m+1)), j = 1, · · · ,N−1,

u2
0 =

1
2

φ(0,∆ t,q,r, ν̃)Gput
0 (a,0).

u2
j = φ(

jπ
b−a

,∆ t,q,r, ν̃)Gput
j (a,0)

1

exp( 2 ja
b−a πi)

, j = 1, · · · ,N−1,
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Hc and Jc are Hankel matrices, Hs and Js are Toeplitz matrices. Therefore, the
Fast Fourier Transform can be employed to compute Ck(a,x∗m, tm), m = M−2, · · · ,1
and the computational complexity at each time step is O(N log2 N).

With Ck(a,x∗1, t1) known, the call option price then reads:

v(x0, t0) = e−r∆ t
N−1∑′

k=0

Re(φ(
kπ

b−a
,∆ t,r,q,ν)ei(x0−a) kπ

b−a )Vk(t1)

= e−r∆ t
N−1∑′

k=0

Re(φ(
kπ

b−a
,∆ t,r,q,ν)ei(x0−a) kπ

b−a )(Ck(a,x∗1, t1)−Gcall
k (0,x∗1))

+ e−q∆ t
N−1∑′

k=0

Re(φ(
kπ

b−a
,∆ t,q,r, ν̃)ei(−x0−a) kπ

b−a )ex0 Gput
k (a,0) (48)

From (46) and (47), ∀m = M−2, · · · ,1, c(x, tm), x∗ and Ck(a,x∗, tm) can be recovered
from Ck(a,x∗m+1, tm+1) with the help of the Fast Fourier Transform, which finishes
the proof. ut

4.3 Error analysis with the put-call relations

As shown in the previous sections, put option values, combined with the put–call
parity or the put–call duality relations, are used to price call options with the COS
method. We denote by vcall and vput the exact call and put option values, respec-
tively, and by v̂put the put option value obtained by the COS method. Then, from the
put–call parity, we have, ∀S, t,

εcall(x, t) = vcall(x, t)− v̂call(x, t)

= vput(x, t)+Kexe−q(T−t)−Ke−r(T−t)− (v̂put(x, t)+Kexe−q(T−t)−Ke−r(T−t))
= vput(x, t)− v̂put(x, t) = εput(x, t),

whereas for the put–call duality, we find:

εcall = vcall(S,K,r,q, t,v)− v̂call(S,K,r,q, t,v)
= vput(K,S,q,r,e−x

ν(−dx))− v̂put(K,S,q,r,e−x
ν(−dx)) = εput .

So, by means of the put–call relations, the error of the call options equal that put
options. As for put options the payoff is bounded, we have from (29):

|ε1(x, [a,b])|= e−r∆ t I1 ≤ e−r∆ tQ2I2. (49)
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The error can be controlled if the integration range is sufficiently large (which is
our next issue). The integration range is defined as in (11) and can be controlled by
parameter L.

After discussing the influence of the payoff and integration range on the error
convergence separately in the previous section, here we give a remark on the inter-
action of them on the error convergence of ε1.

Remark 1 (Interaction of Payoff and Truncation Range on ε1). From (30) we see
that

ε1 = e−r∆ t I1 ≥ e−r∆ tK(eb−1)
∫

∞

b
f (y|x)dy.

For the Black–Scholes model and other underlying processes for which the density
function decays very fast both at left and right tails, the fast decay in

∫
∞

b f (y|x)dy
can compensate the exponential increase in eb−1. On the other hand, for underlying
processes with fat tails, for instance, the CGMY model with Y close to 2, or with a
long maturity, the error decay rate with respect to L is not so high and we require
a larger integration range. In these cases the increase in eb − 1 may give rise to
divergence of the call value and the put–call parity or the put–call duality should be
used for robust and accurate option values. This is further illustrated by numerical
examples in Section 5.

5 Numerical Examples

In this section we will show the method’s accuracy, efficiency and robustness by a
series of numerical examples. The CPU used is an Intel(R) Core(TM)2 Duo CPU
E6550 (2.33GHz Cache size 4MB) with an implementation in Matlab 7.7.0.

We use as reference values the Bermudan option prices obtained by the robust
version of the COS method, with a very fine grid (with N = 214).

In the experiments, we will use the CGMY model, with test parameters Y = 0.5,
Y = 1.5 and Y = 1.98; the remaining CGMY parameters are chosen as [C,M,G] =
[1,5,5]. Other parameters include: r = 0.1,q = 0.02,S0 = 100,K = 110. We set
again M = 10 and maturity T = 1. Computational time and the absolute error in
the option value are displayed in Tables 1 to 3. From these tables we see that for
Y = 0.5 N = 256 is sufficient while for Y = 1.5 and Y = 1.98 it is N = 128. When
Y > 1, which implies that the process has infinite activity, the error in the option
price is of order 10−12. From the tables we see that the methods with both the put–
call parity and the put–call duality converge very well within milliseconds. The CPU
time when using the put–call duality is approximately twice the time with put–call
parity, because with the put–call duality we need to calculate two matrix-vector
products with Hankel and Toeplitz matrices at each time step.

Figure 3 compares Bermudan call option values under the GBM model, obtained
directly by the COS method with the values obtained via the put–call parity or the
put–call duality, and with reference values. The dividend rate is q = 0.02, and the
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N 64 128 256 512
Parity: abs.err 2.9497e-004 1.0586e-005 8.5622e-007 1.1607e-007

msec. 4.959 6.819 10.484 18.878
Duality: abs.err 3.7177e-002 8.5904e-005 5.8262e-005 6.4494e-006

msec. 8.000 12.105 19.778 35.554

Table 1 Absolute error and CPU time (in milli–seconds) for the CGMY model, Y = 0.5. COS
pricing with the put-call relations.

N 32 64 128 256
Parity: abs.err 7.7799e-003 1.8691e-005 2.2737e-012 5.6843e-014

msec. 3.735 4.699 6.760 10.527
Duality: abs.err 2.8937e-002 1.3074e-002 5.8769e-007 7.9581e-013

msec. 5.839 8.009 12.078 20.016

Table 2 Absolute error and CPU time (in milli–seconds) for the CGMY model, Y = 1.5. COS
pricing with the put-call relations.

N 32 64 128 256
Parity: abs.err 4.0414e-001 3.8936e-004 1.1369e-013 < 1e−016

msec. 3.690 4.831 6.664 10.577
Duality: abs.err 1.5431e-001 3.4510e-006 1.4495e-011 6.9207e-012

msec. 7.927 12.034 19.643 35.400

Table 3 Absolute error and CPU time (in milli–seconds) for the CGMY model, Y = 1.98. COS
pricing with the put-call relations.

reference value is 53.355758 . . . . For very large values, L > 20, the option values ob-
tained by the COS method (without the put-call relations) differ dramatically from
the reference values. Pricing is robust, with respect to the size of the integration in-
terval when the put–call parity and the put–call duality are applied, as then accurate
call prices are obtained for any value of L, see Figure 3.

We again consider the CGMY model, for which Figure 4 shows Bermudan pric-
ing results for Y = 0.5 and r = 0.1,q = 0.02. The other parameter values are as in
the previous experiments. The reference value is 23.574835 . . . . Compared to Fig-
ure 3, the error in Bermudan call option values under this CGMY parameter set is
significantly larger than under the GBM model. However, combined with the put–
call parity or the put–call duality, the option prices converge in a robust way to the
reference value, for all L.

With parameter Y close to 2 in CGMY, the Bermudan call prices, computed di-
rectly by the COS method are subject to cancellation errors even for small sizes of
the computational domain and small maturity dates, as shown in Figure 5. Here the
reference value for the Bermudan call is 99.053582 . . . . With T and M increasing,
the error also increases. The COS method with the put–call parity or the put–call
duality remains however robust also for these parameter values.

Comparing Figures 5 and 4, we see that as Y increases, which implies a fatter
tail in the probability density function of the underlying, the error in the call price
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(a) Put–Call Parity (b) Put–Call Duality

Fig. 3 Bermudan call option values with varying L-values, GBM model, r = 0.1,q = 0.02,σ =
0.2,T = 10,M = 50, L ∈ [10,30].

(a) Put–Call Parity (b) Put–Call Duality

Fig. 4 Bermudan call option values with varying L-values, CGMY model with q = 0.02,Y =
0.5,M = 24, L ∈ [8,10].

obtained by the COS method with respect to large computational domain sizes in-
creases drastically.

5.1 American Options

Finally, we price an American call option by the 4-point Richardson extrapolation
using (27) with Bermudan options. We use the CGMY model with Y = 1.5 and
1.98, and q = 0.05, and compare American calls for which the Bermudan calls in
the extrapolation are priced directly by the COS method with those computed using
the put–call parity or the put–call duality. In the COS method we used N = 1024
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(a) Put–Call Parity (b) Put–Call Duality

Fig. 5 Bermudan call option values with varying L-values, CGMY model with q = 0.05,Y =
1.98,M = 10, L ∈ [8,10].

in the case with Y = 1.98,M = 32 (M as in (27)); in all other cases, N = 512 is
sufficient for convergence. The number of Newton iterations is set to 5 (as in [14]).

The accuracy of the American prices depends on parameter M in the extrapo-
lation formula (27). The results obtained are in Tables 4 and 5 with CPU time in
seconds. In these table the American option prices are accurate and robust when the
put–call parity or the put–call duality was used in the COS pricing procedure.

M in Eq. (27) Put-Call Parity Put-Call Duality direct COS method
option value time (sec.) option value time (sec.) option value time (sec.)

8 44.0934 0.243 44.0934 0.501 58.3396 0.238
16 44.0933 0.489 44.0933 1.002 56.6221 0.428
32 44.0936 0.998 44.0934 2.014 -5.3915e+02 0.840

Table 4 American call option values and CPU time (in seconds) by Richardson extrapolation,
under the CGMY model with, Y = 1.5,q = 0.05,

M in Eq. (27) Put-Call Parity Put-Call Duality direct COS method
option value time (sec.) option value time (sec.) option value time (sec.)

8 99.1739 0.244 99.1739 0.497 -2.2964e+48 0.221
16 99.1739 0.520 99.1739 0.987 5.0141e+46 0.460
32 99.1738 0.976 99.1738 3.761 2.1427e+53 0.820

Table 5 American call option values and CPU times (in seconds) by Richardson extrapolation,
under the CGMY model with Y = 1.98,q = 0.05,
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6 Conclusions and Discussion

In this chapter, we have discussed the generalization of the COS option pricing
method, based on Fourier cosine expansions, from European options to Bermudan
options. The method can be used whenever the characteristic function of the un-
derlying price process is available. It is especially efficient for exponential Lévy
processes.

The COS formula for European options from [13] can be used for pricing Bermu-
dan options, if the series coefficients of the option values at the first early-exercise
date are known. These coefficients can be recursively recovered from those of the
payoff function. The computational complexity is O((M−1)N log2 N), for Bermu-
dan options under Lévy processes with M exercise dates. The COS method exhibits
an exponential convergence in N for density functions in C∞[a,b] and an impres-
sive computational speed. With a limited number, N, of Fourier cosine coefficients,
it produces highly accurate results. We have also presented error analysis for this
method, showing that convergence for put options is easily obtained, whereas the
unbounded payoff function for calls may hamper the robust convergence. The con-
vergence of directly applying the COS method to call options depends of the choice
of the integration range. Robust pricing, insensitive of the choice of the size of the
integration range is achieved for call options, when the put-call parity or the put–
call duality relation is applied. The use of these relations for call options with early
exercise features has been explained in detail. This is a novel aspect of this work,
resulting is a robust pricing technique for Bermudan and American options, inde-
pendent of the size of the computational domain.

Pricing American options can be done by a Richardson extrapolation method on
Bermudan options with a varying number of exercise dates.
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