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Abstract

In this thesis we investigate the use of control variates for the pricing of callable Libor
exotics in the Libor Market Model. We introduce the concepts necessary to value these
products: interest rate derivatives, the Libor Market Model, Monte Carlo simulation,
callable Libor exotics and estimation of the optimal exercise strategy.

For the Bermudan payer (receiver) swaption we show that the cap (�oor) is a very
good control variate. The reason is that the payo¤ of a cap and Bermudan swaption
are very similar, but it turns out that the results are strongly in�uenced by the shape of
the term structure. We propose methods to improve the variance reduction by looking
at other cap-like control variates and �nd that taking linear combination of caps with
di¤erent strikes and cash �ow dates leads to signi�cant improvements. Finally we show
that the results for the Bermudan swaption can be extended to other callable Libor
exotics, by taking the capped payo¤ of the underlying Libor exotic as control variate. For
the Bermudan swaption and callable inverse �oater we obtain variance reduction factors
of order 100. For a snowball, which is path-dependent and has no analytical underlying
we obtain a factor 20 reduction in variance.
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Introduction
This thesis deals with the valuation of callable Libor exotics. Callable Libor exotics are
Bermudan-style derivatives whose value depends on Libor forward rates. Because the
value depends on di¤erent interest rates, we need a multifactor model to price these
products. The Libor Market Model is the most appropriate model for this purpose. The
�rst three parts of this thesis will describe all the elements necessary for the valuation of
Callable Libor exotics.
In Part I we will describe the Libor market model. We start with a description of

plain-vanilla interest rate products and give an overview of the development of interest
rate models in the last decades. After introducing the Libor Market Model we will pay
attention to calibration issues.
Because the Libor Market model is a multi-factor model, only Monte Carlo-based

methods are available for the pricing of derivatives. This will be discussed in Part II. We
will start with an overview of the Monte Carlo method. The main disadvantage of the
Monte Carlo method is that it converges relatively slow. Depending on the problem under
consideration, several methods are available to reduce the variance of the simulation.
We will discuss the most appropriate ones for our purpose, especially control variates.
Furthermore we will explain how Monte Carlo can be used to price Libor exotics in the
Libor Market Model.
In Part III we introduce the derivatives we want to price: callable Libor exotics. We

will give their general characteristics and describe how we can value these products. Very
important is the estimation of the exercise strategy of these products. We will explain
how this strategy can be estimated by the algorithm of Longsta¤ and Schwartz (2001). In
a recent paper Rasmussen (2005) showed how the use of control variates for the valuation
of American-style products. We show how the results of this paper can be applied to the
valuation of Callable Libor exotics.
After introducing the Libor Market Model, Monte Carlo simulation and callable Libor

exotics, we will apply these methods in Part IV. We will look for an generic way to
reduce the standard error of the Monte Carlo simulation for callable Libor exotics by
using control variates. We start with the Bermudan swaption and we will compare the
use of di¤erent control variates for di¤erent types of swaptions. We start with the use
of simple control variates and based on these results we will try to �nd improvements
to get the �optimal control variate�. Finally we will try to see whether we can apply the
same techniques to other callable Libor exotics, being the callable inverse �oater and the
cancellable snowball.

To the best of our knowledge, the only research that has been published on the use of
control variates for (callable) Libor exotics is the work by Jensen and Svenstrup (2005),
who look at control variates for the Bermudan swaption. In this thesis we will go much
further by looking at a wider range of callable Libor exotics. Moreover, we also present
other control variates with clearly better performance and show that these can be applied
e¤ectively to all callable Libor exotics under consideration.

This reader of this thesis is supposed to be familiar with the basics of �nancial calculus.
In appendix A we give an overview of literature that could be consulted to obtain the
required knowledge.
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Part I

Libor Market Model



2 PART I. LIBOR MARKET MODEL

1 Interest rate derivatives
Interest rate derivatives are products whose payo¤s are dependent on the level of interest
rates. Until the 1970�s, the interest rate market mainly consisted of bonds. During the last
decades, the volume of trading in other interest rate derivatives, over the counter or on an
exchange, increased very quickly. This chapter describes some of the most common, simple
(also called plain vanilla) interest rate products. These products form the fundaments of
interest rate models and are the building blocks of more complicated (exotic) interest
rate derivatives, which will be discussed in Chapter 8. More elaborate discussions on the
products described in this chapter can be found, for example, in (Hull, 2003).

1.1 De�nitions
Suppose we are standing at time t. Then we can de�ne the following interest rates
(Björk, 2004):

� R(t; T ): the (simply-compounded) spot rate. This is the interest rate we earn on an
investment over the period [t; T ], where T is called the maturity date. For each �xed
T it is a function of time t for t < T .

� r(t): the short rate. The instantaneous interest rate we earn at time t. It is de�ned
as limT#tR(t; T ).

From the spot rate R(t; T ) we can de�ne the term structure. For a given time t it
is given by the function R(t; T ), for T > t. See Figure 1.1 for an example of a term
structure. Generally, R (t; T ) is only observable from the market for a �nite number of

0.00%
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1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

0 1 2 3 4 5 6
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,T
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Figure 1.1: Term structure example

maturity dates T . The term structure is estimated by interpolating between these dates.
When the term structure is an increasing function of T , it is called upward sloping or
normal, which is usually the case. When the term structure is decreasing in T it is called
downward sloping or inverted.
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Besides these, we also de�ne forward rates. A forward rate is the rate of interest that
applies to a future period of time. Suppose we are standing at time t and we would like
to invest an amount of money over a future time period [S; T ]. The interest is paid at
the end of the period, at time T . The interest rate we can receive over this period, when
contracted at time t is called the forward rate, and denoted by F (t; S; T ) for t < S < T .
Again, T is the maturity date, S is called the reset or settlement date. The value of the
forward rate can change over time, as long as t < S. At t = S, its value is settled and
will stay �xed. Similar to the spot rate, we can also de�ne the instantaneous forward rate
f(t; S) � limT#S F (t;S; T ). Furthermore note that R(t; T ) = F (t; t; T ).

1.2 Bonds
The zero coupon bond is the most elementary product in the interest rate market. It is
a contract which guarantees the holder to be paid out 11 at the maturity date T . The
price at time t of a zero coupon bond with maturity T is denoted by p(t; T ). From the
de�nition it follows that p(T; T ) = 1. Zero coupon bonds provide no payo¤ before time
T and are therefore very useful instruments for modelling purposes. Zero coupon bonds
are also very useful for discounting. Suppose we know we will receive an amount of K at
a future time T , then the present value (at time t) of this cash �ow is p(t; T )K.
The spot rate R(t; T ) can be derived from the value of the zero coupon bond. Suppose

we invest 1 at time t. If we invest it in a zero coupon bond, we will receive 1=p(t; T ) at
time T . If we invest it at the spot rate, it will pay us 1 + (T � t)R(t; T ). These two
results have to be equal, so we get

R (t; T ) =
1� p(t; T )

(T � t) p(t; T ) :

In the same way we can compute the relation between bond prices and forward rates
F (t; S; T ), see section (1.4).
In contrast to a zero coupon bond, a coupon bond does pay out a coupon at interme-

diary points in time. A �xed coupon bond pays out a predetermined coupon whereas a
�oating rate bond pays out an amount dependent on the market interest rate. Coupon
bearing bonds are much more actively traded on the market, but are less useful for the
modelling of interest rates. They can be expressed in terms of a portfolio of zero coupon
bonds.

1.3 Forward Rate Agreement
A Forward Rate Agreement (FRA) is a contract to let a certain, predetermined, interest
rate R, over some future period [Ti�1; Ti] ; act on a prespeci�ed principal K. The lender
pays K to the borrower at Ti�1 and receives K (1 + �iR) at Ti, where �i = Ti � Ti�1.
The cash �ows for the other party, the borrower, are of course opposite to these. The
value of this contract for the lender at time t < Ti�1 is given by:

FRA(t) = K [p (t; Ti) (1 + aiR)� p (t; Ti�1)] : (1.1)

1payo¤s and values will not be denoted in a certain currency. We will not consider cross-currency
products, so everything will be denoted in the same currency.
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1.4 Forward Libor rates
In the context of forward rates (section 1.1), usually forward Libor rates are used. LIBOR
means London Interbank O¤er Rate. It is the forward rate o¤ered by banks to other banks
on Eurocurrency deposits. The corresponding bid rate is call LIBID.
First de�ne a Tenor structure, a set of dates:

0 � T0 < T1 < � � � < TN :

The year fraction between two subsequent dates Ti�1 and Ti is de�ned by �i (usually
called the tenor or day count fraction). We will not worry about day count conventions
and use

�i = Ti � Ti�1:

It is assumed that there exist a zero coupon bond p(t; Ti) bond for each maturity Ti.
Now it is possible to de�ne the forward Libor rate Li(t) (1 � i � N) as the forward rate
between two tenor dates:

Li(t) = F (t; Ti�1; Ti) :

So it is the interest rate that can be contracted at time t for the period [Ti�1; Ti], where
t � Ti�1, without any costs.
If we compare this with the de�nition of the Forward Rate Agreement, we can see that

Li(t) is the interest rate R that makes the value of the FRA equal to zero. Solving this
from equation (1.1) gives:

1 + �iLi(t) =
p(t; Ti�1)

p(t; Ti)
; (1.2)

from which the forward Libor rate can be de�ned as:

Li(t) =
1

�i

�
p(t; Ti�1)

p(t; Ti)
� 1
�
; (1.3)

or, alternatively

Li(t) =
p(t; Ti�1)� p(t; Ti)

�ip(t; Ti)
: (1.4)

For t = Ti�1 the forward Libor rate is equal to the simply-compounded spot rate with
maturity Ti:

R(Ti�1; Ti) � Li(Ti�1) =
1� p(Ti�1; Ti)
�ip(Ti�1; Ti)

: (1.5)

Therefore Li(Ti�1) is also called the Libor rate, in contrast to the forward Libor rate Li(t)
(t < Ti�1). In this thesis I will use the following short-hand notation

Li � Li(Ti�1):

For the ease of notation, I will sometimes refer to Li(t) as the Libor rate, instead of the
forward Libor rate, when it is clear from the context that we mean the forward rate.
As we will see in the following sections, other products are de�ned in terms of (forward)

Libor rates. Therefore it is no surprise that it would be useful if we could make an interest
rate model that describes the dynamics of the Libor rates. This is exactly the aim of the
Libor Market Model.
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1.5 Swaps
An interest rate swap is a contract to exchange a set of �oating rate payments (�oating
leg) for a set of �xed payments (�xed leg). The �oating leg usually is a payment of the
Libor rate over a speci�ed amount. The �xed leg is a �xed rate (also called the strike)
over the same amount. There are several versions of interest rate swaps, but here the
forward swap settled in arrears will be used. The owner of a receiver swap will receive
the �xed rate and pay the �oating rate. For a payer swap �oating is received and �xed is
paid.
Denote the principal by K and the strike by RS . A Tn � (TN � Tn) swap is a swap

with maturity Tn and tenor TN �Tn. At each reset date Ti, n � i � N � 1 the Libor rate
Li+1(Ti) is observed in the market. For a payer swap, at Ti+1 a payment of K�i+1RS
has to be made and an amount of K�i+1Li+1 is received. See �gure 1.2 for an example
of the cash �ows of a swap.The net cash �ow at Ti+1 to the holder is thus

T0 T1 T2 T3 T6 T7T5

Receive: L2 L3 L4 L5 L6 L7

Pay: R R R R R R

Time
T4

Figure 1.2: Cash �ows of a T1 � (T7 � T1) payer swap (K = 1; �i = 1)

K�i+1 (Li+1 �RS) :

We can discount the net cash �ow, to get the value at time t of this cash �ow (using
equation 1.3):

Kp(t; Ti)�K (1 + �i+1RS) p(t; Ti+1):
Note that this is equal to �1 times value of an FRA (equation 1.1). Summing the value
of all the payments at Tn+1; : : : ; TN we �nd the value for the Tn� (TN � Tn) payer swap:

PSNn (t) = K
N�1X
i=n

[p(t; Ti)� (1 + �i+1RS) p(t; Ti+1)] (1.6)

= K
�
p(t; Tn)� p(t; TN )�RANn (t)

�
;

where ANn (t) is the annuity, or present value of a basis point (PVBP, because it
corresponds to the increase in value of the �xed side of the swap if the swap rate R
increases, see equation 1.6):

ANn (t) =
NX

i=n+1

�ip(t; Ti): (1.7)

The swap rate or forward swap rate RNn (t) is de�ned as the strike RS for which the value
of the swap contract is equal to zero. This can be derived by setting the value of the swap
equal to zero:

RNn (t) =
p(t; Tn)� p(t; TN )

ANn (t)
: (1.8)
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Using this, the value of the payer swap can also be expressed as:

PSNn (t) = K
�
RNn (t)�RS

�
ANn (t): (1.9)

A swap is called at-the-money (ATM) if RNn (t) = R, so its value is equal to zero. If the
value of the swap is positive or negative it is called in-the-money (ITM) or out-of-the-
money (OTM) respectively. This is called the moneyness of the swap.

1.6 Caps and �oors
A cap is one of the most important plain vanilla options in the interest rate market. A
cap is designed to provide insurance against the rate of interest on the �oating-rate note
rising above a certain level, known as the cap rate. Denote the cap rate by R and the
principal by K. We use the same term structure as before. If Li(Ti�1) > R, the cap pays
the di¤erence between Li and R and nothing if Li < R. Its payo¤ at time Ti, 1 � i � N
can be written as:

K�i [Li �R]+ ;

where we use the notation [x]+ � max (x; 0). The payo¤ is equal to the payo¤ of a call
option on the Libor rate. So a cap is a set of options, one for each reset date. The N call
options are called caplets. The value of the cap is equal to the sum of the values of the
caplets:

Cap(t) =
NX
i=1

capli(t):

Figure 1.3 gives an example of the cash �ows from a cap. In the market, the value of a

T0 T1 T2 T3 TN­1 TNTN­2

Receive:                   (L1­R)+          (L2­R)+          (L3­R)+          (L4­R)+        (LN­2­R)+         (LN­1­R)+         (LN­R)+

Pay:

Time
T4

Figure 1.3: Cash �ows of a cap (K = 1, �i = 1)

caplet is usually determined using Black�s (1976) model (see Appendix A.1). This requires
the assumption that

ln (Li (Ti�1)) � N
�
ln (Li(t)) ; �i

p
Ti�1 � t

�
:

So Li (Ti�1) is lognormally distributed. �i is the volatility of Li(t). Under this assumption,
the value of the caplet is given by Black�s formula:

capl i(t) = K�ip(t; Ti) [Li(t)N (d1)�RN (d2)] ; (1.10)

where

d1 =
ln (Li(t)=R) + �

2
i (Ti�1 � t) =2

�i
p
Ti�1 � t

d2 = d1 � �i
p
Ti�1 � t:
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Here N (�) is the standard normal distribution function. Even though this method is
widely used to price caplets, the traditional interest rate models do not imply lognormal
Libors. Nevertheless, caps (and swaptions) are typically quoted in terms of their Black-
implied volatility.
A �oor is the opposite of a cap and provides insurance against the rate falling below

a certain level. Just like a cap is a collection of caplets, a �oor is a collection of �oorlets.
Using the same notation as above, the net cash �ow of a �oorlet at Ti is

K�i [R� Li]+ :

Its value is given by


oorl i(t) = K�ip(t; Ti) [RN (�d2)� Li(t)N (�d1)] :

The moneyness of caplets at time t is de�ned by the underlying Li(t) � R. When this
is equal to zero, larger or smaller than zero, the caplet is at-, in- or out-of-the-money
respectively. For �oorlets the same holds for the underlying R� Li(t).
Digitals are very similar to caps and �oors. Instead of paying Li � R , a digital cap

pays 1 when Li > R and nothing otherwise. The value of a digital caplet is given by:

digicapl i(t) = K�ip(t; Ti)N (d2) : (1.11)

A digital �oor pays the opposite of the digital cap: 1fLi<Rg. Its value is given by:

digi
oorl i(t) = K�ip(t; Ti)N (�d1) ;

where d1 and d2 are the same as for the cap.

1.7 European swaptions
A swaption is an option on a plain vanilla swap (see section 1.5). It gives the holder
the right (but not the obligation) to enter into a certain interest rate swap, called the
underlying, at a certain time Tn, the expiry date of the swaption. A receiver swaption
gives the right to enter into a receiver swap, a payer swaption to enter a payer swap.
At expiry, if the value of the underlying is positive, the swaption will be exercised, so

the holder of the option will receive the swap whose value is given by equation (1.9). If the
value of the underlying is negative, the swaption will not be exercised, so the holder will
receive nothing. Therefore the value at expiry Tn of the Tn � (TN � Tn) payer swaption
is given by: �

PSNN
n (Tn)

�+
= K

�
RNn (Tn)�R

�+
ANn (Tn):

The value of the European swaption can be obtained by using Black�s formula (see also
appendix A.1). If we take ANn (Tn) as the numeraire, the above formulation shows that
the payer swaption is just a call option on RNn with strike R. If we assume RNn (Tn) is
lognormally distributed with

ln
�
RNn (Tn)

�
� N

�
ln
�
RNn (t)

�
; �n;N

p
Tn � t

�
;

then Black�s formula gives the following value of the payer swaption:

PSNNn (t) = KANn (t)
�
RNn (t)N (d1)�RN (d2)

�
; (1.12)
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where

d1 =
ln
�
RNn (t)=R

�
+ �2n;N (Tn � t) =2

�n;N
p
Tn � t

d2 = d1 � �n;N
p
Tn � t:

This is also the method which is used in the market to price swaptions. However, it can
be shown (see section 3.4) that when Li(Ti�1) is lognormally distributed, RNn (Tn) is not,
and vice versa. That means that the pricing of caplets and �oorlets is not consistent with
the pricing of European swaptions. We will come back to this issue in section 3.4.
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2 Introduction to interest rate models
With the growth of the interest rate derivatives market, it became important to develop
models to price these products. Since the �rst models in the 1970�s, new, more realistic
models were developed to incorporate more information of the interest rate market and
to be able to price more exotic derivatives.
After the breakthrough in stock option pricing theory by Black and Scholes (1973) and

Merton (1973), the valuation of interest rate derivatives started with Black�s (1976) model.
This was used to value caps, options on bonds and European swaptions. This model
assumes that the probability distribution of an interest rate, bond price or another variable
at a future time is lognormal. This model is still widely used for some products, but has
important limitations. It is not consistent; if a bond price is lognormally distributed, the
interest rate is not, so we cannot use this model to price bond options as well as caps.
Furthermore, it only gives the distribution of a single underlying at a single moment and
does not give any information about the development of interest rates through time or the
correlations between underlyings. Therefore they can not be used to value other products,
whose value depends on more than a single date.
This led to the development of term structure models. These models give a description

of the risk-neutral evolution of interest rates through time. The �rst term structure models
were short rate models. These models describe the development of the short rate r(t) (see
also section 1.1). From this, it is possible to de�ne the spot rate, the interest rate over a
period of time [t; T ], by

R(t; T ) =
1

T � t

Z T

t

r(s)ds:

The most important models of this type are the ones developed by Vasicek (1977) and
Cox, Ingersoll and Ross (1985). For example, in the Cox, Ingersoll and Ross (CIR) model,
the process for r(t) is:

dr = a (b� r) dt+ �
p
rdz;

where a; b are constant, � is the volatility of the short rate and dz is a Brownian motion.
Later, these models were extended to make them consistent with the initial term structure
(by Ho and Lee, 1986; Hull and White, 1990; Black, Derman and Toy, 1990).
All these models provide ways to price derivatives when Black�s model is inappropriate

and are easy to implement. However, they still have some important limitations. They
only describe one rate (the short rate) and therefore the interest rates are driven by
only one source of uncertainty (dz). That implies all interest rates will be a¤ected by a
single factor. In reality however, short term interest rates are usually a¤ected by di¤erent
events than long term rates. It was tried to solve these problems by adding an extra
factor, leading to two factor models (Du¢ e and Kan, 1996; Hull and White, 1994).
Meanwhile, Heath, Jarrow and Morton (1992) had developed a total di¤erent method

to model interest rates. Instead of focussing on the short rate, they modelled the instan-
taneous forward rate f(t; T ) (see section 1.1). The HJM model assumes that for every
�xed T > 0 the instantaneous forward rate have the following dynamics:

df(t; T ) = �(t; T )dt+ �(t; T )dW;

where �(t; T ) and �(t; T ) are adapted processes and dW is a D-dimensional Wiener-
process. The model provides a process for every instantaneous forward rate, giving much
more �exibility than the one- or two-factor models. The drawback of the HJM model is
that it is expressed in terms of instantaneous forward rates, which are not observable in
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the market. That makes the model harder to calibrate. By the way, the same problem
applies to the short rate models: there is no such thing as a short rate in the market.
This leaded to the development of a similar model, now de�ned in terms of the forward

rate F (t; T1; T2), instead of the instantaneous forward rate. These forward rates are traded
in the market. Furthermore, the model is consistent with Black�s formula for the pricing
of caps (equation 1.10), which is still the usual way these product are priced.
Because Libor rates are the most actively used forward rates, the model was named

the Libor Market Model (LMM). The model has been introduced by Brace, Gatarek and
Musiela (1997), after who it is sometimes called the BGM model, Jamshidian (1997) and
Miltersen, Sandmann and Sondermann (1997). Since its introduction it has become a very
important model for the pricing of a wide range of interest rate products, most notably
the so-called Libor Exotics, whose payo¤ depends on Libor rates.
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3 Libor Market Model
In this chapter the Libor Market model (LMM) will be described. Like other interest rate
models, the objective of the LMM is to provide a model of the dynamics of the evolution
of interest rates to price non-standard interest rate derivatives in such a way that it
is consistent with the market prices of other basic (plain-vanilla) products. The most
important plain-vanilla products have been de�ned in Chapter 1. The LMM is exactly
consistent with the use of Black�s formula for the pricing of caplets by assuming Libor
rates are lognormally distributed. The model speci�es the (continuous) dynamics of the
forward Libor rates for discrete maturities, being the tenor dates. Because the model is
consistent with the valuation of caplets, it turns out to be easy to calibrate it to market
data (see also Chapter 4).
The next section de�nes the LMM. Section 3.2 gives the drift of the forward Libors

under di¤erent measures and in Section 3.3 an alternative way to formulate the LMM
is given. The valuation methods for pricing caps and swaptions as described in Chapter
1, are inconsistent. When Libor rates are lognormally distributed, swap rates are not.
Section 3.4 shows this and derives the volatility of the swap rates under the LMM.
This chapter frequently uses results from basic �nancial calculus, like risk neutral val-

uation, equivalent martingale measures, Girsanov�s theorem, Radon-Nikodym derivatives.
We will not explain these results in this thesis, but for more information the reader can
�nd useful references in appendix A.

3.1 De�nition
We will use the de�nition of the forward Libor rates from Section 1.4. So we take a tenor
structure

0 � T0 < T1 < � � � < TN ;

with the tenors �i = Ti � Ti�1 and Libor rates Li(t) = F (t; Ti�1; Ti). The Libor Market
Model (LMM) assumes that the forward Libor rates Li(t) are instantaneously lognormally
distributed. This means Li has the following dynamics:

dLi(t) = : : : dt+ Li(t)�
0
i(t)dW(t);

where W(t) is a D-vector of independent standard Wiener processes on (
;Ft;P). D
is the number of factors (D � N). If D = N , there is one source of uncertainty per
Libor rate. �i(t) is a D-vector containing the volatility of Li. The d�th component of the
vector is the volatility of Li(t) corresponding to the d-th factor. We will assume �i(t) is a
deterministic function of time t. When �i(t) is not deterministic but follows a stochastic
process, we have a so-called stochastic volatility model.
As will be shown in Section 3.2, the drift depends on the Li�s and we �nd the dynamics

to have the following form:

dLi(t) = �i (L(t); t)Li(t)dt+ �
0
i(t)Li(t)dW (t) (3.1)

t � Ti�1; 1 � i � N

Here �i is the drift of the i�th Libor rate. L(t) is the vector of forward Libors Li(t).
Note that this model is only de�ned for t � Ti�1, because Li resets at time Ti�1, the
volatility and drift are equal to 0 for t � Ti�1.
Because �i depends on L, the Libors are no longer lognormally distributed. Note that

Li(t) is of course still instantaneous lognormal, due to the formulation (3.1). However,



12 PART I. LIBOR MARKET MODEL

for Black�s formula Li(Ti�1) conditioned on Ft should be lognormal, which is not the
case. Fortunately, it is possible to �nd a di¤erent measure, under which Li is lognormally
distributed.
First denote by Qi the Martingale measure with p(t; Ti) as numeraire. Denote byWi

a D-dimensional Qi-Wiener process. We will use the results of Harrison and Kreps (1979)
that, in a market where there is no arbitrage, for any given strictly positive numeraire
security whose price is g(t), there exists a measure for which f(t)=g(t) is a martingale for
all security prices f(t). From equation (1.2) it follows that 1 + �iLi(t) is a martingale
under the measure Qi. So also the forward Libor rate is a martingale under this measure
(also known as the natural measure):

dLi(t) = � 0i(t)Li(t)dW
i(t); 1 � i � N: (3.2)

The solution is given by:
Li (T ) = Li(t)e

Yi(t;T ); (3.3)

where Yi(t; T ) is normally distributed with mean mi and variance �2i (T � t) given by:

mi (t; T ) = �1
2
�2i ;

�2i =
1

T � t

TZ
t

j�i(s)j
2
ds: (3.4)

Under its natural measure, Li just follows geometric Brownian motion and thus is log-
normally distributed, which is exactly what we wanted to obtain to be able to use Black�s
model for caplets. Therefore caplets can be priced exactly by Black�s formula (1.10). For
this reason �i (the term volatility) is also called the Black (caplet) volatility.

3.2 Drift under di¤erent measures
Note that in equation (3.2) each forward Libor rate is a martingale under its own natural
measure, but not under the same measure! Now we will derive the dynamics of the forward
Libor rates under a single measure, being the terminal measure QN . This is the measure
with p (t; TN ) as numeraire. To apply this change of measure, we need to �nd the Girsanov
kernel (see e.g. Björk, 2004). The measures Qi and Qi�1 are absolutely continuous with
respect to each other, and the Radon-Nikodym derivative �i�1i is given by:

�i�1i (t) =
dQi�1

dQi
=

p (T0; Ti)

p (T0; Ti�1)
� p(t; Ti�1)
p(t; Ti)

= Ai (1 + �iLi(t)) ;

where Ai =
p(T0;Ti)
p(T0;Ti�1)

. From equation (3.2) follows :

d�i�1i (t) = Ai�i�
0
i(t)Li(t)dW

i(t)

= Ai (1 + �iLi(t))
�iLi(t)

(1 + �iLi(t))
� 0i(t)dW

i(t)

= �i�1i (t)
�iLi(t)

(1 + �iLi(t))
� 0i(t)dW

i(t):

This shows the Girsanov�s kernel is given by:

�iLi(t)

(1 + �iLi(t))
�i(t):
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Girsanov�s theorem now shows how to change measures:

dWi(t) =
�iLi(t)

(1 + �iLi(t))
�i(t)dt+ dW

i�1(t):

We can repeat this to �nd for the terminal measure:

dWN (t) =
NX

k=i+1

�kLk(t)

(1 + �kLk(t))
�k(t)dt+ dW

i(t):

This shows the QN dynamics of the forward Libor rate:

dLi(t) = �Li(t)
 
� 0i(t)

NX
k=i+1

�kLk(t)

(1 + �kLk(t))
�k(t)

!
dt+ � 0i(t)Li(t)dW

N (t): (3.5)

In the same way, we can compute the drift for every numeraire bond. Let �ji be
the drift of the ith Libor rate under the martingale measure Qj (i.e. with p(t; Tj) as
numeraire). Then, for t � min (Ti; Tj�1):

�ji (L(t); t) =

8>>>>>><>>>>>>:

�i(t)
iX

k=j+1

�kLk(t)
(1+�kLk(t))

�k(t) if i > j

0 if i = j

��i(t)
jX

k=i+1

�kLk(t)
(1+�kLk(t))

�k(t) if i < j:

(3.6)

Finally we will derive the risk neutral dynamics. These are obtained by using the
risk-neutral bank account B(t) as the numeraire. Usually B is de�ned through

dB(t) = r(t)B(t)dt;

B(T0) = 1;

where r(t) is the short rate. In the LMM the short rate is not de�ned and therefore it is
more natural to take as bank account a portfolio consisting of a bond with the shortest
maturity. At the maturity of the bond the money is reinvested in the following bond with
shortest time to maturity. So at time T0 we buy a zero-coupon bond with maturity T1.
At time T1 this is worth 1

p(T0;T1)
, which we reinvest in a bond with maturity T2, etcetera.

De�ne m(t) = min (i : Ti � t) as the next reset moment, so Tm(t)�1 < t � Tm(t). The
value of this portfolio at time t is given by.

B(t) =
p(t; Tm(t))Qm(t)

j=1 p(Tj�1; Tj)
; (3.7)

where we use
Q0
j=1 :: = 1. The corresponding martingale measure QB is called the risk-

neutral measure or the spot Libor measure. Using this de�nition, the Radon-Nikodym
derivative for the change of measure from Qi to QB , is given by:

�Bi =
p(T0; Ti)

B(T0)

B(t)

p(t; Ti)
=

p(T0; Ti)p(t; Tm(t))

p(t; Ti)
Qm(t)
j=1 p(Tj�1; Tj)

:
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If we now take i = m(t), we get:

�Bm(t) =
p(T0; Tm(t))p(t; Tm(t))

p(t; Tm(t))
Qm(t)
j=1 p(Tj�1; Tj)

=
p(T0; Tm(t))Qm(t)
j=1 p(Tj�1; Tj)

:

This is just a constant (because it resets at Tm(t)�1, which is smaller than t. That means
the Girsanov Kernel is zero, and therefore the dynamics are the same as under the Qi
dynamics with i = m(t). The drift follows from equation (3.6) (just take j = m(t) and
note that i � m(t)):

�Bi (L(t); t) = � 0i(t)
iX

k=m(t)+1

�kLk(t)

(1 + �kLk(t))
�k(t):

3.3 Alternative Formulation
It is also possible to use, in contrast to the formulation in Section 3.1, an alternative
formulation with scalar Wiener processes, i.e. with one Wiener process for each Libor rate.
Then the Wiener processes are no longer independent. In the formulation above, there
were several independent Wiener processes, each in�uencing all Libor�s. These factors are
risk-factor-speci�c and can for example be shifts in the yield curve, changes in its slope or
curvature, etc. In the formulation below, the Wiener processes are forward-rate-speci�c.
First de�ne the volatility of the Libor rate by:

�i(t) = j�i(t)j =
q
� 0i�i: (3.8)

Now de�ne the following scalar Wiener process:

dWi =
1

�i(t)
� 0idW:

These are correlated scalar Wiener processes. The correlation �ij is de�ned by by dWi(t)dWj(t) =
�ijdt. Because the original W is a vector of independent Wiener processes, there holds
dWdW0 = Idt (I is the identity matrix). So the the correlation can be computed as:

�ijdt = dWi(t)dWj(t) =
1

�i(t)
� 0idW

1

�j(t)
dW0�i

=
1

�i(t)�j(t)
� 0i�jdt =

� 0i�j
�i(t)�j(t)

dt:

From this, it also follows that

� 0i�j = �i(t)�j(t)�ij(t): (3.9)

Substituting everything into equation (3.1) yields:

dLi(t) = �i (L(t); t)Li(t)dt+ �i(t)Li(t)dWi(t) (3.10)

dWi(t)dWj(t) = �ij(t)dt:

This formulation is more intuitive than the original, because there is just one scalar
volatility function for each Libor rate. However it may be less clear how a lower number
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of driving factors is implemented. For D < N factors the correlation matrix will have
rank D.
For example, under the terminal measure, �i can be obtained by substituting equation

(3.9) into equation (3.5):

�i (L(t); t) = ��i(t)
NX

k=i+1

�kLk(t)

(1 + �kLk(t))
�k(t)�ik: (3.11)

For the rest of this thesis, we will use the notation from this section.

3.4 Distribution of the swap rate
As noted in section 1.7, Black�s formula is usually used to value (and quote prices of)
swaptions. This requires the assumption that the swap rate is lognormally distributed
(under the appropriate numeraire). As will be shown below, in the LMM the swap
rate is not lognormal. Fortunately, it turns out that this inconsistency does not lead
to big problems, because the value can be approximated very accurately (Jäckel and
Rebonato, 2003).
It is also possible to make another model, in contrast to the LMM, which assumes the

swap rates to be lognormally distributed: the swap market model. Of course, then it is
no longer possible to value caplets analytically. Moreover, the swap market model leads
to a more complicated drift functions and is harder to calibrate and therefore the LMM
is preferred.
We will now derive the swaption volatility approximation from Jäckel and Rebonato

(2003). Another way to �nd the same results can be found in (Hull and White, 1999),
although less straightforward. It is easy to see that the swap rate (see equation 1.8) can
be rewritten as:

RNn (t) =
NX

i=n+1

wi(t)Li(t); (3.12)

where the weights wi are de�ned by:

wi(t) =
�ip(t; Ti)

ANn (t)
:

This can easily be checked by substituting wi and (1.4) into equation (3.12). We see that,
if Li is lognormally distributed, RNn is not. By applying Itô�s lemma to RNn (t), we can
�nd the volatility of the swap rate:

�2n;N (t) =

P
j

P
k

�
@RNn =@Lj

� �
@RNn =@Lk

�
Lj(t)Lk(t)�jk(t)�j(t)�k(t)

[
P

i wiLi(t)]
2

=
X
j

X
k

�jk(t)�jk(t)�j(t)�k(t); (3.13)

where

�jk(t) =

�
@RNn =@Lj

� �
@RNn =@Lk

�
Lj(t)Lk(t)

[
P

i wiLi(t)]
2 :

If we look at equation (3.12) it is tempting to compute the derivatives as:

@RNn
@Li

= wi: (3.14)
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However, this is not correct, because wi depends on Li and therefore is stochastic. Nev-
ertheless, to approximate the volatility, we can assume that equation (3.14) is correct. A
more precise estimation is given below.
To be able to compute the Black-volatility, that can be used in equation (1.12), we

need to compute:

�2n;N (Tn � t) =

Z Tn

t

�2n;N (u)du

=

Z Tn

t

�jk(u)�jk(u)�j(u)�k(u)du:

Brace and Womersley (2000) show that it is possible to approximate �jk(u) (u � t)
accurately by �jk(t), because �jk(u) is a Martingale and has a relatively low variance
(compared to the variance of the Libor rates). That implies:

�2n;N (Tn � t) = �jk(t)

Z Tn

t

�jk(u)�j(u)�k(u)du: (3.15)

When the volatilities and correlations are deterministic, the integral can be computed.
This gives an approximation of the swap rate volatility.
In the approximation above we used the wrong assumption from equation (3.14). It

is also possible to use the correct derivative. This leads to the following value for the
coe¢ cients (suppressing the dependency on t of Li, Ai, Bi ):

�ij(t) =

�
p(t; Ti+1)�i+1Li+1

An
+
(AnBi �AiBn)�i+1Li+1
AnBn (1 + �i+1Li+1)

�
�
�
p(t; Ti+1)�i+1Li+1

An
+
(AnBj �AjBn)�i+1Li+1
AnBn (1 + �i+1Li+1)

�
;

where

Ai =
NX

j=i+1

p(t; Tj)�jLj ; n � i � N � 1;

Bi =
NX

j=i+1

p(t; Tj)�j ; n � i � N � 1:

Jäckel and Rebonato (2003) show this leads to a clear improvement over the original
approximation. In this thesis, when speaking about approximating the volatility of the
swap rate, we are referring to Jäckel and Rebonato�s (2003) approximation.
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4 Calibration
Before we can use the Libor Market model to price derivatives, we have to determine the
parameters of the model, i.e. calibrate it. This chapter describes the most important
issues in the calibration of the LMM. Calibration of the Libor Market model contains a
whole area of research on its own, so it is impossible to discuss every topic. For more
information on calibration, see for example (Rebonato, 1999; Rebonato, 2002; Brigo and
Mercurio, 2001).

4.1 Objective
In the interest rate market, bonds, swaps, caps and swaptions are traded frequently.
Therefore the prices of these products are very accurate. The Libor Market Model does
not give prices for those products, but uses them as input, such that the model gives
prices for other products that are consistent with the prices of plain-vanilla products.
That means that we have to calibrate the model to these prices, such that if we value
a cap or a swaption with the model, we retrieve the prices quoted in the market. If we
do this, we ensure that the prices of exotic derivatives will be consistent with the market
prices of bonds, caps, and swaptions.
In the LMM, bonds and caps are priced exactly (analytically) and therefore we also

want the calibration in such a way that the model is exactly �tted to these prices. Swap-
tions however, can not be valued exactly analytically, even though very good approxima-
tions exist (see also Section 3.4). Therefore we also do not require swaption prices to be
exactly consistent with the LMM, but we do want a good �t.
Under the alternative formulation (equation 3.10), the evolution of the Libor rate is

fully determined by three elements:

� the initial Libor rates: Li(T0);
� the volatility functions of the Libor rates: �i(t), (T0 � t � Ti�1),

� the correlations between the di¤erent factors: �ij(t), (T0 � t � Ti�1),

In the following sections, these will be addressed separately. Once these variables have
been set, the whole model is determined and can be used to price derivatives.

4.2 Initial Libors
The �rst task is easy. At time T0 the Libor rates can simply be observed in the market,
which is the reason why these models are called market models. We just put Li(T0) in
the model equal to these market Libors. Because the Libors are de�ned in terms of zero
coupon bonds, this automatically ensures consistency with bond prices. Usually Libor
rate quotes and bond prices do not exist for every tenor date Ti. In these cases we can
interpolate between existing quotes, to estimate the forward rate.

4.3 Volatility
For the calibration of volatility we have to determine the function �i(t) for 2 � i � N and
T0 � t � Ti�1. This task is much harder than the calibration to the Libor rates, because
we do not only have to estimate the current volatility �i(T0) but also the future volatility.
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The volatility �i(t) as a function of t is called the volatility structure. Estimating future
volatility is as hard as estimating future interest rates and usually the best we can do is
take the current volatilities as estimate for the future, as will be discussed below.
Because we want Black�s formula to be exactly consistent with the LMM, we have to

choose the Libor volatilities consistent with the Black volatilities (see also equations 3.4
together with 3.8 and 1.10) :

�2i =
1

Ti�1 � T0

Z Ti�1

T0

�2i (u)du: (4.1)

The �true� values of �2i can be computed from the values of caplets in the market. If
we choose the volatility function �i(t) such that equation (4.1) holds, the model value of
caplets will be the same as the market value.
Besides caps (and �oors), we also want the model to be consistent with European

swaption prices. As we have seen in section 3.4, the LMM is not exactly consistent
with Black�s formula for swaption, but there exists a very good approximation. Because
swaptions are traded very actively, we also want the LMM to be consistent with these
prices. Therefore we have to make sure that equation (3.15) holds approximately.
Because the system of equations is still highly underdetermined, it is possible to im-

pose some structure on the volatilities. This is desirable, because it prevents the volatility
functions from being very irregular. A useful property we would like the volatility struc-
ture to have is that it ensures the volatility structure as a function of the time to maturity
is (almost) constant through time, i.e. time-homogeneous. The rationale behind this is
that we do not know anything about the future development of the volatility term struc-
ture (�i(t) for t > T0) and therefore we want the current structure as expected future
volatility term structure. This can be incorporated in the model by using a structure of
the form �i(t) � �(Ti�1 � t). The two most important methods to incorporate this are
explained in the following two subsections.

4.3.1 Piecewise constant volatilities

Assume the volatility function is constant between two reset dates. As long as we are
only modelling the forward Libor rates at the tenor dates this does not lead to any loss
in generality (as we will see in Chapter 7).

�i(t) = e�ik; (Tk�1 � t � Tk; 1 � k < i) :

At k = i the Libor rate matures, so for k � i the Libor Li is no longer stochastic and the
volatility is not de�ned (or equal to 0). To ensure the volatility structure does not change
too much through time, we can assume the following structure:

�i(t) = �i i�k:

Here i � k is the number of time periods until maturity, with �i and  j both being
constants.
Lets �rst assume that �i = 1 for all i. Then the volatility structure is constant through

time. The cap with maturity Tk can be used to determine  i�k, ensuring a perfect �t
with caplet prices. However, it is not possible to incorporate swaption prices.
If we do not restrict ourselves to �i = 1, we can obtain a better �t using a two step

procedure: �rst try to obtain a good �t of swaptions and caplets by determining  i�k,
for example by using some kind of least squares optimization. Now, caplet prices are no
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longer exactly �tted. This can however be obtained by choosing �i correctly. Because
the  �s already ensured a close �t, �i will not deviate much from 1, so the volatility is
still almost time-independent. There is one �i for every caplet, so an exact �t is always
easily obtained.

4.3.2 Parametrization

Instead of choosing for piecewise-constant instantaneous volatilities, it is also possible to
choose a parametric form for the volatility structure. In the market, the graph of the
forward volatility typically is humped-shaped, like in �gure 4.1. Rebonato (1999) gives
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Figure 4.1: typical forward volatility structure

the following possible explanation for this phenomenon. The volatility is caused by un-
certainty about future interest rate. For short maturities, up to 6 months or a year, the
interest rate is mainly in�uenced by the monetary authorities (central banks), who com-
municate their plans well in advance, leading to a low volatility. The longer maturity rates
are mainly in�uenced by the long-term in�ation expectations. The monetary authorities
usually have a clear in�ation target. Therefore their in�ation target is usually a good es-
timate of future in�ation, leading to less uncertainty in long-term interest rates. Because
there is less consensus about the interest rates for maturities between 6 and 18 months,
these have higher volatilities. Note that sometimes, when there is no consensus about
short rate actions of the central banks, these volatilities are higher than usual, which is
also con�rmed by market observations (no longer a hump, but volatility is a declining
function of time).
To incorporate these volatility humps, a very suitable choice is the following parame-

trization (Rebonato, 1998):

�i(t) = �i

�
[a (Ti�1 � t) + d] e�b(Ti�1�t) + c

�
; (4.2)

where a; b; c; d;�i are parameters that have to be determined. This is done using a similar
procedure as in the previous model: �rst choose a; b; c; d to �nd a close �t with swaption
and cap prices. Next use �i to ensure �i is exactly �tted to caplet prices.
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4.4 Correlation
Under their own measure, caplets only depend on the value of a single Libor rate. There-
fore, caplets can not be used to calibrate the correlations in the LMM. Swaption cán be
used to do this, as can be seen from equation (3.15), Another possibility is to use histor-
ical information to obtain estimates of future correlations. Just as for the volatilities, we
have to estimate the correlation structure �ij(t) for T0 � t � T(i^j)�1. Generally it will
be assumed that correlations are constant between reset dates. Still, for a model with N
di¤erent Libor rates, there are N (N � 1) =2 correlations that have to be determined. To
ensure correlations will always be between �1 and +1 and to give some more structure
to the correlation matrix (denoted by �), again a parametrization is used.
A parametrization that is commonly used is:

�ij = cos (�i � �j) ;

where �i is usually a function of i and some other parameters (Brigo and Mercurio, 2001).
Another possibility is:

�ij =

j�1Y
k=i

�k;k+1 j > i;

�ij = �ji j < i:

This requires specifying the upper diagonal of the correlation matrix, the correlation
between subsequent Libors (see Schoenmakers and Co¤ey, 2003). A special case is when
�k;k+1 = e�� for all k:

�ij = e��ji�jj; (4.3)

where � is the only parameter to be determined. This implies that correlations between
Libors are constant through time and only depend on the di¤erence between their reset
dates.

4.5 Other issues
There are numerous other issues regarding calibration. Take for example the caplet volatil-
ities. Even though in theory this works perfectly, there are some practical issues. Black�s
formula assumes that the volatility is independent of the moneyness (Li(t)=R) of the
caplets. In practice, the volatility is higher for in- and out-of-the-money caplets, the so-
called volatility smile. Therefore the caplet volatility does not exist and we will have to
adjust our parameters to take this into account.
Furthermore there is the risk of over�tting. Suppose we could calibrate our model

to every plain-vanilla product available. Then the resulting volatility and correlation
structure can become a very irregular function, which is unrealistic. So we have to make
a trade-o¤ between a realistic but not perfectly calibrated and an perfectly-�tted but
unrealistic model.
For more information we refer to the references at the begin of this chapter.
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Part II

Monte Carlo
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5 Introduction to MC
Several methods are available for the valuation of �nancial derivatives. An overview can
for example be found in (Hull, 2003; Wilmott, 2006). For some products, there sometimes
exist analytical solutions. The most famous one is of course the Black and Scholes (1973)
equation, from which most other option valuation formulas are derived. Analytical solu-
tions are usually only available for plain-vanilla products and simple models. In the Libor
Market Model we saw that caplets can be valued analytically. This is because its payo¤
depends only on a single Libor rate.
For more complicated products, no analytical solutions are available and we have to

use numerical procedures. A very common method is the binomial tree. Basically, it
replaces the continuous distribution of the underlying by a discrete distribution. Another
way to �nd the value of a derivative, is to solve the di¤erential equation for the value of
the derivative numerically, for example by a �nite di¤erence method.
Both methods discretize the underlying over time. In the Libor Market Model, the

underlying is a vector of Libor rates: Li(t); i = 1::N . The size of this vector is typically
between 10 and 120 (quarterly resets with 30 year maturities). In the tree and �nite
di¤erence method, we have to discretize this in every dimension, so the number of grid
points grow exponentially with the number of dimensions (the so-called curse of dimen-
sionality). In general, both methods only work well up to 2 or 3 dimensions. Therefore
these methods can not be used for pricing in the Libor Market Model.
The last possibility to value �nancial derivatives is to use Monte Carlo simulation.

Because the methods described above cannot be used, this is the method that is generally
used in the LMM. This chapter describes the Monte Carlo method in general. The next
chapter gives an overview of possible ways to improve its performance. In Chapter 7 this
will be applied to the Libor Market Model.

5.1 De�nition
Monte Carlo methods have been used since the introduction of the �rst programmable
computers in the 1940s. They can be applied to a wide range of problems. Boyle (1977)
was the �rst to use these methods for derivative pricing. Monte Carlo methods are easy to
implement and applicable to almost every valuation problem, which is the main advantage
of the method, together with the ability to solve high-dimensional problems.
Suppose we want to compute the expected value V of a function f(Z), depending on

a random variable Z, given a probability density  (Z):

V � E (f(Z)) =
Z
f(z) (z)dz: (5.1)

The Monte Carlo method to solve this can be summarized as follows:

1. Establish a procedure to simulate Z from the probability density  (Z).

2. Draw a variate zm

3. compute f(zm).

4. Repeat step 2 and 3 for m = 1::M and compute the average. This is the Monte Carlo
estimate of equation (5.1).
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So the Monte Carlo estimate is given by

eV = 1

M

MX
m=1

f(zm): (5.2)

5.2 Properties
The Monte Carlo estimate is unbiased:

E
�eV � = 1

M

MX
m=1

E (f(Zm)) = E (f(Z)) = V:

The variance of eV is given by:

var
�eV � = 1

M2

MX
m=1

var (f(Zm)) =
1

M
�2f ;

where �2f = var (f (Z)). Usually the standard deviation �f is unknown, but we can
estimate it by the sample variance:

s2f =
1

M � 1

MX
m=1

 
f(zm)�

1

M

MX
m=1

f(zm)

!2
;

which is an unbiased estimate of �2f .

From the Central Limit Theorem it follows that, for M !1, eV converges in distrib-
ution to the Normal distribution:

eV d! N
�
V;

�fp
M

�
:

Now we can de�ne the standard error of a Monte Carlo simulation by:

se =
sfp
M
: (5.3)

5.3 Random number generation
For the implementation of the Monte Carlo method we have to be able to draw random
variables Z from a probability density function  (Z). The usual way to do this is to draw
uniform random variables from the interval (0; 1) and transforming the uniform variables
to the desired distribution by (numerical) inversion of the probability distribution func-
tion. Because computers are totally deterministic, it is not possible to get truly random
numbers. However, numerous (deterministic) algorithms exists that almost perfectly repli-
cate true randomness. Because these algorithms are implemented in almost every piece
of numerical software and work correctly for (almost) every application, we will not pay
attention to this. For more information see (Jäckel, 2002).
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6 Variance reduction
The main disadvantage of the Monte Carlo method is that it converges slowly. As can be

seen from the de�nition of the standard error (equation 5.3), it converges at O
�p

M
�
.

So to reduce the standard error of the estimate eV by a factor F , we need to increase the
number of samples by F 2. Especially in �nance, where derivatives have to be priced both
quickly and accurately (an error of only a few basispoints can lead to large losses), this is
an important disadvantage.
Several techniques are available to reduce the variance of the Monte Carlo estimate.

These will be addressed in the following sections. First we de�ne two benchmarks, denoted
by � and �, to compare di¤erent methods with each other.
Suppose that for a MC implementation u each simulation path m gives an unbiased

estimate fum with standard deviation su. When we useM simulations, The standard error
in the estimate of V is given by seu = sup

Mu
(see equation 5.3). From this we de�ne � as

the relative improvement (measured in se2) of a variance reduction technique u compared
to standard Monte Carlo simulation:

� =

�
se

seu

�2
: (6.1)

Because the squared standard error scales linear with the number of simulations (see
equation 5.3), � gives the relative number of paths to use to get the same accuracy. For
example, suppose that for a given method u there holds � = 3. That means that, to get
the same accuracy without control variates, one needs 3 times as many paths.
The relative improvement � does not take into account the extra computation time

that is necessary to value the control variate in each path. Of course, when � = 2,
but method u requires two times as much computation time for each path, there is no
improvement. Using more sophisticated methods to reduce variance, usually also implies
more computation time for each simulation. We have to make a trade-o¤ between these
two. De�ne the average simulation time for each path by � for a standard Monte Carlo
simulation and by �u for variance reduction technique u. Now we can de�ne � as the
time-adjusted improvement factor by

� � �
�

�u
: (6.2)

The higher �, the faster the convergence of the simulation. For example, if for a variance
reduction technique there holds � = 2, it takes half the time to get the same standard error
as without variance reduction. Therefore, this is the variable we would like to maximize.
However, because computation time is very implementation dependent, we will also take
� into account.

6.1 Antithetic variates
A very simple, and widely used, technique in �nancial pricing problems is the method of
antithetic variates (or variables) or antithetic sampling (AS). It uses the fact that if Z is
standard normally2 distributed, so is �Z. Suppose  is the (possibly more-dimensional)

2This is not restricted to normal distributions. For example, if U is uniformly distributed on [0; 1], so
is 1� U . But because for the LMM only normal distributions are relevant, we will focus on these.
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Gaussian probability density and zm is a variate drawn from this distribution. Then we
replace the estimate f(zm) in equation (5.2) by

fm =
f+m + f

�
m

2
;

where f+m � f(zm) and f�m � f(�zm). Because we have to evaluate two paths for each
simulation m, we will only use half the normal amount of simulations, to get approxi-
mately the same computational time. M=2 antithetic pairs fzm;�zmg are more regularly
distributed then M independent variables; for example, the mean is always equal to zero,
which almost surely does not hold for the latter. This will probably lead to a reduction
in variance. More precise, if f+ � f(Zm) (and f� � f(�Zm)) has variance �2f then the
variance of fm is given by

�f
2 =

1

4

�
�2f + �

2
f + 2 cov

�
f+; f�

��
=

1

2

�
�2f + cov

�
f+; f�

��
:

For the antithetic variates to be e¤ective, we need: �f 2 < 2�2f , because we need two
evaluations (f+m and f�m) for a single simulation m. So the technique is e¤ective when
cov (f+; f�) < 0. This will usually be the case. It is always true when f(z) is a monotonic
function in z. This is an important observation, because the products we will be consider-
ing are usually monotonic. A proof can be found in the appendix (B). Note that the use
of AS does not always have to bene�cial. For some exotic products, it could also be the
case that there is no negative correlation between the paths (take for example a butter�y
option construction, which has a symmetric payo¤).
Usually, sampling a pair of antithetic paths is faster than 2 independent paths. First

because now we only need to draw zm once. Second because it may be easier to com-
pute f(�zm) after f(zm) because some of the computations will probably be the same.
The improvement is very much depending on the implementation, but will generally be
relatively small.

6.2 Control Variates
The method of control variates (CV) is based on the principle �use what you know�.
Suppose we know that the function f(Z) (in our case the value of a �nancial derivative),
is very similar to another function g(Z), for which we know its expected value is G.
We can incorporate this information by only simulating the di¤erence between the two
products (f(Zm)� g(Zm)). So we replace fm in equation (5.2) by:

�m = f(zm)� g(zm) +G

where the expected value G is just a constant in the simulation. If f � f(Z) and g � g(Z)
are strongly correlated the variance of � will be smaller than the variance of f .
We can generalize this by multiplying g with a constant �, so we get

�m = fm � �gm + �G (6.3)

where we denote fm � f(zm) and gm � g(zm) and where � is a parameter that can be
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chosen freely. The Monte Carlo estimate is given by:

eV � =
1

M

MX
m=1

�m

=
1

M

MX
m=1

(fm � �gm) + �G (6.4)

This is again an unbiased estimator of V , because

E [g(Zm)�G] = E [g(Zm)]�G = 0:

The variance is given by:

var(eV �) = 1

M

�
�2f + �

2�2g � 2� cov(f; g)
�
: (6.5)

Minimizing with respect to � gives:

�? =
cov(f; g)

�2g
; (6.6)

so that equation (6.5) simpli�es to:

var(eV �) = 1

M
�2f
�
1� �2f;g

�
; (6.7)

where �f;g is the correlation between f and g. This shows that every choice for g that is
correlated with f will lead to variance reduction. The larger the absolute correlation, the
larger also the reduction in variance will be. Of course, the challenge is to �nd a variable
g that can be valued relatively easy and is highly correlated with the derivative that we
need to value.

6.2.1 Vector of Control Variates

The same analysis can be extended to a vector of control variates g, by replacing � by a
row-vector �0:

�m = fm � �0 (gm �G) :

Again, the Monte Carlo estimate is unbiased. Its variance is given by:

var(�m) =
1

M

�
�2f + �

0 var(g)� � 2�0 cov(f;g)
�
:

Now var(g) denotes the covariance matrix of the vector g and cov(f;g) is a column
vector where element i is the covariance between f and the ith element of the vector g
The minimum variance is attained when � satis�es:

var(g)� = cov(f;g): (6.8)

Essentially, this the same as using a single control variate, which is a linear combination
of the gi�s. In fact we could use an arbitrary function of the control variates, as long as
we can compute its expectation.
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6.2.2 Estimating �

The remaining task is to compute �. The optimal value is given by equation (6.6) (or 6.8),
but �2g and cov(f; g) are usually unknown. They can however be estimated by the sample
variance and covariance. The correct way to do this, is to use a separate simulation
to estimate �. This has a negative impact on the e¤ectiveness of the control variates,
because the time won by the increased convergence is partly lost in the estimation of �.
In practice, usually the same simulation is used for the estimation of � as for the Monte
Carlo simulation. This will lead to a bias, but in general, it is negligible (Jäckel, 2002).

6.3 Using Low-discrepancy sequences
In normal Monte Carlo simulation we use taking random (or pseudo-random) variables
zm. The idea of low-discrepancy sequences is to replace the random numbers by deter-
ministic numbers in such a way that they look like random numbers, but lead to a faster
convergence. These numbers are called quasi-random numbers. Unlike pseudo-random
numbers, subsequent draws of quasi-random numbers are no longer uncorrelated.
A drawback of the method is that in general it does not work for very high dimensional

problems, where each path consists of a large vector of random numbers. This holds
in particular for the Libor Market Model. Recent research however suggest that for
applications in �nance, quasi random numbers still have fast converge, even for (very)
high dimensions. Another drawback of the method of quasi-random numbers is that it is
not possible to estimate the standard error accurately.
Even though it may be very interesting to look at the use of low-discrepancy sequences

for applications in the LMM, we will not investigate it in this thesis. For more information
on random number generation, (Jäckel, 2002) is a good start.

6.4 Other techniques
There are several other methods to reduce, which are listed below. For applications in
derivative pricing in the Libor Market Model, they are usually not appropriate, mainly
because they do not work for high-dimensional problems.

� Moment Matching. When simulating a normal random variable, the moments of
the sample distribution will not exactly match the normal moments. By adjusting the
moments to make the (�rst �nite number of) moments exactly the same as the normal
moments, the convergence speed can be improved. Drawbacks are that the improve-
ments are usually relatively small and (especially for high-dimensional problems) the
e¤ort to adjust the samples to match the moments is relatively large.

� Strati�ed sampling. The function domain of f(Z), is divided into J subintervals.
For each interval j a representative value zj is chosen. For each variate zm in the
interval j, the value f(zm) is replaced by f(zj). This reduces the amount of compu-
tations, because we only have to compute f (Z) once for each interval. However, it
also induces a bias. It will only work when the values within an interval can be cho-
sen such that f is nearly constant on each subinterval. Another, related, de�nition of
strati�ed sampling is to ensure that the variates are regularly spaced of the probability
density  , for example by taking the same amount of samples in each percentile of the
distribution.

� Latin hypercube sampling. This is a high-dimensional extension of the latter
de�nition of strati�ed sampling. For a high-dimensional problem, it is not always
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possible to divide the sample variates evenly over the domain, just because the domain
is too large. Latin hypercube sampling is a way to divide samples evenly over the
domain. Low-discrepancy sequences usually already ensure that variates are evenly
spaced over the domain, which make these methods super�uous.

� Importance sampling. In some MC simulations, only a small set of paths has a
large in�uence on the value of a product. For example for a deeply out-of-the-money
product, only a few paths will lead to non-zero cash �ows. By applying a change of
measure, it is possible to concentrate on these paths where a lot of simulations are
necessary and ignore the paths where �nothing happens�(for example for deep OTM
products, where only few paths lead to payo¤s).

For more information on these methods, see (Boyle, 1977; Boyle, Broadie and Glasser-
mann, 1997; Jäckel, 2002; Glasserman, 2003). These methods will not be investigated in
this thesis.
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7 Monte Carlo implementation
In order to simulate Libor rates to price exotic derivatives, we have to discretize and
rewrite the equation that describes the dynamics of the Libor rates. This will be done
in the next section. It turns out to be impossible to give an exact solution for the drift,
so we have to approximate it, which will be described in section 7.2. After that, we give
some examples of the pricing of simple cash �ows and in section 7.4 we explain how we
can price derivatives with MC.

7.1 Solving the LMM
We would like to have an explicit expression for Li(t). We start with equation (3.10):

dLi(t) = �i (L(t); t) dt+ �i(t)Li(t)dWi(t): (7.1)

We can apply Ito�s lemma to lnLi(t), to �nd:

d lnLi(t) =

�
�i (L(t); t)�

1

2
�2i (t)

�
dt+ �i(t)dWi(t): (7.2)

Integrating over [T0; t] gives the following solution:

Li(t) = Li(T0) exp

�Z t

T0

�i (L(u); u) du�
Z t

T0

1

2
�2i (u)du+

Z t

T0

�i(u)dWi(u)

�
: (7.3)

If we discretize time t by the tenor dates T0 < � � � < TN , we get:

Li(Tk+1) = Li(Tk) exp (Xik + Yik + Zik) ; (7.4)

where Xik, Yik and Zik are the three integrals in equation (7.3) over [Tk; Tk+1]. We discuss
these integrals separately now.
For Xik, if we substitute the drift term, there holds:

Xik �
Z Tk+1

Tk

�i (L(u); u)Li(u)du

=

Z Tk+1

Tk

�i(u)
X
j

�j(u)�ij(u)�jLj(u)

1 + �jLj(u)
du:

The summation depends on the chosen numeraire (see Section 3.2). Because of the term
Lj(u) in the the integral, the drift term is stochastic, we cannot evaluate it exactly and
we have to approximate it. For the moment, we will estimate Lj(u) by its value at time
Tk:

Lj(u) � Lj(Tk) : Tk � u < Tk+1: (7.5)

This gives:

Xik �
Z Tk+1

Tk

�i(u)
X
j

�j(u)�ij(u)�jLj(Tk)

1 + �jLj(Tk)
du (7.6)

=
X
j

�j(Tk)

Z Tk+1

Tk

�i(u)�j(u)�ij(u)du;
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where �j(Tk) � �jLj(Tk)
1+�jLj(Tk)

. Now de�ne the matrix C(k) with elements Cij(k) (i; j � k+2)

by:3

Cij(k) �
Z Tk+1

Tk

�i(u)�j(u)�ij(u)du: (7.7)

Then equation (7.6) simpli�es to:

Xik �
X
j

�j(Tk)Cij(k):

Even though this is not the exact expression for Xik, due to the approximation in equation
(7.5), it turns out that this does not lead to large errors. However, there do exist better
approximations, which will be discussed in section (7.2).
For the next integral in equation (7.4), Yik, we can use equation (7.7) to rewrite it as:

Yik = �
1

2
Cii(k):

The last integral is de�ned by:

Zik =

Z Tk+1

Tk

�i(u)dWi(u):

This is just a normal variable, with expectation, variance and covariance given by

E (Zik) = 0

E
�
Z2ik
�
=

Z Tk+1

Tk

�2i (u)du

E (ZikZjk) =

Z Tk+1

Tk

�i(u)�j(u)�ij(u)du:

So the variance-covariance matrix of the vector Zk � [Zk+2;k; � � � ; ZN;k] is C(k) (equation
7.7):

Zk � N (0; C(k)) :

Now de�ne the lower triangular matrix H(k) by the Cholesky decomposition of C(k),
which exists because C(k) is symmetric and positive de�nite (we write C � C(k) and
H � H(k)):

HH 0 = C:

When wk is a (N � k � 1)-vector of independent standard normal distributed variables,
then there holds that Hwk has C as covariance matrix, because:

cov (Hwk) = H cov (wk)H
0 = HH 0I = C:

So we can write
Zik � [H(k)wk]i ;

where [�]i denotes the ith element of a vector.
3Because Cij(k) is only de�ned for i; j � k + 2, the �rst (upper left) element of the matrix is

Ck+2;k+2(k). So C(k) is a square matrix with N � k � 1 rows and columns.



7. MONTE CARLO IMPLEMENTATION 31

Substituting Xik, Yik and Zik back into equation (7.4) we get:

Li(Tk+1) = Li(Tk) exp

0@X
j

�j(Tk)Cij(k)�
1

2
Cii(k) + [H(k)wk]i

1A : (7.8)

So if we can compute the covariance matrix C(k), we can simulate the Libors by this
equation. To simulate the Libors up to time Tj , we have to draw j vectors of random
variables wk (k = 1; ::; j) De�ne this vector as zj4 :

zj � [w0; :::; wj�1] : (7.9)

To simulate all the Libors (for T1; :::; TN�1) we need the vector z � zN .
Two remarks:

� If the correlation matrix (and therefore C) does not have full rank N but rank D < N
it is possible to make the following Eigenvalue decomposition (suppressing dependency
on k):

C = V �2V y;

where �(k) is a D �D diagonal matrix with on the diagonal the square roots of the
eigenvalues of the matrix C(k) and V (k) is aM�D matrix containing the eigenvectors
of C. Then we can replace H by eH � V �. This can be used if we do not want to
use a full-rank model, but assume that the Libors are driven by D uncertainty factors
(see also Chapter 3).

� Instead of applying Ito�s lemma to equation (7.1), it is also possible to simulate Li
directly by using an Euler discretization:

Li(Tk+1) = Li(Tk) + dLi(Tk) (Tk+1 � Tk) ;

where dLi(Tk) is given by equation (7.1). This leads to a discretization error, because
it assumes dLi(t) is constant for Tk � t < Tk+1. This method is less accurate than
the one described above.

7.2 Drift correction
In the derivation in Section 7.1 we made the assumption that Lj(u) is constant between
reset dates to compute the drift integral (equation 7.5 and 7.6). This leads to a discretiza-
tion error. Several drift approximating methods have been proposed to reduce this error
(e.g. Glasserman and Zhao, 2000; Pietersz, Pelsser and van Regenmortel, 2004; Joshi and
Stacey, 2006). Here we will discuss a method proposed by Hunter, Jäckel and Joshi (2001),
called the predictor-corrector method. We start from the discretized version of equation
(7.3). Suppose we have simulated the Libors, denoted by Li up to time Tk. Then the
next Libor follows

Li(Tk+1) = Li(Tk) exp

 Z Tk+1

Tk

�i (L(u); u) du+ : : :+ f(wk)

!
;

where the exponent has been simpli�ed for readability and W is a multivariate standard
normal variable. Next we assumed L(u) = L(Tk) for all Tk � u < Tk+1 to be able

4The size of the vector z is the sum of the sizes of the wk�s:
Pk
i=1 (N � i� 1). When we do not use a

full-factor model, the size will be smaller.
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to compute the integral. For a given realization of wk, denoted by wk, this gives the
simulated Libor at Tk+1:

Li(Tk+1) = Li(Tk) exp

 Z Tk+1

Tk

�i (L(Tk); u) du+ f(wk)

!
: (7.10)

So far this is equal to the method proposed in Section 7.1. We will now improve this
estimate by using the information of the simulated value of Li(Tk+1). Because we also
have the value of Li at Tk+1 from equation (7.10), it is possible to improve our initial
approximation of the function L(Tu) (Tk � u < Tk+1) by taking:

�L(u) =
L(Tk) + L(Tk+1)

2
; Tk � u < Tk+1:

Using this improved estimate, we can correct our previous simulated Libor by substituting
this into equation (7.10), using the same realization of the Brownian motion:

bLi(Tk+1) = Li(Tk) exp

 Z Tk+1

Tk

�i
�
�L(Tk); u

�
du+ f(wk)

!

= Li(Tk+1) exp

 Z Tk+1

Tk

1

2

�
�i
�
�L(Tk); u

�
� �i

�
�L(Tk); u

��
du

!
:

Hunter et al. (2001) show this predictor-corrector approach outperforms the original (also
called log-Euler) method and say it is possible to evolve the model as far as twenty years
in one step. Because steps are typically 3, 6 or 12 months, this method will be su¢ ciently
accurate.5

7.3 Arbitrage free pricing of cash �ows
From the theory of arbitrage-free pricing, the present value V (t) of a cash �ow CFi at
time Ti, which is the value of a product, is given by:

V (t)

B(t)
= EB

�
CFi
B(Ti)

����Ft� ; (7.11)

where B(t) is the numeraire and EB denotes the expectation under the B(t)-measure. I
will give three examples to show some applications.

1. First we will use the Ti-forward measure p(t; Ti) as numeraire. Denote the correspond-
ing martingale measure by Qi. Then f(t)

p(t;Ti)
is a martingale under this measure for all

security prices f(t). So for t < � < Ti, there holds:

f(t)

p(t; Ti)
= Ei

�
f(�)

p(� ; Ti)

�
; (7.12)

5 It is possible to simulate the Libors without going from one tenor date to the next, but jumping to the
�nal maturity date TN in one step. For this so-called extreme long jump method (Rebonato, 2002), steps
of 20 years may occur. However, this method only simulates Libor rates Li(Ti�1) and not the forward
Libors (Li(Tk), k < i � 1) which makes the method useless for pricing callable Libor exotics. Therefore
this will not be discussed here.
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where Ei denotes the expectation under the Qi-measure. Now set f(t) = p(t; Ti�1)�
p(t; Ti). Clearly, this is the price of a security. Substituting this into equation (7.12)
with � = Ti�1 and using de�nitions (1.4) and (1.5), it follows that:

Li(t) = Ei [Ri] ;

so the forward rate is equal to the expected future spot rate (under the appropriate
numeraire).

2. First take B(t) as the numeraire, de�ned by equation (3.7):

B(t) =
p(t; Tm(t))Qm(t)

j=1 p(Tj�1; Tj)
= p(t; Tm(t))

m(t)Y
j=1

(1 + �jLj(Tj�1)) :

Using this as the numeraire, we �nd the following, using f(t) = p(t; Tn):

p(t; Tn)

B(t)
= EQ

�
p(� ; Tn)

B(�)

�
= EQ

"
p(� ; Tn)

p(� ; Tm(�))
Qn
j=1 (1 + �jLj(Tj�1))

#
:

Taking t = 0 and � = Tn, we get:

p (0; Tn) = EQ

"
1Qn

j=1 (1 + �jLj(Tj�1))

#
: (7.13)

The right hand side can be estimated by simulating the LIBOR rates under the risk
neutral measure. So, under the risk neutral measure, the value of a zero coupon bond,
maturing at time Tn can be estimated using simulation under the risk neutral measure.
On the other hand, the value of p (0; Tn) is also given by

p(0; Tn) =
1

nY
j=1

(1 + �jLj(0))

;

which is known exactly at t = 0. Therefore we can use equation (7.13) to test the
simulation. For example it can be used to check the accuracy of the drift approximation
from section 7.2.

3. Valuing a caplet. From the de�nition of the Libor rate (equation 1.4) it follows that
p(t; Ti)Li(t) is the price of a security. Assume a caplet with a payo¤ at time Ti given
by:

�(Ti) = �i [Li(Ti�1)�R]+ :

Taking p(t; Ti) as numeraire, the value of the caplet is given by:

capl i(0) = p(0; Ti)Ei
h
�j (Lj(Tj�1)�R)+

i
:

7.4 Monte Carlo pricing of products
In the previous section we saw how to price single cash �ows. The Libor exotics we will be
valuing, consist of a series of cash �ows CF0;CF1; :::;CFN at time T0; T1; :::; TN . Because
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all these cash �ows are martingales (under the numeraire), also the sum is a martingale.
Therefore we extend equation (7.11) to

V = B(T0)E0
"
NX
i=0

CFi
B(Ti)

#
; (7.14)

The cash �ows CFi and numeraire B(Ti) are Fi-measurable. In most cases (see for
example all the products from Chapter 1) they are even Fi�1-measurable. This holds for
all cash �ows we will look at. Usually the cash �ow CFi depends on (a subset of) the
Libor rates Lj(Tk) up to time Ti�1 (for all 0 � k � i� 1; k < j � N)6 . We call the set of
these Libors a path Pj , de�ned by7 :

Pj =
�
L(T0) L(T1) : : : L(Tj)

�
=

266666666664

L1(T0) �

L2(T0) L2(T1)
. . .
. . . �

...
... Lk+1(Tj)

...
LN (T0) LN (T1) � � � LN (Tj)

377777777775
:

The whole set of the Libors is given by P � PN�1. There holds P0 � P1 � � � � � PN�1.
For a given path P.
For a given path P we can compute the cash �ows and numeraires CFi and B(Ti) for

all 1 � i � N . Now we can estimate the present value V (equation 7.14) of a product
with Monte Carlo:

1. Draw the vector zm (equation 7.9) from the multi-normal probability density function
 (Z).

2. Simulate the path Pm, from equation (7.8).

3. Compute the cash �ows CFmi � CFi(Pm) and numeraire Bm(Ti) � B(Ti;P
m) (1 �

i � N)

4. Compute the present value

V m = B(T0)
NX
i=0

CFmi
Bm(Ti)

(7.15)

5. Repeat steps 1-4 for m = 1::M and compute the Monte Carlo estimate eV , the average
of V m (equation 5.2).

6Even though the cash �ows CFi and numeraire Bi are at least Ti-measurable, we will see they are
often even Ti�1-measurable. Especially CFN and BN can always be written as TN�1-measurable.

7A path does only have to contain the Libor rates. For example, in a stochastic volatility model, the
volatilities are also part of the path. Generally Pj is just all the information up to time Tj , so Fj . The
products we consider only depend on the Libors, therefore we use Pj .
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Part III

Callable Libor Exotics
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8 Callable Libor exotics
In the previous chapters we have de�ned the Libor Market Model and showed how we can
use Monte Carlo simulation to price products whose value is depending on the forward
Libor rates. The most important group of products we can value in this framework are
the Callable Libor Exotics (CLE). For CLE�s there are no analytical pricing formulas
available, so we need to value them with Monte Carlo. In this chapter we will explain
their general characteristics and describe some of them in more detail.
In this thesis we will consider Callable Libor exotics under some simplifying conditions.

The reason is that it makes them easier to describe and it simpli�es the notation. I will
discuss these simpli�cations in this chapter (usually in footnotes).

8.1 General structure
A callable Libor exotic (CLE) is the right to enter into a Libor exotic at a certain set of
dates. Therefore we start with the de�nition of a Libor exotic.
A Libor Exotic (LE) is a swap contract to exchange a �oating rate for a coupon rate

at a given set of tenor dates Ti. An example of a Libor exotic is the plain vanilla swap
from section 1.5. The holder of the payer swap pays each date a �xed interest rate and
receives the Libor rate. The Libor exotic is a generalization of this concept. Equivalent
to the swap, the �oating rate is usually the Libor rate8 . The coupon payment however,
can have virtually any imaginable structure. Denote the coupon payment at time Ti by
Ci. Then the net cash �ow to the holder of the payer Libor Exotic at time Ti (1 � i � n)
is9

CFi = �iK (Li(Ti�1)� Ci) ; (8.1)

where �i is again the daycount fraction between Ti and Ti+1 and K is the notional, see
�gure 8.1. The cash �ows of the receiver Libor Exotic are opposite to these.

T0 T1 T2 T3 TN­1 TNTN­2

Receive:                      L1 L2 L3 L4 LN­2 LN­1 LN

Pay: C1 C2 C3 C4 CN­2 CN­1 CN

Time
T4

Figure 8.1: Cash �ows of a payer Libor exotic

Now we can de�ne the CLE. A Callable Libor Exotic gives the holder the right to
enter into the underlying Libor Exotic. Typically, this can be done at (a subset of) the
tenor dates10 , which are called the (possible) exercise dates. When the holder of the CLE

8 Instead of the Libor rate (that pays Li(Ti�1) at time Ti), sometimes the Libor-in-arrears rate Li+1(Ti)
or even a forward swap rate Rn+kn (t) is used. This will not be discussed in this thesis.

9 In a more general form, the net cash �ow is given by �iK (giFi �mi � Ci), where g is a gearing
factor and m is a margin. Fi is not necessarily equal to the Libor rate.
10 It could as well be possible that the possible exercise dates are are di¤erent from the tenor dates.

In general, this will not in�uence on the results of the following chapter, which could equally easy be
generalized to an arbitrary set of possible exercise dates T1 < ::: < TK . The reason I restrict to tenor
dates it that it smpli�es notations considerably.
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decides to exercise (call) at a certain time � , the holder receives the underlying Libor
exotic and will receive and pay the resulting cash �ows (equation 8.1) for all Ti > � . See
�gure 8.2.

Receive: Le+1 Le+2 LN­1 LN

Pay: Ce+1 Ce+2 CN­1 CN

Time

Exercise date τ

T0 T1 Te­1 Te TN­1 TNTe+2Te+1

+1

Figure 8.2: cash �ows of a CLE when exercised at time � = Te

A cancellable Libor exotic (CcLE, also called breakable Libor exotic) is the opposite of
the callable Libor exotic. The holder of the CcLE owns a Libor Exotic, but has the right
to terminate it on one of the exercise dates. The holder receives the cash �ows (equation
8.1) until the CcLE is exercised (cancelled), so for all Ti � � (�gure 8.3).

Receive:                      L1 Le­1 Le

Pay: C1 Ce­1 Ce

Time

Exercise date τ

T0 T1 Te­1 Te TN­1 TNTe+2Te+1

+1

Figure 8.3: cash �ows of a CcLE when exercised at time � = Te

The choice of the exercise moment � is made by the holder of the C(c)LE. Of course,
he wants to exercise at the optimal exercise moment, which yields him the highest value.
The estimation of the optimal exercise date is the subject of the next chapter.
There is a direct relation between (the values of) the cancellable and callable Libor

exotics, given by:

Cancellable Payer LE = Callable Receiver LE + Payer LE. (8.2)

From the de�nitions, and even more clear from the �gures, we can see that this holds
whenever the products are exercised at the same time. From this, it immediately follows
that the optimal exercise date of both products must be the same. For each exercise date,
both sides of equation (8.2) have the same value. Therefore both attain their maximum
at the same exercise date, so they have the same optimal exercise date.

8.2 Products
In this section we will describe three callable Libor exotics. The only di¤erence between
the di¤erent products are the coupon legs Ci of the underlying Libor exotic (equation
8.1). Many more CLE�s do exist, but because these will not be used for the results in this
thesis, I will not discuss them here.
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8.2.1 Bermudan swaptions

The simplest callable Libor exotic is the Bermudan swaption. It�s coupon is just a con-
stant:

Ci = RS :

In Chapter 1 we already saw the European swaption, which only has a single possible exer-
cise date. Bermudan swaptions are essentially the same, but with more than one exercise
date. Contrarily to Europeans, for which there is a very good analytical approximation
of the value, there are no analytical pricing methods for Bermudans.
If TN is the maturity of the underlying swap, a Bermudan swaption can usually be

exercised at a set of times Tj (a � j � N � 1). Such a product is called a TN no-call Ta
(also TN nc Ta, or Ta into TN ) Bermudan swaption.
Bermudan swaptions are by far the most actively traded CLE�s and therefore also

a lot of research has been published on the valuation of these products (e.g. Andersen,
1999; Jensen and Svenstrup, 2005). Most of the results can be extended to the valuation
of other CLE�s, but usually this is somewhat more complicated. The reason is that the
underlying Libor exotic for a swaption is a swap, which can easily be valued analytically.
This does however not hold for most other CLE�s.

8.2.2 Callable capped �oater

The callable capped �oater has a coupon consisting of the Libor rate plus a spread s,
capped from above. That means the coupon can never be larger than the cap rate c.

Ci = min (Li + s; c) :

Generally, s and c can be di¤erent for each tenor date Ti, in which case we replace them
by si and ci.

8.2.3 Callable inverse �oater

For a callable inverse �oater (CIF) the coupon is the inverse of the Libor rate, capped
and �oored:

Ci = min (max (R� Li; f) ; c) ;
where R is the strike, f is the �oor rate and c is the cap rate, all constants. All these could
also be di¤erent for each cash �ow date. In some cases the inverse rate is not capped (so
c =1) and/or �oored (f = �1)

8.2.4 Cancellable Snowball

A snowball is somewhat similar to the callable inverse �oater, but now the strike R is
no longer constant, but depends on the previous payments. It pays the previous coupon,
plus an increment, minus the Libor rate. The coupon payment at time Ti is given by

Ci = min (max (Ci�1 +Ai � Li; f) ; c) ; i = 1; ::; n; (8.3)

C0 = I:

Here Ai is the increment and I is the initial previous coupon. From the coupon de�nition
we see that it is path-dependent, since each coupon depends on the previous. If the payo¤
is not capped, it could grow very large if all Libors Li are smaller than the increment Ai.
If that happens the snowball turns into an avalanche.
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9 Valuation of CLE�s
To be able to price a callable or cancellable Libor exotic, we have to decide when the
product will be exercised. As will be explained in the next section, the value of a CLE
can be computed when the exercise date is known. The valuation can be expressed as an
optimal stopping problem. .The rest of the chapter shows how to estimate the optimal
exercise date.

9.1 Value of a CLE
For simplicity we will assume that the C(c)LE can be exercised at every tenor date
T1 < ::: < TN�1. Exercising at the last tenor date TN is useless, because there are
no cash �ows after TN . First we look at the CLE. When the callable is exercised at
time Tk the holder receives the underlying Libor exotic which leads to cash �ows at time
Tk+1; :::; TN . At time Tk we can compute the value of the CLE, conditional on exercise
at time Tk. Discounted to T011 , the value is given by (see also equation 7.14):

vcallk = B (T0)Ek
 

NX
i=k+1

CFi
B(Ti)

!
; (9.1)

where Ek is the expectation computed at time Tk, with B as the numeraire. Note that
the expectation can sometimes be computed explicitly at time Tk. An example is the
case of the Bermudan swaption, where the expectation is simply the value of the swap
contract.
For the CcLE, there is one important di¤erence. Suppose we exercise at time Tk:Then

the value of the product only consists of cash �ows in the past. Therefore, we no longer
need the expectation in equation (9.1) and it reduces to:

vcanck = B (T0)
kX
i=1

CFi
B(Ti)

: (9.2)

The holder of the C(c)LE will exercise the product on the moment that will give him
the highest expected value. Otherwise there would exist arbitrage possibilities. So the
exercise moment Tk is the moment for which equation (9.1) has its (expected) maximum.
That means the value at time T0 is given by the solution of the following optimal stopping
problem (Bender, Kolodko and Schoenmakers, 2006):

V = sup
�2T

E0 (v� ) ; (9.3)

where T denotes the set of stopping times indices � : T = f1; :::; Ng, where � = N means
the product is not exercised.
To value the product with Monte Carlo, we need to know when the product will be

exercised. For each simulation m, starting at T1, we decide whether we want to exercise,
given the information at time T1 (given by Pm1 ). If we do not exercise, we continue with
Ti+1, until we �nd the date of exercise. Given this date Tk, the simulated value can be
computed from equation (9.1) or (9.2):

V m = vk(P
m
k ): (9.4)

11 In this and following chapters we will usually discount cash �ows at time Ti to their value at T0. We
call this the T0-value. The reason we do this is to make it possible to compare cash �ows occuring at
di¤erent dates.
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Note that this is just a special case of the general pricing of products (equation 7.15). In
the case the expectation in equation (9.1) cannot be computed analytically at time Tk,
we have to simulate the path until time TN to get:

V m = B (T0)
NX

i=k+1

CFi(P
m)

B(Ti;Pm)
:

In the following section we discuss how we can estimate the optimal exercise strategy.

9.2 Optimal stopping time
From equation (8.2) we know that the optimal exercise strategy of a callable is equal to
the optimal exercise strategy of the opposite cancellable. If we can compute the optimal
exercise strategy for one of those, we know it for both. This is easier for the cancellable,
because we do not have to compute the expected value of the underlying (compare equa-
tions 9.1 and 9.2). Therefore we will try to �nd the optimal exercise strategy by looking
at cancellables only.
First we de�ne Hm(Ti) as the remaining T0-value of the product, computed at time

Ti, in the case we would only have the exercise opportunities Tk for m � k < N available
(m � i):

Hm(Ti) = B (T0) sup
��m

Ei
0@ �X
j=i+1

CFj
B(Tj)

1A : (9.5)

If we compare this with equation (9.3) together with (9.2) we see that we ignore all the
previous cash �ow (up to Ti) We call Hm(Ti) the continuation value or hold value of the
product. The following properties hold for H:

� the value of the product (equation 9.3) is given by H1(T0);

� the value of the CLE at time Ti if we do not exercise is given by Hi+1(Ti),

� after the last cash �ow, the value is zero: HN (TN ) � 0,
� the value is lower when there are less exercise opportunities Hi(Ti) � Hi+1(Ti) �
� � � � HN�1(Ti).

� There holds
Hm(Ti) = Hm(Ti+1) +

CFi+1
B(Ti+1)

(9.6)

Now we can write the determination of the optimal exercise date as follows. Suppose
we are standing at time Tj and we have to decide whether we want to exercise (so we
did not exercise before Tj). If we exercise (i.e. cancel), we terminate the contract and
receive nothing. If we do not exercise, we have the same product, but with one exercise
opportunity less, so its value is given by the continuation value Hj+1(Tj). From this,
it is clear that we will exercise when the continuation value is negative: Hj+1(Tj) < 0.
Therefore, the value of the product at time Tj can be given as:

Hj(Tj) = max (Hj+1(Tj); 0) : (9.7)

The optimal moment to exercise T� the product is thus given by the �rst date Tj when
Hj+1(Ti) < 0 and TN if no such date exists:

T� = min (Tj : Hj+1(Tj) < 0) ^ TN : (9.8)
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Now we can de�ne the exercise regions �j . This is the collection of all the situations for
which it is optimal to exercise the product:

�j � fz 2 
 : Hj+1(Tj ; z) < 0)g ; (9.9)

for each exercise date Tj . From the exercise regions, it is possible to determine the optimal
exercise moment for a state:

�(z) = min fj : z 2 �jg :

9.3 Lower bounds
To be able to price a CcLE, we have to compute when the product is exercised for each
path m. We �rst want to know whether it is optimal to exercise at T1. Therefore we need
to know whether Hm

2 (T1) < 0. If it is not optimal to exercise at T1 we continue with the
next exercise date and look at Hm

3 (T2).
Because we do not know Hi+1(Ti), we have to estimate it. We could estimate Hm

2 (T1)
by an inner simulation (for each path). However Hm

2 (T1) depends on Hm
3 (T2), which

we also do not know. We would have to use an extra simulation for each inner simula-
tion to estimate it. Continuing in this way we get N � 1 nested simulation to estimate
H1; :::;HN�1. For more than a few exercise dates, this is much to slow.
Clearly, we have to estimate Hj+1(Tj) in another way. Several methods have been

proposed to do this (e.g. Andersen, 1999; Longsta¤ and Schwartz, 2001; Kolodko and
Schoenmakers, 2006). Every approximation of Hj+1(Tj) leads to a suboptimal exercise
strategy and therefore the value of the option using this strategy, will be lower than the
true option value. The better the estimation of the exercise and continuation values are,
the better the exercise strategy and therefore the closer the estimated value is to the true
option value. In the next section we will present the method of Longsta¤ and Schwartz
(2001), which is the most widely used method in practice.

9.3.1 Longsta¤-Schwartz algorithm

The idea of Longsta¤ and Schwartz (LS) is to estimate Hi by a function of a set of state
variables, where the function is estimated by means of a regression.
For each possible exercise date Ti choose a set of state variables, which are Fi-

measurable (so their value is known at Ti). Denote the vector of state variables by
S:

S(Ti) = [S1(Ti;Pi); S2(Ti;Pi); � � � ; SN (Ti;Pi)] :

Furthermore, for each i we choose a parametric family of R-valued functions fi(S; ai).
where ai is a vector of parameters. We will approximate Hi by f :

Hi+1(Ti) � fi(S(Ti); ai) (9.10)

Using this approximation, the estimate of �n (9.9) is given by:

e�n � fz 2 
 : fi(S(Ti); ai) < 0g :
The parameter vectors ai have to be chosen in such a way to ensure the best �t in
equation (9.10). This is done by optimizing them over a set of K Monte Carlo paths
Pk� PN�1(zk). For each path k we can compute the realized cash �ows CFkj and the



42 PART III. CALLABLE LIBOR EXOTICS

corresponding numeraires Bk(Tj) Furthermore, we can compute the state variables for
this path for all Ti

Sk(Ti) = [S1(Ti;Pi(zk)); S2(Ti;Pi(zk)); � � � ; SN (Ti;Pi(zk))] :

Hi depends on the value of Hi+1. To compute ai we therefore start at time TN�1 and work
backwards until time T1.There holds Hk

N (TN ) � 0. Now we use the following algorithm:

1. take n = N � 1.
2. For all k, compute Hk

n+1(Tn) from Hk
n+1(Tn+1) and equation (9.6). Next compute

Hk
n(Tn) from equation (9.7):

Hk
n(Tn) = max

 
Hk
n+1(Tn+1) +

CFkn+1
Bk(Tn+1)

; 0

!
: (9.11)

3. Use a cross-sectional regression over all k�s of Hk
n(Tn) on fn(S

k(Ti); an _) to estimate
an.

4. Replace n by n� 1 and continue with step 2 until n = 0:

In this way, we can compute all parameter vector ai. This can be used to value the
option using Monte Carlo simulation. We can, for each path, compute the state variables
S(Ti) and compute fi. These can be used to compute the optimal exercise date from
equation (9.8). When we know the optimal exercise date, the option is for each path just
a series of cash �ows, for which we can compute the present value.
See Longsta¤ and Schwartz (2001) for a simple example of the algorithm for an Amer-

ican put on a non-dividend paying stock.

9.3.2 Implementing LS

To implement LS, we �rst have to choose what functions fn we use. Usually fn is just
a polynomial of S(Tn) with weight vectors an. The optimization is then just a linear
regression. Under this assumption, the regression can be executed very fast. It turns out
that using a polynomial leads a good approximation of the lower bound when we choose
good state variables (Piterbarg, 2004). Besides, usually a small set of state variables is
enough to get a good exercise strategy. Using to many state variables increases the risk
of over�tting.
Usually we do not use all paths in the regressions. For those dates Ti where the

next cash �ow CFi+1 (which is Fi-measurable) is positive, it is never optimal to exercise,
because it is always better to cancel at the next exercise date. For callables the same
holds when the next cash �ow is negative.
In the original article, Longsta¤ and Schwartz (2001) applied their method to callable

derivatives for which the value underlying is known at the moment of exercise. We could do
the same for Bermudan swaptions In that case we would have to compare the continuation
value with the exercise value E (the value of the swap). It is optimal to exercise as soon
as Hm

i < Emi . Piterbarg (2004) suggests that, when the exercise value is not known, we
can use another regression to estimate it. Because this is not necessary when we write the
problem in terms of cancellables, the method we presented above is easier and probably
better, because we only estimate one variable instead of two.
Joshi and Kainth (2005) propose to use a non-parametric regression. The main advan-

tage is that the risk of over�tting is lower. However the implementation is less straight-
forward and it is much slower.
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9.4 Upper bounds
Every method that gives an estimate of the optimal exercise boundaries (section 9.3)
gives a lower bound on the value of the C(c)LE. It does not give an indication of whether
the lower bound is close to the true price. For LS, trying di¤erent state variables and
parametric functions can give an indication of whether it is possible to improve the lower
bound. But still it could be possible that we are far from the optimal value.
Some methods have been suggested to obtain an upper bound on the value of the CLE

(Rogers, 2002; Haugh and Kogan, 2004). It is not hard to devise an upper bound. At
the end of each simulated path (at time TN ), we can look back and determine what the
optimal exercise strategy would have been. This can be done by computing the value
of the CLE conditional on each exercise date and taking the maximum. Starting from
equation (9.3) we get:

V � sup
1�k<N

E0 (vk)

� E0
�
max
1�k<N

vk

�
: (9.12)

One can doubt whether this leads to a very close upper bound. It depends on whether the
exercise strategy with hindsight is close to the exercise strategy without. The value of the
upperbound is equal to the true option value when equation (9.12) holds with equality.
Andersen and Broadie (2004) present an extension to this method, by saying that we

can add and subtract an arbitrary martingale to equation (9.12). Let �i be a martingale
for which sup1�k<N �k <1. Equivalent to equation (9.12) we can write:

V = sup
1�k<N

E0 (vk + �k � �k) (9.13)

= �0 + sup
1�k<N

E0 (vk � �k)

� �0 + E0
�
max
1�k<N

(vk � �k)
�
:

Because this holds for all martingales � we can take the in�mum over all martingales �:

V � �0 + inf
�2�

E0
�
max
1�k<N

vk � �k
�
: (9.14)

Now have a look at the function Hj(Tj) from equation (9.5). It is a supermartingale
(Hj(Tj) � Ej (Hk(Tk)), for all k > j) so there exists a Doob-Meyer decomposition of the
form

Hj(Tj) =Mj �Aj ; (9.15)

where Mj is a martingale and Aj is an increasing process with A0 = 0, so M0 = H1(T0).
Now we take �j =Mj . Then

V � M0 + E0
�
max
1�k<N

(vk �Mk)

�
= H1(T0) + E0

�
max
1�k<N

(vk �Hk(Tk)�Ak)
�

� H1(T0) = V;
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where we use that V = H1(T0) The expectation is negative since vk � Hk(Tk) (see
equation 9.11) and Ak � 0. So for �j =Mj equation (9.13) holds with equality. Because
we do not know Hj(Tj) in equation (9.15), we will use an approximation. Because this
will a¤ect �j the equality no longer holds and we �nd an upperbound from equation
(9.14). The better the approximation of Hj(Tj) is, the better the upperbound will be.
We already have found an approximation of Hj(Tj) by the lower bound approximation.
Andersen and Broadie (2004) describe how to estimate Mj from eHj an inner simulation,
which gives us an upper bound.
Because we need an extra simulation, the computation of an upper bound is very time

consuming. However, it is not necessary to compute it every time. For example, when we
have chosen a set of state variables and parametrizations in the LS-framework, we can
compute an upper bound to test whether the lower bound is close enough to the true value.
Once we are content with the result, we can use the lower bound as an approximation,
without computing an upper bound each time.
For the results in this thesis, no upper bounds have been computed. We have tested

whether the computed lower bounds were correct (and thus whether we have chosen
the right state variables and parametrization) by comparing the results to known upper
bounds from literature (e.g. Bender et al., 2006).
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10 Rasmussen
In the next part, we will apply the use of control variates to the valuation of CLE�s.
Because the value of the control variate can be computed at every tenor date, we can
choose at which date we do this. Rasmussen (2005) shows what the optimal valuation date
is for American options for which the value of underlying can be computed analytically.
In this chapter we will give his results when applied to the valuation of CLE�s. The next
section states the problem and section 10.2 gives and proves the optimal valuation date.

10.1 Evaluation moment
For each simulation the value of a CLE is given by equation (9.4), where vk is given
by equations (9.1) or (9.2). The value is computed at the exercise date Te unless the
underlying can not be valued analytical (equation 9.1) and we have to simulate until the
end (TN�1) before we can value it.
Now look at the control variates. The control variate is de�ned by a set of cash �ows

CFi Its value at T0 is given by

� = B(T0)E0
 

NX
i=1

CFi
B(Ti)

!
:

For all control variates, this value can be computed analytical at T0. To use it as control
variate, we also value it by Monte Carlo simulation. For simulation m the value is given
by equation (7.15). However, in the MC simulation, it is not necessary to simulate the
product up to time TN , since we can price it at every moment Tj . Because the cash �ows
can be valued analytically, we can de�ne the simulated value, computed at time Tj as:

�mj � B(T0)Ej
 

NX
i=1

CFi
B(Ti)

!

= B(T0)

0@ jX
i=1

CFi
B(Ti)

+ Ej
0@ NX
i=j+1

CFi
B(Ti)

1A1A :

Note that � � �m0 , the analytical value. Because the value of the control variate is a
martingale, there holds for all j:

� = E0 (�m) = E0
�
�mj
�
:

So in the MC simulation, we can value the product at the moment of our choice. In the
following section we show what the optimal valuation date is.

10.2 Optimal evaluation moment
Suppose we want to value a product, which can be valued at a (possibly stochastic) time
Te, whose value is Ve. We use � as control variate, which we can value at any time Ti, as
explained in the previous section. We want to choose Ti such that the correlation between
Ve and �i is as high as possible. Equivalently, we want the variance of Ve� ��i to be
as small as possible, where � is between �1 and +1. Suppose Ve and �i are positively
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correlated (so � > 0) and take for simplicity � = 1. Then we want to minimize the
variance of (see equation 6.3):

Ve � �i = (Ve � Vi) + (Vi � �i) :
From the right hand sight we can see the variance can be decomposed into two parts. The
�rst is the variance of the di¤erence in value of the product between the valuation moment
of the product and the valuation moment of the control variate. It can be expected to
be an increasing function of je� ij. The second term depends on the di¤erence between
the value of the control variate and the product at the moment of exercise of the control
variate. In general, it will be increasing in i. From this, one could expect that taking
i = e is always better than taking i > e. Rasmussen (2005) shows this is true. We present
a proof below.
We want to show that for all i > e, there holds:

j� (Ve;�e)j � j� (Ve;�i)j :
This is the same as showing:

jcov (Ve;�e)jp
var (Ve) var (�e)

� jcov (Ve;�i)jp
var (Ve) var (�i)

:

Because we use the absolute value of the correlation, the statement also holds when the
product and CV have a negative correlation. First, we look at the covariances:

cov (Ve;�i) = E0 (Ve�i)� E0 (Ve)E0 (�i)
= E0 (Ee (Ve�i))� E0 (Ve)E0 (Ee (�i))
= E0 (Ve�e)� E0 (Ve)E0 (�e)
= cov (Ve;�e) ;

where we use the optional sampling theorem, which states that for all Martingales � there
holds �e � Ee (�e) = Ee (�i) for all i > e. For the variance, there holds

var (�i) = E0
�
�2i
�
� E0 (�i)2

= E0
�
Ee
�
�2i � �2e +�2e

��
� E0 (Ee (�i))2

= E0
�
Ee
�
�2i � �2e +�2e

��
� E0 (Ee (�i))2

= E0
�
Ee
�
�2i
�
� Ee (�i)2

�
+ E0

�
�2e
�
� E0 (�e)2

= E0 (vare (�i)) + var (�e)
� var (�e) :

From this it follows that j� (Ve;�e)j � j� (Ve;�i)j, so we are �nished.
We can conclude it is never optimal to value the control variate later than the valuation

date of the C(c)LE. For callables where the underlying is analytical and for all cancellables
this is the moment of exercise of the product. When the underlying product of the
callable cannot be valued analytically, this does not hold (see also section 9.1 on the
Monte Carlo valuation of C(c)LEs). In section 12.3 an example will be given which shows
the e¤ectiveness of Rasmussen�s idea.
We also expect it will not be optimal to exercise at a date i < e, because we are

ignoring the information between Ti and Te for the valuation of �, while we do use it for
V . In section 12.3 we will also give an example of this. Even though it holds in general,
we cannot proof that i < e is not optimal. It is not hard to think of a counter example
(take a control variate where payo¤s between Ti and Te which are uncorrelated with V ).
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Part IV

Results
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11 Setup
In the previous chapters we have described all the essential ingredients for the valuation
of CLE�s in the Libor Market model. We have explained the LMM, CLE�s, Monte Carlo
and showed how we can value a CLE with Monte Carlo in the LMM. Before we can apply
this theory to actually price CLE�s, we have to choose model parameters and specify the
products we want to value. This will be done in the following sections.

11.1 Objectives
In the following chapters, we will try to reduce the standard error of the Monte Carlo
simulation. What we would like to achieve is a generic method that can be used to reduce
the variance of the simulated price for a range of di¤erent product under di¤erent (market)
circumstances. We are not looking for a control variate that only works for a speci�c case,
because it has no use in practice.
To judge whether a method is e¤ective, we have to choose benchmarks. These will be

the relative variance reduction � and its time-adjusted version �, as de�ned in Chapter 6.
The latter is the actual improvement in time, but since this can be very implementation
dependent we will also consider �.
For the determination of the time used, we will only take the simulation time into

account. So we exclude the time needed to compute the exercise strategy by the LS-
method. In practice, it is almost always necessary to compute the exercise strategy,
which increases the computation time and decreases the relative e¤ectiveness of variance
reduction techniques. Within LS, the time to estimate the optimal exercise strategy
depends on the choice of state variables and the number of simulations. Because these
choices all in�uence the simulation time, we decided not to take it into account.

11.2 Model parameters
As explained in Chapter 4, we have to calibrate our model to actual market parameters.
In this thesis, we will use the same parameters as has been used in Bender, Kolodko and
Schoenmakers (2005). That means we will take tenor dates

Ti = 0:5i (i = 0; ::; 12 � N);

so the �nal maturity is TN = 6 and the last Libor is L12(t) = F (t; 5:5; 6). The daycount
fraction simply is assumed to be �i = Ti � Ti�1 = 0:5. We will assume the following
time-homogeneous volatility structure:

�i(t) = �i

�
[a (Ti�1 � t) + d] e�b(Ti�1�t) + c

�
;

as has been proposed in section 4.3.2 (equation 4.2). Furthermore, the correlation between
Libor rates is given by (see equation 4.3, section 4.4):

�ij = exp

�
jj � ij
N � 2 ln �1

�
; 2 � i; j � N:

For this choice of parametrization it is possible to compute the covariance matrix (equation
7.7) can be computed analytically. The values of the parameters �i; a; b; c; d; �1 and the
initial Libors L1(0); ::LN (0) are the same as in Bender et al. (2005), and can be found
there and in appendix C. See �gure 11.1 for a plot of the initial forward term structure,
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Figure 11.1: Initial term structure Li(0).

which is upward sloping. Figure 11.2 gives the forward volatility structure at di¤erent
moments t. As we can see, the volatility is hump-shaped as discussed in section 4.3.2,
except for the initial volatility structure (t = 0).
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Figure 11.2: volatilities �i(t) for t = 0; 0:5; 1; 2; 3; 4

We will use a full-factor model. As numeraire we take the risk neutral bank account
(equation 3.7). For the simulation of Libors we have used the predictor-corrector drift-
correction from section 7.2.

11.3 Products characteristics

We will value several products, a Bermudan swaption, a cancellable swap, a callable inverse
�oater and a cancellable snowball. We will look at ATM, ITM and OTM products. These
will be described in the next sections. For all products we will set the principal equal to
1: K = 1.
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11.3.1 Bermudan Swaption

We will value a T12 no-call T1 Bermudan Swaption (see section 8.2.1) on a payer swap
with �xed maturity T12. That means the option can be exercised at time T1; ::; T11. When
the option is exercised at time Te the holder receives a Te � (T12 � Te) �xed maturity
payer swap that pays him at each time Ti; (e+ 1 � i � N) a (possibly negative) amount
of (using Li � Li(Ti�1)):

�i (Li �RS) : (11.1)

To make sure the underlying product is at the money (ATM), RS is set equal to the initial
swap rate RN0 , which assures the value of the swap is 0 at time 0 (see also section 1.5
on swaps). Given the parameters from section 11.2, there holds: RN0 = 0:0322. For the
ITM/OTM case, we decrease/increase the strike rate by 1 percent point: RITMS = 0:0222,
ROTMS = 0:0422.
We will also look at the receiver swaption, for which equation (11.1) is replaced by

�i (RS � Li) :

The ATM strike is the same as for the payer swaption. For the ITM/OTM case, the �xed
rates are interchanged: RITMS = 0:0422, ROTMS = 0:0222.
Finally, we will also look at the corresponding cancellables. These have the same

underlying swap, exercise dates and strikes as the callables.

11.3.2 Callable inverse �oater

Now we take a callable inverse �oater (see section 8.2.3) with the same possible exercise
dates (T1; :::; T11) and the same cash �ow dates (T2; ::; T12) for the underlying product as
for the Bermudan swaption. So, when exercised at time Te, the holder of the product
receives the following cash �ows at time Ti (e+ 1 � i � N)

�i (Li �min (max (Ri � Li; fi) ; ci)) ;

We will assume ci =112 , fi = f and Ri = R for all i, so we can rewrite this as:

�i

�
Li � f � [R� f � Li]+

�
; (11.2)

where [�]+ � max (�; 0). This is just the sum of a Libor rate, a constant and a �oorlet.
So, just as the underlying of the Bermudan swaption (i.e. the swap), also the underlying
of the CIF can be valued analytically.
We take R = 0:062243 and f = 0:02. With these parameters, the value of the un-

derlying is equal to zero (<0.02 bp) so the product is ATM. For the ITM/OTM case we
in-/decrease R again with one percent point.

11.3.3 Cancellable snowball

To test our results on a more complicated product, we will also produce results for the
cancellable snowball (see section 8.2.4). The product can be cancelled at dates T1; :::; T11
and will produce cash �ows from T2 until the cancellation date and until T12 if it is not
cancelled at all. We will use a somewhat simpli�ed version of the general snowball payo¤

12The same analysis can be performed with a di¤erent c. However, this will lead to more complicated
payo¤ functions.
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(equation 8.3), which is no longer capped and is �oored at zero (c =1; f = 0). The cash
�ows at time Ti (2 � i � e, when cancelled at time Te), are given by:

�i (Li � Ci) ;

where the coupon is given by (taking Ai = A for all i):

Ci = [Ci�1 +A� Li]+ :

We will take A = 0:031 and C1 = 0:0135. These parameters are again chosen to ensure the
product is at-the-money (<1bp), where the value of underlying contract (so without the
possibility of cancellation), has been computed by simulation, since no analytical solution
exists.
We investigate the cancellable instead of the callable, since it is traded more actively

on the market. Even though it can be applied just as easy, the callable has a somewhat
strange pro�le, because after calling the next cash �ow depends on the previous coupon,
which has never been paid. For the callable we therefore would have to keep track of the
coupon of the underlying, even if it has not been called yet.

11.4 Longsta¤-Schwartz implementation
Before we can start valuing the products described in the previous section, we have to
estimate the optimal exercise strategy. We do this by using the Longsta¤-Schwartz algo-
rithm, as described in section 9.3.1. To estimate the continuation value Hi, we will use
the following state variables:

S1(Ti) = 1

S2(Ti) =

NX
j=i+1

�jp(Ti; Tj)

S3(Ti) =

NX
j=i+1

�jLj(Ti)p(Ti; Tj)

S4(Ti) =
NX

j=i+1

�jLj(Ti)p(Ti; Tj) (i� imid)

S5(Ti) = CFi+1;

where imid = i+N
2 . S2 is equal to the present value of a basis point (see equation 1.7),

so it corresponds to a vertical shift in the yield curve. S3 is called the present value of a
�oating leg. S4 is called the present value of a curve tilt and corresponds to a relative shift
between the Libors with a short time to maturity compared to the Libors with maturities
further away. Finally S5(Ti) is the next cash �ow of the underlying Libor exotic (equation
8.1). This is possible, because the cash �ow at Ti+1 is Fi-measurable for all derivatives
we will be looking at (If this would not be possible, we should replace CFi+1 by CFi.).
Now we will estimate the continuation value Hn by a linear function in the state variables
and some quadratic terms of the state variables:

fi(S(Ti);�i) =
5X
j=1

ajiSi(Ti) + a
6
iS3(Ti)

2 + a7iS4(Ti)
2 + a8iS4(Ti)S4(Ti); (11.3)
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where the weights aji are determined by regression. For the snowball, which the next cash
�ow CFi+1 has more impact, we also add a9iS5(Ti)

2.
As argued in section 9.3.2, we only take those paths into account where the next cash

�ow CFi+1 is negative. When the next cash �ow is positive, it can never be optimal to
exercise, because it is always better to wait until the next exercise date.
To estimate the factors ai we follow the procedure described in section 9.3.1. Because

equation (11.3) is just linear in the parameters aji , we can simply use ordinary least squares
(OLS) to estimate the factors. 50 000 paths have been used. We did not use the same
paths for the LS algorithm as for the valuation of the products.
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12 Bermudan swaption
In this chapter we look at the valuation of Bermudan swaptions, as described in section
11.3.1. Because the Bermudan swaption is the most simple CLE, it is a good place to
start. We will look at several ways to increase the convergence speed of the Monte Carlo
simulation by using control variates. In Chapter 14 we will try to use the same ideas for
other products.
We start with the straightforward (i.e. without CV�s) valuation of the Bermudan

swaption in the next section. Then we will discuss the choice of suitable control variates.
Next, in section 12.3, we give an example of the use of control variates and illustrate the
idea of Rasmussen (2005) as explained in Chapter 10.
In section 12.4 until 12.6 we present results, all for the ATM Bermudan payer swaption.

Successively, we look at di¤erent single control variates, using a vector of control variates
and the use of antithetic sampling. Section 12.8 looks at other Bermudan swaptions:
receivers, ITM or OTM swaptions and cancellables, to see whether the results from the
previous sections are consistent for all types of swaptions.
A similar analysis has been done by Jensen and Svenstrup (2005) for the Bermudan

payer swaption. We will compare the results in the last section.

12.1 Product values (benchmark)
All values and standard deviations in this thesis will be denoted in basis points (bp),
which is 0.0001, or 1

100 of 1% (of the principal K). We use 100000 simulations to estimate
the value of the products, without the use of any variance reduction technique.

Payer ReceivereV se eV se
ATM 224.2 0.77 139.3 0.44
ITM 514.1 0.76 508.0 0.68
OTM 100.6 0.57 15.64 0.13

Table 12.1: Bermudan swaption values and standard erros (in bp)

Table 12.1 gives the estimated value (eV ) and the standard error (se) of di¤erent Bermu-
dan swaption. Of course, there holds eVITM > eVATM > eVOTM . Another, less obvious,
observation is that eVPayer > eVReceiver . This can be explained by the term structure, which
is upward sloping. For the ATM swaption, at T0 the �xed rate RS is chosen such that
the underlying swap is ATM. Because the term structure is upward sloping, the payer
swap generally becomes ITM, while the receiver swap becomes OTM. Therefore we can
expect the payer swaption to have a higher value. This holds to a lesser extend for ITM
swaptions, since both the payer as well as receiver swaption are ITM and will be exercised
early.

12.2 Choice of control variates
The aim of this chapter is to �nd suitable control variates to reduce the computation
time for the pricing of Bermudan swaptions. There is a large pool of possible control
variates available to choose from. Everything can be used, as long as it has an analytical
value. As shown in section 6.2 (equation 6.7) the best control variate is the one with the
highest correlation with the Bermudan. We will restrict our attention to products that
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can be valued within the LMM. Because these products depend on the same quantities
(the Libor rates) we can expect to be able to get high correlations.13 Examples are the
products from Chapter 1: forwards, swaps, caplets, �oorlets, caps, �oors. However, it is
not necessary to use existing products: every control variate can be used as long as the
expected value is known. Furthermore, all possible linear combinations of control variates
are again control variates.
For the Bermudan swaption a few control variates seem to be a natural choice. First

one is the (underlying) swap. When the Bermudan is exercised, its value will be equal
to the remaining value of the swap. Before exercising, the swap does also lead to some
payo¤s that will not occur for the Bermudan. Because these will probably be negative
(otherwise it would have probably been optimal to exercise the Bermudan earlier), the
swap value will be lower than the value of the Bermudan. The more in-the-money the
Bermudan is, the earlier it will probably be exercised and the more e¤ective the swap will
be as a CV.
Another obvious control variate is the European swaption. Each European is a lower

bound for the value of the Bermudan, and they will only be perfectly correlated for
those paths where the exercise date of the Bermudan is equal to the European one.
Because European swaptions can not be valued analytically in the LMM, they would not
be available as control variates. However, because the approximation from equation (1.12)
with (3.15) is very accurate, one can argue they can still be used. Although small, this
will lead to a bias in the value.
A bit less trivial choice is the cap, but the payo¤s of the cap and the Bermudan are very

similar. Take a cap with the same cash �ow dates as the swap underlying the Bermudan
and with a strike of R; close to, or equal to the �xed rate RS used in the Bermudan. The
cap has the same payo¤s as the swap, whenever they are non-negative, so it is not hard
to see it provides an upper bound for the value of the Bermudan. We will come back to
this later on.
The control variate technique will be applied in the following way. For each Monte

Carlo simulation m we simulate a path of Libor Pm. From this path, we can compute the
exercise moment and value the CLE. We value the control variate(s) on the same path.
From allM simulations, we compute the sample covariance between the CLE and the CV
as well as the sample variance of the CV. From this we estimate � from equation (6.6).
After that, we can compute the estimate of the product value and standard error from
equations (6.4) and (6.5). So we use the same simulation for the estimation of � as for
the valuation, as discussed in section 6.2.2.

12.3 When to value the control variate
As discussed in Chapter 10, Rasmussen (2005) showed it is never optimal to value the
control variate later than the CLE. This will be illustrated in this section, by valuing the
ATM Bermudan payer swaption.
For each simulation,the value of the Bermudan will be computed at the exercise mo-

ment Te (so we have a cash �ow equal to the swap value at that moment). Note that is
not possible to value before the exercise moment, because the moment of exercise is not

13Piterbarg (2004) proposes a total di¤erent approach. He suggests to use a one or two-factor model
and take the value of the CLE in this model as a control variate. The �analytical� solution is obtained
from a PDE method (which is possible in a model with only a few factors). In a few-factor model, not all
correlations and volatilities can be taken into account, but we can expect that the value is a reasonable
approximation of the true value ot the CLE. If we simulate the value of the CLE in this model with the
same noise terms as in the LMM, we can expect to get a high correlation with value in the LMM.
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known in advance (it is an adapted stopping time). It is possible to value the Bermudan
swaption after the exercise date. In that case the standard error of the simulated value
will become larger, due to the uncertainty in the swap value14 . and therefore we can
expect this is worse than valuing at Te.
As a control variate we take a cap with the same cash �ow dates as the Bermudan

(T2; ::; T12) and also the same strike (R = 0:322). The control variate can be valued at any
time: If Te is the exercise date, all caplets maturing before or at Te+1 have known cash
�ows. All other caplets are valued using Black�s formula (equation 1.10), as explained in
section 10.1. Because we can choose the valuation date freely, we have to look for the
moment with the highest correlation with the CLE. Rasmussen (2005) showed valuing
at Te is always better than valuing at Ti > Te. We will illustrate this by comparing the
situations with valuation at Te, at Te+1 and valuation at T11 (so when all cash �ows are
known). Because there is no such proof for valuation before Te we will test it empirically.
It is very tempting to take for example Te�1 as the valuation date, but this is not possible.
The reason is that the valuation date Ti has to be adapted to Fi. At time Te�1 we do not
yet know that we are going to exercise at time Te, so how would we know that we have
to value the control variate at that time? Doing so would result in a incorrect price for
the control variate15 . Therefore we will exercise it at

min (Te; Tu) ;

where u is �xed for all simulations. In this way we are sure that the valuation date is
smaller than or equal to the exercise date of the CLE. We will take u = 3, u = 6 and
u = 9. 100000 simulations are used. The resulting ��s are shown in �gure 12.1. � is
not given, because these are hardly di¤erent from the ��s. Please note the y-axis has a
logarithmic scale.
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Figure 12.1: � for the cap as control variate for the Bermudan payer swaption, for di¤erent
valuation dates for the cap.

We see that valuing at Te is indeed optimal. From last three bars we see it is (much)
worse to valuate after the exercise date. When the CV is valuated at T11 the relative
improvement � is 2:5. That means that, to get the same accuracy we only need 1

2:5 times
as many paths as without control variates. So with 100000

2:5 = 40000 simulations we get
the same accuracy as with 100000 simulations without control variates. However, if we
value the cap at the exercise moment of the swaption, we get � � 200, so we would only
14 If valued at the exercise date, the se of the Bermudan is equal to 0:77 (see table 12.1). If we value it

at T11 the se is 1:04.
15The simulated value of the cap will be lower than the analytical value.
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need 500 simulation to get the same accuracy! We will have a closer look at this enormous
improvement later on in this chapter. Note that the di¤erence between valuing at Te and
Te+1 is very large, while we only value the cap one timestep later.
And what about valuing the control variate before Te? As can be seen from the �rst

bars of the �gure, this is also not optimal. Of course, the larger u is, the larger �, because
min (Te; Tu) converges to Te: for u = 9 only those paths where the CLE is exercised at
T10 or T11 or not at all are di¤erent.
The last interesting question is how to apply this to CLE�s whose value is not known

at the exercise date Te, like the callable snowball. In that case, we can only value the
CLE at T11. The optimal valuation date for the cap is no longer Te, but T11, the same as
the valuation date of the CLE. We can test it by valuing the swaption at time T11, using
the simulated Libors up to T11 instead of the analytical swap value at Te. The standard
error of the value is now larger compared to exercised at time Te (se = 1:04 instead of 0:77
from table 12.1). As we would expect from the analysis above, it turns out that valuing
the cap at T11 is much better (� = 85), compared to valuing at Te (� = 2:3).
The same analysis as done here can be done for every other control variate instead of

the cap. The results will be similar. From now on, I will always value the control variate
at the same moment as the CLE.

12.4 Single control variates
Now we will have a look at the e¤ectiveness of the di¤erent control variates proposed in
section 12.2. First we will use the underlying swap as a control variate. Further 3 di¤erent
European swaptions will be used: one expiring at T1, one at T6 and one at T12. Finally
we will again take the cap (see also the previous section). For all CV�s the strike is equal
to the strike of the Bermudan. The results can be found in �gure 12.2.

500

200
100
50

20
10
5

2
1

swap T1­swaption T6­swaption T11­swaption cap

kappa
theta

1T 6T 11T

Figure 12.2: � and � for di¤erent control variates for the Bermudan payer swaption.

Note that the di¤erence between � and � is very small. This means the extra time
necessary to value the control variate for each path is very small compared to the total
simulation time. The reason is that the lion�s share of computation time is in the simu-
lation of the paths. The pricing of the CV given this path is relatively fast, so this does
hardly a¤ect the performance. For swaptions the impact is relatively large, because the
estimation of the swap rate volatility costs some time.
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As can be expected, the swaption with maturity T6, performs better than the one with
maturity T1 (to early) or T11 (to late, earlier cash �ows do not occur). It turns out T6
is in this case better than all other maturities Ti, but these are not displayed here. As
mentioned before, because swaptions are not priced exactly in the LMM, we have to see
whether this leads to inaccuracies. The estimated value of the Bermudan swaption is not
signi�cantly di¤erent when the swaptions are used as control variate, so it seems we can
use the swaption as control variates without any problems
Even though the swap and European swaptions show signi�cant improvements (up to

a factor 15 for the T6-swaption), they are by far outperformed by the cap. The correla-
tion between the simulated values of the cap and Bermudan are 0:998, almost perfectly
correlated. In the next section we will try to give an intuitive explanation of why the cap
is such a good control variate for the Bermudan swaption.

12.5 Why does the cap perform so well?
Take a cap with strike R which is close to or (in this case) equal to the strike RS of the
Bermudan. First consider the case when Libor rates go up and will stay higher than RS .
In that case the cap pays Li �R and the Bermudan will be exercised and pays Li �RS .
R and RS are just constants, so these payments are perfectly correlated. Alternatively,
suppose the Libor rates move, and stay, below RS . Then the payo¤s of the cap are zero
and the Bermudan will not be exercised and will also have no payo¤s. Again they are
perfectly correlated. So in both extremes (which are also responsible for the largest part
of the variance of the products value), they are perfectly correlated. Now suppose the
Libor rates will �uctuate a little around RS . In that case the cap will have a few small
payo¤s. The Bermudan will not be exercised, or, when exercised, will have positive as
well as negative payments. Here we have a di¤erence between the payo¤s, but because the
Libor rates are not �uctuating strongly, the impact will be relatively small. We can even
go further: when the Libor rates �rst go down and afterwards go up, the payo¤s of the
cap and Bermudan will again be strongly correlated (the Bermudan will not be exercised
until the rates go up, but also the cap does not have payo¤s before exercise). The only
large di¤erences between the cap and Bermudan payo¤s arise when the Libor rates go up
�rst and afterwards go down or when they �uctuate strongly around RS . In both cases
the cap will have larger payo¤s than the Bermudan.
Of course, this explanation is only meant to give an intuitive idea. We will come back

to it in the next chapter.

12.6 Vector of control variates
It is also possible to take a vector of control variates instead of a single one, leading to a
linear combination of products as control variate. The weights can be optimized to get a
maximum correlation (see section 6.2.1). We will consider the following combinations of
products: the three swaptions from the previous section (with expiry dates T1; T6; T11), all
swaptions (T1; ::; T11), cap+swap, cap+T6-swaption, cap+all swaptions. Finally we will
decompose the cap into caplets and use them as a vector of control variates. Here, if all
elements of the vector � would be equal to 1, we get the original cap. By allowing � to
de di¤erent from 1, we will get an even higher correlation.
The results are in �gure 12.3. We can see that using more swaptions increases the

convergence speed. However, especially when all swaptions are used, the computation
time also increases substantially. Using all swaptions instead of just the T6-swaption
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Figure 12.3: � and � for di¤erent linear combinations of control variates for the Bermudan
payer swaption.

leads to a doubling of �. Still, it is not as good as the single cap. Furthermore we see
that adding other control variates to the cap does lead to some improvement, but it is
not dramatically better. The swap seems to be the best choice, with a 30% improvement,
compared to the single cap. For the combination of caps with European swaptions, the
gain in convergence is not large enough to compensate for the extra computation time.
Also decomposing the cap into caplets does not give strong improvements. The element
�i are all relatively close to 1, so the control variate is still almost equal to the cap.
Note that all control variates are strongly correlated. This induces the risk of multi-

collinearity. However, for the examples above, this does not seem to be the case, because
the vector of weights � does not show extreme values and the weights seem to be stable
among di¤erent simulations.

12.7 Antithetic variates

Antithetic sampling (AS) is very easy to implement and widely used in practice. Moreover,
it can easily be combined with the use of control variates. We would expect that the
combination of the methods leads to an increased convergence. We use only half the
amount of simulations (so 50000) as for the other control variates (because each simulation
m already contains two valuations, for zm and �zm).
Figure 12.4 shows the results, together with the original results from �gure 12.2,

to make it easier to compare them. Only � is given, because � is almost the same.
The �rst column shows the improvement in variance when no control variates are used:
� = 2:6. If the improvement of the use of antithetic sampling and control variates would
be independent, the ��s of the control variates are multiplied by 2:6. Unfortunately, this
does not seem to be the case For the cap, the improvement is still substantial, increasing
� from 200 to 300, so 50% faster. For the swaptions there is also some improvement, but
small. For the swap however, including antithetic variables decreases the performance of
the CV. The reason is probably that the di¤erence between the swap and the Bermudan
swaption payo¤s is not monotonic (see also section 6.1). When � is smaller than 1, the
di¤erence between the swaption and swap is more or less symmetric around the �xed rate.
This is a very important observation, because it shows we cannot use antithetic sampling
for any situation and have to be careful with it.



12. BERMUDAN SWAPTION 59

500

200
100
50

20
10
5

2
1

no CV swap T1­swaption T6­swaption T11­swaption cap

kappa (no antithetic)
kappa (antithetic)

1T 6T 11T

Figure 12.4: � for di¤erent control variates for the Bermudan payer swaption, with and
without the use of antithetic sampling.

12.8 Other swaptions
In the previous section we have produced results for the ATM Bermudan payer swaption.
In this section we investigate whether the results are the same when we have a receiver
swaption and/or the swaption is in- or out-of-the-money. Finally we pay attention to the
case when the swaption is replaced by a cancellable swap.
First we have a look at the moneyness of the swaption. We will not repeat all results,

but only look at the cap, swap and T6-swaption. Because the di¤erences between � and
� are again very small, only the results for � are given. See �gure 12.5.
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Figure 12.5: � and � for di¤erent levels of moneyness

We see the control variates work better when the product is more in-the-money. When
the products is in the money, it will be exercised early, so the product behaves more like a
swap. Therefore the swap works better as a control variate. Also the European swaption
looks more like a swap, which also explains why the e¤ectiveness of the swap and T6-
swaption are almost equal for the ITM-swaption. The most important conclusion is that
the relative di¤erences are small: the cap still is by far the best control variate.
Now have a look at the receiver swaption. Note that the cap has been replaced by

a �oor and the payer swaption has been replaced by a receiver swaption. For the swap,
there is no di¤erence, because the payer swap is just �1 times the receiver swap (so also
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� is multiplied by �1).
As we can see, the performance of the control variates is clearly worse for the receiver

swaption. Instead of a variance reduction of order 100, the �oor only gives a variance
reduction of order 10. The reason is probably as follows. In the model the yield curve is
upward sloping. This means that in general Li > Lj for i > j. This has a positive e¤ect
on the value payer swaption: When a payo¤ is positive, and we exercise, we can expect
that future payo¤s will generally also be positive. For the receiver the opposite holds.
When we exercise, the value of later payo¤s is expected to be lower than the current
payo¤. This gives rise to a larger probability of negative cash �ows. Because the cap
does not have any negative payo¤s, this decreases the correlation with the cap as control
variate. Another consequence is that the product will generally be exercised later. This
reduces the correlation with the cap and swap. Besides the large decrease in e¤ectiveness,
the relative performance between control variates is more or less the same. The �oor is
still the best control variate.
Finally, what happens if we replace the swaption (callable swap) by a cancellable

swap? From the relation between callables and cancellables (equation 8.2), we can deduce
which choice of control variates we should take. The cancellable receiver is equal to the
sum of the callable payer and the underlying receiver swap. For the �rst we can use the
cap as control variate, as we have seen before. The swap already is analytical, so we
can replicate it perfectly by itself. Therefore the swap+cap should be an e¤ective control
variate for the cancellable receiver. Note that the sum of a receiver swap and cap is equal
to the value of a �oor. So for the cancellable receiver swaption we expect that the use of
a �oor has about the same e¤ect as using a cap for the callable payer swap. By the same
argument we use a cap for a cancellable payer swap, which will be less e¤ective, because
the control variates for the callable receiver swaption are also inferior to those for the
payer. Results, which will not be given here, con�rm that the reasoning above is correct
and give approximately the same results. Because the results will be the same, we will
only focus on the callable swaps.

12.9 Preliminary conclusions
Several conclusions for the swaption can be drawn from the results in this chapter, which
can also be applied to other products, as will be done in Chapter 14. First, it is optimal to
value the CV at the same moment as the CLE. Second, the use of antithetic samples can
improve the MC convergence. However, when used in combination with control variates,
this is no longer guaranteed and the combined e¤ect is not as large as the individual
improvements. Therefore it is always important to be cautious and not use antithetics
recklessly. Both conclusions can be expected to hold for other products as well.
With respect to control variates, we have seen that the cap is a very good control vari-

ate for the payer swaption. However, when we look at receiver swaptions, the improvement
of using the �oor as CV is much smaller, which can be explained by the upward sloping
yield curve. Since the cap/�oor always has the best performance, we will focus on it in
the next chapter. We will try to obtain even better results by looking at other control
variates, which are closely related to the cap.
The e¤ectiveness of the cap is partly explained by the close resemblance with the

swaption, so it will probably be less e¤ective for other products. However for other
CLE�s, we can try to take the capped payo¤ of the underlying Libor exotic as control
variate. This will be investigated in Chapter 14.
With respect to the results for the control variates, the conclusions are similar to
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those by Jensen and Svenstrup (2005). They looked at the Bermudan payer swaption in
a model where the initial yield curve is �at. They found that the cap was a very good
control variate. Since they looked at a �at term structure, we would expect the results to
be somewhere between the results for the upward sloping and the downward sloping term
structure (i.e. the receiver swaption), which is true indeed.
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13 Improving the cap
In the previous chapter we saw that the cap16 is a very good control variate for the
Bermudan swaption. We only looked at a speci�c cap: the cap rate was equal to the swap
rate and equal for all caplet-maturities. In this chapter we have a closer look at this and
search for improvements. Especially we would like to improve the control variates for the
receiver swaption, because the performance here is relatively poor. First we will have a
closer look at the resemblance of the cap and swaption. Based on these observations, we
will develop methods to improve the performance and �nally we will test these on the
Bermudan swaption.

13.1 Investigating the cap
We would like to optimize the correlation between the value of the Bermudan swaption
and the cap. We can rewrite the former (equation 9.3) as:

B(T0)E0
NX
i=1

(Li �RS)1f�<Tig
B(Ti)

; (13.1)

where 1f�g is the indicator function and � is the optimal stopping time.17 The value of
the cap is given by

B(T0)E0
NX
i=1

[Li �R]+

B(Ti)
: (13.2)

If R = RS (as was the case in the previous chapter), for all i the cash �ows are exactly
the same, but the swaption only pays cash �ows at dates Ti > � and the cap only pays
at dates Ti where Li > R. Now we will focus on the individual cash �ows at each date.
Let�s have a closer look at the payo¤s of the cap and the payer swaption. At time Ti,

the cap pays
[Li �R]+ � (Li �R)1fLi>Rg:

The payo¤ of the swaption depends on whether it has been exercised. We can write it as

(Li �RS)1f�<Tig:

From the two equations, we see the cap is a very good control variate when there holds
1fLi>Rg � 1f�<Tig for all i. Most of the time, the equality holds: if the cap is out of
the money (Li < R) it is never optimal to exercise. Moreover, we will exercise when
the current and future caplets are in the money. There are two situations when the two
indicators at Ti are not equal:

� The caplet is out-of-the-money (Li < R), while the swaption has been exercised (� <
Ti). This will happen when previous caplets where (deep) ITM, but current Libors
are lower (generally when the term structure is downward sloping), so caplets with a
later maturity are OTM.

16We will not keep saying cap for the payer swaption and �oor for the receiver swaption. In general,
everything that holds for one, also holds for the other. Usually I will only discuss the cap, but keep in
mind that the same holds for the �oor applied to the receiver swaption.
17Previously � was the index of the exercise date. We will use both notations, since it is always clear

which one is meant.
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� The caplet is in the money (Li > R) but the swaption has not yet been exercised
(� � Ti). This will be the case when it is not optimal to exercise, even if the caplet is
in the money, because forward Libors are not (so Lj(Ti) < R for some j > i).

When the (initial) term structure is upward sloping, both possibilities will not occur
very frequently. When we exercise (and thus Li > R), also future caplets are generally
in the money (so the �rst situation will not occur). Therefore it is generally optimal to
exercise as soon as the next caplet is in the money (which excludes the second situation).
This explains why the correlation between the cap and Bermudan payer swaption is very
high.
Contrarily, when the term structure is inverted, these situations will occur more often.

If we decide to exercise (thus the current caplet is ITM) there can still be future caplets
that are OTM, because future Libor rates are expected to be lower (�rst situation). If
these negative cash �ows are relatively large, it will not be optimal to exercise as soon
as the caplet becomes in the money, but only when it is deeply in the money (Li >> R,
second situation).
For the receiver swaption, we have to look at R� Li instead of Li �R. Similar argu-

ments hold. However, when the term structure if upward sloping, the payer swap payo¤
Li � R is increasing in i. However the receiver payo¤ R � Li is decreasing. Therefore
an upward sloping yield curve for a receiver swaption has the same e¤ect as a downward
sloping yield curve for the payer swaption. As argued above, this will give a lower correla-
tion. This explains the results from the previous chapter. So if our initial term structure
would have been inverted, we would get very good results for the receiver swaption, but
worse results for the payer swaption. As stated in the objectives (section 11.1), this is not
what we want (even though a variance reduction factor of around 10 is still good). We
would like to have a method that works for receivers as well payers, or equivalently, for
normal and inverted term structures. Therefore we will try to improve the results in this
chapter.
Now that we have identi�ed the (dis)similarities between the cap and swaption, we

can look for improvements. In both situations when 1fLi>Rg 6= 1f�<Tig we see that the
caplet payo¤ is higher than the swaption payo¤. The simplest way to compensate for this,
is to increase the strike of the cap. We will investigate this in the next section.

13.2 Changing the strike
We investigate what happens to the convergence if we change the cap rate R of the
cap/�oor. Figure 13.1 shows � as a function of the cap rate R.. The original results
(where the cap is ATM) is marked by a dot.
First look at the payer swaption. We can see that we can increase � to more than 500

if we increase the strike to 0:0345. For the receiver swaption, we see that the �oor rate
we used in the previous section (R = 0:0322) is much further away from optimal. If we
change the cap rate to 0:026, we almost double � (from 9 to 17). The explanation can
be found in the arguments from the previous section. Because the yield curve is upward
sloping, the future cash �ows will generally be lower than the current. Therefore it will
generally not be optimal to exercise as soon as Li < R, but only when Li < R � �i for
some �i > 0, which depends on the current term structure. Moreover, �i is increasing in
i, because the probability that the swaptions has been exercised before Ti is an increasing
function. Therefore we could expect to get an even higher correlation if we allow the
�oorlets to have di¤erent strikes.
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Figure 13.1: � for the cap/�oor as CV for the Bermudan payer swaption as function of
the cap rate R.

As we could expect from the previous section, the optimal strike for the �oor is further
away from the Bermudan�s �xed rate than for the cap. Of course, the optimal strike is
larger than the �xed for the payer and smaller for the receiver swaption. Finally, we see
that, especially for the payer swaption, � deteriorates very fast when the strike is further
away from the optimal strike.
The question, of course, is how the optimal strikes could be estimated. First we have

a closer look at the cap/�oor.

13.3 Decomposing the cap
Suppose we have a cap with strike R. At each cash �ow date Ti it pays

(Li �R)1fLi>Rg:

We can take a more general version of the cap, by letting R be di¤erent for each cash �ow
date (R = Ri), so the cap consists of caplets with a di¤erent strike.

(Li �Ri)1fLi>Rig:

This caplet pays Li � Ri if Li > Ri. We could equally well generalize this to a product
that pays Li �Ri if Li > Bi

(Li �Ri)1fLi>Big: (13.3)

We will call this product a shifted cap (SCap). Moreover, we will call Bi the barrier to
distinguish it from the strike Ri. We can decompose it in the following way:

(Li �Ri)1fLi>Big = (Li �Bi +Bi �Ri)1fLi>Big

= (Li �Bi)1fLi>Big + (Bi �Ri)1fLi>Big: (13.4)

The �rst term is just a cap with strike Bi and the second term is (Bi �Ri) times a digital
with strike Bi. From this it follows that the value of this product can be computed from
equations (1.10) and (1.11).
We would like to choose Bi and Ri in such a way that we get the highest correlation

with the Bermudan swaption. We will investigate two di¤erent methods to do this. The
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�rst is by taking Ri = RS and trying to �nd Bi such that 1f�<Tig � 1fLi>Big. The second
method tries to approximate the shifted cap with unknown optimal Ri and Bi by a linear
combination of caplets and digitals with pre-determined strikes Ri. These methods will
be described in the following sections.

13.4 Method 1: Shifted cap (regression)
The �rst method, which we will call the shifted cap or regression method, looks at each
cash �ow date separately. The cash �ow of the Bermudan swaption and shifted cap at Ti
are given by (see also equations 13.1 and 13.2):

CFBSi = (Li �RS)1f�<Tig;
CFCVi = (Li �Ri)1fLi>Big:

We try to approximate the cash �ows of the swaption by setting Ri = RS for all i. What
remains to be done is the determination of Bi. From the cash �ows we can expect that
the highest correlation will be found when Bi is chosen such that

1fLi>Big � 1f��Ti�1g: (13.5)

Since � does not only depend on Li; there will not exist a Bi giving an excellent �t.
Bi can be determined by minimizing the (squared) di¤erence between the two indicator
functions over a set of paths. Note that for this method to be applicable to other products,
it is important that the payo¤ at each time Ti (Li � R) is a monotonic function of the
corresponding Libor rate Li.
The following method will be used to determine Bi. The algorithm has some similar-

ities with the Longsta¤-Schwartz algorithm (section 9.3.1). We will look at the exercise
strategy for the cancellable. Recall from section 9.3.1 that the product will be exercised
at the �rst Ti where the continuation value is smaller than zero:

Hi+1(Ti) < 0:

From this we can de�ne whether the product has been exercised before time Ti:

� � Ti�1 () min
1�j�i�1

Hj+1(Tj) < 0:

Now write min
i
H � min1�j�i�1Hj+1(Tj). Suppose we can estimate this by18

min
i
H � ai � biLi(Ti�1) (i � j + 2): (13.6)

Then the barrier for the caplet with cash �ow date Ti is given by solving miniH < 0.
The solution is given by:

Li >
ai
bi
:

so that we have found the barrier: Bi = ai
bi
. The only thing that remains to be done is to

estimate a and b in equation (13.6). Just as in the Longsta¤-Schwartz method, we do this
by a cross-sectional regression. Because Hi is already known from the Longsta¤-Schwartz
optimization for the Bermudan swaption, we can simply compute miniH for each path
and use a linear regression to �nd a and b.

18The reason that there is a minus sign in front of �i is that H is negatively correlated with Li, so the
minus sign ensures �i > 0.



66 PART IV. RESULTS

To summarize, we have tried to estimate (13.5) in the following way

1f��Ti�1g = 1fminiH<0g � 1fa�biLi<0g = 1fLi>ai=big = 1fLi>Big:

The method can be implemented fairly easy. A weak point is that we need an extra
regression to estimate Bi. Moreover, it can be questioned whether the approximation
from equation (13.6) is by any means realistic. We can think of several ways to try to
improve things. See appendix D for a few possibilities. Because these alternatives did not
lead to better results, they will not be discussed any further.
Note that � for the regression method can not easily be compared to the other ones.

This is because the time necessary to estimate the strikes is relatively larger when we use
fewer simulations (because it is constant). If we would use less simulation, � will also
decrease.

13.5 Method 2: vector of caps
Another way to estimate the optimal cap is to estimate it by a linear combination of other
caps. As explained in section 6.2.1, it is easy to use a linear combination of products as
control variate. Moreover, the simulation determines the optimal weight factors. Because
we do not know the optimal strike, but we do know it will be around the Bermudan
strike RS , we can use a vector of caps with strikes around RS as an approximation. The
following two examples illustrate the idea.
Suppose the optimal control variate is a shifted cap, which is de�ned by its payo¤s at

Ti from equation (13.3):
(Li �Ri)1fLi>Big:

where Ri and Bi are the optimal parameters, resulting in the highest correlation. Further-
more suppose we would know the optimal value for Bi but we do not know the optimal
value for Ri. We can estimate it by using equation (13.4):

(Li �Ri)1fLi>Big = (Li �Bi)1fLi>Big + (Bi �Ri)1fLi>Big

= capBi
+(Bi �Ri) digicapBi

: (13.7)

Now we use a vector of two control variates consisting of this cap and digital. If we then
run a simulation, we can optimize the weights � = [�1; �2] as described in section 6.2.2.
This gives us the following linear combination as control variate:

CV = �1 capBi
+�2 digicapBi

= �1

�
capBi

+
�2
�1
digicapBi

�
:

Setting the term between brackets equal to equation (13.7), we can compute Ri:

Ri = Bi �
�2
�1
:

Because we can estimate � in the same simulation, it does not require extra time to
estimate Ri. So we have estimated the optimal control variate by a linear combination
two other control variates.
Of course, we do not know the optimal value for Bi so we cannot use this method

directly. We will use the same idea for the barrier Bi. Unfortunately, it is not possible to
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give the payo¤ as linear combination of caps independent of Bi as we did before for Ri.
However, we could for example try to use the following approximation:

� [Li �R�]+ � a
�
Li �R1

�+
+ b

�
Li �R2

�+
: (13.8)

The left hand side is the �optimal cap�with unknown strike R�, which we try to approx-
imate by the two caps on the right hand side. We choose R1 and R2 beforehand, such
that R1 < R2. We can write out the payo¤ of the caplets on the right hand side:

a
�
Li �R1

�+
+ b

�
Li �R2

�+
=

8<:
0 Li � R1

a
�
Li �R1

�
R1 < Li � R2

(a+ b)Li �
�
aR1 + bR2

�
R2 < Li

:

We can use this to approximate the value of a single caplet with an unknown strike R�,
whose payo¤ is given by:

� [Li �R�]+ =
�

0 Li � R�

� (Li �R�) R� < Li
:

Assume R1 < R� < R2. Then there hold that equation (13.8) holds for Li � R1. It will
also hold for R2 < Li if a and b solve:

a+ b = �;

aR1 + bR2 = �R�: (13.9)

See �gure (13.2). Now we can use the two caplets with strike R1 and R2 as control
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Figure 13.2: Approximation of caplet with strike 3% (blue) by two caplets with strikes
2% and 4% (green). The linear combination of caplets that solves equations (13.9) is given
by the red line.

variates. The variance minimization will give a and b. Then we can estimate the �optimal
control variate�from:

� = a+ b;

R� =
aR1 + bR2

a+ b
:
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The caplet with this strike (R�) has the same payo¤ as the two caplets for Li < R1

and R2 < Li. Again we have estimated an unknown caplet by two other caplets. We
do have to choose R1 and R2 in advance. An intuitive choice is R1 = RS � 0:01 and
R2 = RS+0:01, where RS is the �xed rate of the swaption. Because we would expect the
optimal strike is close to the Bermudan�s �xed rate, we can expect that these are suitable
lower and upper bounds.
These two examples are meant to illustrate the general idea, that we can use a set

of caps and digitals with di¤erent strikes as control variate. An advantage is that it is
not necessary to estimate anything beforehand; the optimal weight vector � is estimated
by the simulation. We do not have to restrict to a set of two caplets and/or digitals, we
can use any number of caplets, with di¤erent strikes we want. However, there is a risk of
multi-collinearity, because caplets with almost equal strike are strongly correlated. In the
following we choose to use three caplets, with strike RS � 0:01; RS and RS + 0:01.
These examples only looked at single caplet payo¤s, but we have to �nd control variates

that work for all cash �ow dates (i.e. the whole swaption). As we noticed before, the
optimal strike/barrier for each caplet will not be the same, but will be a decreasing
(caplet) or increasing (�oorlet) function of the maturity date Ti. If we just take a linear
combination of caps however, it is not possible to di¤erentiate the strikes between di¤erent
cash �ow dates. To make it possible to get di¤erent strikes for di¤erent maturities, we
have to take individual caplets as control variates. Suppose we would use caplets with
three strikes to approximate the �true� caplet. When there are 11 cash �ow dates, we
would get 11� 3 = 33 control variates. This may lead to instability in the determination
of �. If we have F control variates we have to estimate F (F + 1) =2 elements in the
variance-covariance matrix and F covariances with the swaption, where we even ignore
the use of digitals. We could also choose to steer the middle course, by decomposing the
cap into a set of caps, each with di¤erent cash �ow dates. We could for example use three
caps for each strike: one with cash �ow dates fT1; T2; T3g, one with fT4; T5; T6; T7g and
the last one with fT8; T9; T10; T11g. In this way we get 3� 3 = 9 caps as control variate.

13.6 Results
In this section we will compare the results for the two methods. We will compare the
following control variates:

� cap: the base case from the previous section

� shifted: as in section 13.4
� 3 caps: a linear combination of three caps, with strikes RS , RS + 1%, RS � 1%.
� 3 caps + 3 digitals: the same caps above plus three digitals with the same strikes
� 3x3 caps: We divide the cap in three sub-caps: The �rst consists of only caplets with
maturity T1; T2; T3, the second at maturities T4; T5; T6; T7 and the last with maturities
T8; T9; T10; T11. We do this for each of the 3 caps with strikes RS , RS +1%, RS �1%.,
so we get in total 9 caps.

� all caplets: For each of the three strikes we take all caplets separately, so we get 33
control variates.

The results can be found in �gure 13.3. For the shifted cap strategy we have used
1000 paths to estimate the strikes.
As we can see, all proposed improvements outperform the original ATM cap. The

improvements for the receiver swaption are larger than for the payer swaption. The
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Figure 13.4: Bermudan receiver swaption: � and � for di¤erent alternatives for the cap.

regression method is somewhat disappointing: it looks like estimating the strike by this
regression does not yield a good approximation, since there is hardly any improvement.
For the second method we see that adding three digitals is of hardly any use. This also
turns out to be the case for combinations of digitals with other caps, so we will not
investigate the use of digitals any further. The decomposition of the �oor into sub�oors
does lead to a signi�cant improvement. Furthermore we see that the decomposition in 3
sub�oors is almost as good as decomposing the �oor in all �oorlets. Because the former is
more stable, we prefer this one. Moreover, because we have to compute a larger variance-
covariance matrix, the method with all �oorets separately is also slower (even though
we only compute the same number of caplet values). Please recall from the previous
chapter that decomposing a single cap into caplets did not lead to an signi�cant increase
in performance.
For the 3x3 �oors we �nd that � is more than 70. Still not as good as for the payer

swaption, but over 7 times faster than the single �oor!
The results for the OTM and ITM swaptions are very similar to the results presented

for the ATM swaption. Therefore we will not present these here.
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14 Other CLE�s
In Chapter 12 we found the cap to be a very e¢ cient control variate for the payer swaption.
In the previous chapter we showed that we can get even better results by looking at other
�cap-like�products. With these improvements, also the results for receiver swaptions are
very good. It would be very advantageous if we could apply a similar procedure to a wide
range of callable Libor exotics. This is the subject of this chapter. First we look at the
callable inverse �oater. Even though the coupon is more complicated, the underlying Libor
exotic can still be priced analytically. Furthermore, to test a product whose underlying
cannot be priced analytically, we will investigate the cancellable snowball. Moreover, the
snowball�s underlying is path-dependent. If we are able to �nd e¢ cient control variates
for these products, we can expect we can also extend it to other products.
The main idea is as follows. The payer swaptions payo¤, when exercised, is equal to

the payo¤ of the underlying swap Li �R. The cap is just the capped payo¤ of this swap
[Li �R]+. We will extend this idea to other product by taking the capped payo¤ of the
underlying Libor exotic as control variate. This can only be used when this capped payo¤
can be valued analytically, so we need some approximation when this is not possible.
For both CLE�s, we start by describing how we can cap the payo¤ of the underlying.

Next we describe which control variates we will investigate, similar to those from the
previous chapter. Finally we give results where we compare the e¤ectiveness of the control
variates.

14.1 Callable Inverse Floater
We will �rst look at the payer CIF described in section 11.3.2.

14.1.1 Capping the payo¤

The payo¤ of the underlying Libor exotic (the inverse �oater) at time Ti is given by
equation (11.2), ignoring the daycount fraction �i:

Li � f � [R� f � Li]+ : (14.1)

As indicated above, we �cap�the payo¤ to get the following control variate:

�
Li � f � [R� f � Li]+

�+
=

8>><>>:
0 Li < R� f; L < R

2

2L�R Li < R� f; L > R
2

0 Li > R� f; L < f
Li � f Li > R� f; L > f

: (14.2)

Now we use the fact that in this case f � R=219 . This can be rewritten as (see �gure
14.1):

2

�
Li �

R

2

�+
� [Li �R+ fi]+ ; (14.3)

which is just the di¤erence of two caplets. The use of this payo¤ as control variate
corresponds to the use of a simple cap as control variate for the swaption.

19 If f > R=2 we could rewrite the capped payo¤ as [Li � f ]+, so again we could use a single cap as
control variate. If the product characteristics would be di¤erent from section 11.3.2 (c < 1) we would
also get a di¤erent decomposition.
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Figure 14.1: left: payo¤ of the inverse �oater as a function of Li (eq. 14.1). Right:

capped payo¤ (eq. 14.2, solid) and the decomposition in caplets 2
�
Li � R

2

�+
(upper) and

[Li �R+ fi]+ (lower). The capped payo¤ is the di¤erence between these (eq. 14.3).

We can perform the same analysis for the receiver callable inverse �oater. Now the
capped cash �ow is given by:

�
[R� f � Li]+ � Li + f

�+
=

8>><>>:
R� 2Li Li < R� f; L < R

2

0 Li < R� f; L > R
2

Li � f Li > R� f; L < f
0 Li > R� f; L > f

:

Because f � R=2, the third possibility (Li > R � f; L < f) does not exist, so the cash
�ow is simple equal to a single �oorlet:

2

�
R

2
� Li

�+
:

14.1.2 Control variates

We will investigate the variance reduction by the use of antithetic sampling as well as
four di¤erent control variates. The �rst one is the underlying inverse �oater (equation
14.1), which is the same as using the underlying swap as control variate for the Bermudan
swaption. Next we look at the cap, de�ned as the capped payo¤ given in equation (14.3).
Furthermore, we use two control variates suggested in the previous section. The �rst one
is the shifted cap, where the strikes Bi are estimated by a regression (section 13.4). The
other is the vector of 3x3 caps as proposed in section 13.5, where the caps are replaced
by the capped payo¤ (equation 14.3).
For the shifted cap, we replace the capped payo¤ by:�

Li � f � [R� f � Li]+
�
1fLi>Big:

Just like the capped payo¤, we can also rewrite this payo¤. If Bi > R� f we simply get
(Li � f) 1fLi>Big, which is just a shifted cap. For Bi < R� f (and again f � R=2) it is

2

�
Li �

R

2

�
1fLi>Big � [Li �R+ f ]

+
:
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Together this leads to:

2

�
Li �

R

2

�
1fLi>Big � (Li �R+ f) 1fLi>max(Bi;R�f)g:

We can estimate Bi as described in section 13.4.
For the 3x3 caps we use the same cash �ow dates as in the previous chapter (T1; T2; T3

for the �rst, T4; T5; T6; T7 for the second, T8; T9; T10; T11 for the last cap). For the three
di¤erent strikes, we use the following payo¤s:

CV1 : 2

�
Li �

R

2
+ �

�+
� [Li �R+ fi � �]+ ;

CV2 : 2

�
Li �

R

2

�+
� [Li �R+ fi]+ ;

CV3 : 2

�
Li �

R

2
� �
�+
� [Li �R+ fi + �]+ :

where � = 1% The cash �ows as a function of Li are given in �gure 14.2
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Figure 14.2: capped CIF payo¤ with di¤erent strikes

The estimation of the alternative CV�s for the receiver are done in the same way (where
of course caps are replaced by �oors).

14.1.3 Results

The results are in �gure 14.3 (payer) and 14.4 (receiver).
We see the results are similar to the Bermudan swaption. For both payer and receiver,

antithetic sampling and the underlying as control variate only lead to minor improvements.
For the payer callable inverse �oater, the capped payo¤works very good, reducing variance
by a factor 100. Furthermore, the 3x3 caps do even more than two times better. For the
receiver CIF the �oor is again much better then the underlying or antithetic sampling, but
the variance reduction is again only a factor 10. However we can improve this considerably
by taking the 3x3 �oors.
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Figure 14.3: � and � for control variates for the ATM payer CIF
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Figure 14.4: � and � for control variates for the ATM receiver CIF

Overall the results are very good. The results from the Bermudan can easily be
extended to the CIF. We will not investigate the ITM and OTM CIF, but we can expect
the results would be the same.

14.2 Snowball
Finally, we look at the cancellable snowball. Because the underlying is path-dependent, we
cannot directly take the (capped) underlying as control variate. We will suggest methods
to overcome this problem.

14.2.1 Capping the payo¤

For the payer snowball, the cash �ows of the underlying at Ti (2 � i � N) are given by:

Li � [Ci�1 +A� Li]+ ; (14.4)

where Ci is computed from

Ci = [Ci�1 +A� Li]+ ; (14.5)

C1 = 0:0135:
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Suppose we would know the previous coupon Ci�1. Then the snowball cash �ow is equal
to the cash �ow of an inverse �oater, with f = 0 and R = Ci�1+A. For the CIF we know
that we can use the capped cash �ow as control variate. Capping this payo¤ gives

2

�
Li �

Ci�1 +A

2

�+
� [Li � (Ci�1 +A)]+ : (14.6)

For the receiver this is replaced by:

2

�
Ci�1 +A

2
� Li

�+
:

We cannot use this directly, because we do not know the previous coupon for the
future cash �ow dates. At Ti we know the cash �ow at Ti+1, so we know the strike at
Ti+2. All other strikes are unknown. A natural way to proceed is to estimate the previous
strike Ci�1 for each coupon by eCi at T0. Then we can replace the control variate payo¤
(14.6) by:

2

"
Li �

eCi�1 +A
2

#+
�
h
Li �

� eCi�1 +A�i+ ; (14.7)

and similar for the receiver. This can be used as a control variate. There are several ways
to estimate the previous coupons eCi:
� assume all strikes are equal to the �rst strike: eCi = C1 for all i. In a di¤erent context,
this approximation is also used by Bender et al. (2005),

� assume the current forward rate would be realized, so Li(Ti�1) = Li(T0). Then the
strikes can simply be computed recursively from equation (14.5):

eCi = h eCi�1 +A� Li(T0)i+ ;
� use a Monte Carlo simulation to estimate Ci.

We will use the second method, because it turns out to give the best results. Of course, the
Monte Carlo estimate converges to the average strike, but this requires an extra simulation
to estimate it. Moreover the average strike is not necessarily the best estimate for the
strike, because there are large positive outliers. The strike is bounded below by 0, but
when the Libors are low, it can become very large (the snowball turns into an avalanche).

14.2.2 Control variates

We will look at the same control variates as for the CIF. Because the underlying is no
longer analytical, we will leave that one out.20 What remains is antithetic sampling and
three control variates: the cap (the capped payo¤), the shifted cap and the 3x3 caps.
We will also take into account two other control variates, that take into account the
path-dependency of the snowball. We will discuss these now.
Whatever technique we use, at T0 our estimate of the strike eCi in the future for a

given path will be poor, because we cannot use any path information. At later date Tj
we can make a better estimate of the strike for i > j, since we have more information

20We could of course take an approximation, in the same way as for the capped payo¤, but because
the underlying did not perform very good for the other CLE�s, it will probably not be worth the e¤ort.



14. OTHER CLE�S 75

(being the current coupon and forward Libors at Li(Tj)). Therefore we will also look at
a dynamic strategy, where we update the strikes at each timestep.
The control variate now becomes a self-�nancing portfolio, where we update the prod-

uct at each timestep:

� At T0 estimate all strikes eCi (i > 1), by assuming the current term structure is realized
(Li(Ti�1) = Li(T0) for all i). Buy all the caplets from equation (14.6).

� At the next date Tj one of the caplets payo¤ (the one maturing at Tj+1) is known
exactly. We estimate the other strikes Ci (i > j+1) again, by using the current coupon
Cj and current term structure Li(Tj). We sell all the caplets from the previous step
and buy the caplets with the new strike. The di¤erence in value (plus the value of the
caplet with maturity Tj+1) is the cash �ow at this date (which is equal to lending or
borrowing the money against the risk free rate to get a self-�nancing portfolio).

� Repeat the previous step until the snowball is exercised. At the exercise date, value
all the remaining caplets.

This method enables us to take the path-dependency of the snowball into account.
The drawback is that we have to value all the caplets at each date, so this will make the
method slower. We call this the dynamic control variate. Moreover we will look at the
corresponding dynamic 3x3 caps. We will not use the shifted cap (regression) strategy in
combination with the dynamic CV, because then we would have to estimate the barrier
at each date for each path (see also appendix D for a dynamic extension of the shifted
cap).

14.2.3 Results

For the control variates described in the previous section, the results are given in �gure
14.5 (cancellable receiver) and �gure 14.6 (cancellable payer). As argued in section 12.8,
the cancellable receiver can be expected to give similar results as the callable payer.
Therefore we will �rst discuss the receiver.
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Figure 14.5: � and � for di¤erent control variates applied to the cancellable receiver
snowball

We see some very interesting results. The �oor is a good control variate (� = 20).
The use of a regression to estimate the optimal barriers performs very disappointing,
while the 3x3 �oors do give a signi�cant improvement. The dynamic strategy is also



76 PART IV. RESULTS

very disappointing. However, if we use it in combination with 3x3 �oors, the results are
satisfactory.
It is hard to �nd an explanation why some methods perform very bad, while the

original �oor has a relatively good performance. We would expect that both the shifted
cap as well as the dynamic �oor would perform as least as good as the simple �oor
(even though a little slower). Probably the reason is the very asymmetrical payo¤ of the
underlying of the snowball. The coupon payments are bounded from below by zero, but
could become very large (the avalanche). Therefore it could be possible that the optimal
exercise strategy is non-trivial. We can expect not to cancel product, even when payo¤s
are negative, because if we cancel we throw away a large upside potential. Somehow the
regression technique seems not to be able to reproduce this e¤ect. This does however not
explain why the �oor performs very good.
Now let�s have a look at the cancellable payer. We see that the cap is worse compared

to the �oor for the receiver, just as we would expect from the results from the swaption
and callable inverse �oater. The shifted cap does not give any improvements (at least
it is not worse than the cap this time). Once more, the 3x3 cap is clearly better. The
dynamic strategy is also doing pretty good, but the improvements are partly undone by
the extra computation time.
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Figure 14.6: � and � for di¤erent control variates applied to the cancellable payer snowball

We can conclude that, even though the results are not as good as for the swaption and
CIF, we have still found a large decrease in standard error by using the capped payo¤
as control variate. Taking the 3x3 caps gives even better results, while the shifted cap is
very disappointing.
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15 Conclusions
In Part IV of this thesis we have investigated the use of control variates to reduce the
standard error of the Monte Carlo estimate of the price of callable Libor exotics.
We have investigated several control variates for the Bermudan swaption. We found

that the cap (�oor) is by far the best control variate for the Bermudan payer (receiver)
swaption. Moreover we discovered that the shape of the term structure has a strong
in�uence on the e¤ectiveness of the cap, where the relative variance reduction ranges
from a factor 10 to 200 for at-the-money Bermudan swaptions.
Next we have given an intuitive explanation why the cap is such a good control variate

and investigated how to �nd even better control variates. We have proposed several
methods to take other, similar, control variates that are more robust to the shape of the
yield curve. Taking a vector of caps with di¤erent strikes and di¤erent cash �ow dates
turned out to lead to the best results, increasing the variance reductions to a factor 30 to
600 for at-the-money Bermudans.
Finally we extended the idea of the cap to other callable Libor exotics by taking the

capped payo¤ of the underlying as control variate. For the callable inverse �oater the
results were very good, and very similar to the Bermudan swaption. The cancellable
snowball is more complicated because the cash �ows are path dependent. Still the use of
a vector of caps showed a signi�cant variance reduction (factor 30).

15.1 Suggestions for further research
There are numerous ways to extend the research presented in this thesis:

� Other improvements for the cap. The two methods suggested in Chapter 13 clearly
lead to improvement compared to the plain-vanilla cap as control variate. Certainly,
there will exist other ways to develop e¢ cient cap-like control variates. Maybe it will
be possible to improve on the methods we suggested.

� Other parameters. In this thesis we concentrated on a single set of parameters. We
also tested the model on a di¤erent term and volatility structure, which yielded similar
results. More research is necessary to see how the e¤ectiveness of the control variates
is a¤ected by model parameters. Moreover, we only looked at CLE�s maturing in six
years (TN = 6). For longer maturities, we would expect the cap to be less e¤ective.
Probably the improvements suggested in Chapter 13 will do relatively better, because
the optimal strikes for di¤erent maturities will vary more for these products.

� Other CLE�s. We have investigated three di¤erent CLE�s. The results of Chapter 14
indicate that the method we presented can be extended to a wide range of CLE�s.
Further research has to show whether the method can be applied to other non-trivial
CLE�s like range-accruals or products with a TARN (Target Redemption Note) struc-
ture.

� Greeks. Besides obtaining the price of CLE�s, Monte Carlo is also used to obtain
Greeks, the partial derivatives of the price with respect to di¤erent uderlyings (see
for example Glasserman and Zhao, 1999; Piterbarg, 2004). We did not investigate the
computation of Greeks in this thesis, but it could be very interesting to see whether
(and if so, how) control variates can be used to compute Greeks more e¢ ciently.

� Application to other models. The method we have presented takes advantage of the
similarities in payo¤ between callable Libor exotics and their capped underlyings. The
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method is not restricted to the Libor Market Model. It might be interesting to see
whether we can apply the same idea to other callable products and/or other models.

� Extension to stochastistic volatility. In this thesis we implemented the Libor Market
model where volatilities are assumed to be deterministic functions of time. It is more
realistic to assume that the volatilities themselves are also stochastic. Then we do not
know the Black volatility exactly and have to compute caplet prices numerically. It
would be interesting if we could somehow apply the control variates in these situation.

� Other variance reduction techniques. As mentioned in section 6.3, low-discrepancy
sequences can be another e¤ective way to reduce the standard error. Probably a com-
bination of quasi-random numbers with control variates can give even better results.

Looking at this list, we could conclude that we are just getting started!
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A Financial calculus
Financial mathematics, or �nancial calculus, is the mathematical discipline concerning
�nancial models. It contains modelling of the dynamics of �nancial assets and the pric-
ing of derivatives whose value depends on these assets. Because these dynamics are
typically stochastic, �nancial mathematics is based on stochastic calculus, especially sto-
chastic di¤erential equations. Since Black and Scholes (1973) developed a their famous
option pricing formula, �nancial calculus has been a rapidly growing area of research.
The derivation and application of the Libor market model utilizes several theorems and
concepts from �nancial calculus.
This thesis does not provide an introduction to �nancial calculus. We will provide

some useful references for anyone who is not familiar with it. Several books provide an
introduction to �nancial calculus (e.g. Baxter and Rennie, 1996; Björk, 2004). Most of
these books also provide an introduction to stochastic calculus (usually in the appendix,
for more imforation, see e.g Brzezniak and Zastawniak, 1998). More information on (the
valuation of) �nancial derivatives can be found in (Hull, 2003). For more information on
interest rate derivatives and the Libor Market model in particular we suggest (Rebonato,
2002; Brigo and Mercurio, 2001).

A.1 Black�s formula

As an exception to the remark above, we present Black�s formula, because it is used very
frequently throughout this thesis.

Theorem 1 (Black�s formula) Consider a European call option on a variable with
value V (t). Let T be the maturity time of the option, FT (t) be the forward price of
V at time t with maturity T , X be the stike price and � be the volatility of FT . Assume
that V (T ) is lognormally distributed with the expectation and volatility given by

ln (V (T )) � N
�
ln (FT (t)) ; �

p
T � t

�
:

Under this assumption, the price of the call option at time t is given by:

c = P (t; T ) [FT (t)N (d1)�XN (d2)]

where

d1 =
ln (FT (t)=X) + �

2 (T � t) =2
�
p
T � t

d2 =
ln (FT (t)=X)� �2 (T � t) =2

�
p
T � t

= d1 � �
p
T � t
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B Antithetic sampling for monotonic func-

tions
Here we proof that cov (f+ � f(z); f(�z)) � 0 when f(z) is a monotonic convex function.
This shows when antithetic sampling can be used.
For all x, y and two increasing functions f and g there holds:

(f(x)� f(y)) (g(x)� g(y)) � 0

Now if X;Y are i.i.d. Taking the expectation we can write:

(f(X)� f(Y )) (g(X)� g(Y )) � 0

E [(f(X)� f(Y )) (g(X)� g(Y ))] � 0

E [f(X)g(X)] + E [f(Y )g(Y )] � E [f(X)g(Y ) + f(Y )g(X)] = E [f(X)]E [g(Y )]+E [f(Y )]E [g(X)]
E [f(X)g(X)] � E [f(X)]E [g(X)]

So cov (f(X); g(X)) � 0. Now take g(X) = �f(�X). if f is increasing, so is _g. Then it
holds that

cov (f(X); f(�X)) = � cov (f(X);�f(�X)) � 0
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C Parameters

Initial Libor curve and volatility parameters �i:
i Li �i
1 0.023 -
2 0.025 0.153
3 0.027 0.143
4 0.027 0.140
5 0.031 0.140
6 0.031 0.139
7 0.033 0.138
8 0.034 0.137
9 0.036 0.136
10 0.036 0.135
11 0.038 0.134
12 0.039 0.132

Volatility and correlation parameters:
a 0:976
b 2:000
c 1:500
d 0:500
�1 0:663
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D Alternative ways to estimate the barrier
In chapter 13 we presented two methods two �nd an optimal control variate. For the
�rst method, the shifted cap where the barrier is estimated by a regression, there are
several alternatives. Here we will discuss a dynamic extension. Because the results were
mediocre, we have not discussed them in this thesis. But since it may be an interesting
method for other CLE�s, we discuss it here shortly. Next we will give other possible ways
to extend the shifted cap method.

D.1 Dynamic shifted cap
In the method discussed in section 13.4, the barriers Bi are computed at T0 and are
constant over time. Therefore I will call this the static method. We can also try to
update the barriers at each possible exercise date to get a dynamic strategy (similar to
the dynamic method for the snowball in section 14.2.2). In that way it is possible to
incorporate information about the current state of the Libors at future dates.
We can do this by not only regressing . min

1�j�i�1
Hj+1(Tj) but also min

k�j�i�1
Hj+1(Tj) for

2 � k � N , to get the optimal barrier at a later date Tk�1. In this way we can improve
the estimate for Bi at each exercise date, like we did in section 14.2.2. In addition, in
the dynamic strategy, we can also take other state variables into account. We can add to
the constant ai a state dependent function. Suppose we have at time Ti, some vector of
Ti-measurable state variables Xi, then we can try to improve the regression by

min
k�j�i�1

Hj+1(Tj) � ai + c
0
iXi + biLi(Ti�1) i � j + 2

The barrier is then given by Bi = �ai+c
0
iXj

bi
. In this way the barrier can be made path-

dependent.

D.2 Other ideas
Further improvements could be:

� Replace 1fLi>Big by 1fmaxj�i(Lj)>Big. So the payo¤ occurs when the Libor rate hits
a barrier on one of the tenor dates. This is very similar to a discrete barrier option.
We cannot value discrete barrier options exactly, but very good approximations exist.

� Replace 1fLi>Big by 1fX(Ti)>Big where X is another variable. This may help to get a
better approximation of the exercise strategy. For example, it could be the swap rate,
because the exercise strategy clearly depends stronger on the swap rate compared to
the single Libor rate Li. Unfortunately, the valuation is much harder, because the
value now depends on two (usually correlated) underlying variables.

� Use weighted least squares, where the weights are proportional to the inverse of
min

1�j�i�1
Hj+1(Tj) and/or to Li�R, to focus on those paths where the correct estimate

is more important. We tried to use this method, but the results were disappointing.

� Do not use a regression at all, but estimate the barrier in another way. We have tried
to do some kind of brute-force optimization by �rst optimizing the correlation over
the �rst cash �ow date by choosing B1. Next we looked at the correlation for the
(discounted) sum of the �rst two cash �ows, by changing B2, etc. Unfortunately, even
this did not yield better results compared to the regression method.


