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1 Introduction

Suppose we want to price a ‘best-of’ option on corn and wheat, that is, a contract that
allows us to buy a certain amount of wheat or corn for a predetermined price (‘strike’)
on a predetermined date (‘maturity’). The value of such a contract will only decrease if
both the price of corn and the price of wheat move down. In pricing a best-of option, the
probability of simultaneous extreme movements — usually called ‘tail dependence’ — thus is
of great importance. From a Gaussian perspective, tail dependence is observed as ‘increasing
correlation’ as the underlying quantities simultaneously move towards extremes. This thesis
is concerned with the question how tail dependence can be incorporated in pricing models
and how it affects prices and hedging of financial contracts.

In option pricing it is common to model the dependence structure between assets using
a Gaussian copula. Copulas are a way of isolating dependence between random variables
(such as asset prices) from their marginal distributions. In section 5.2.1 it will be shown
that the Gaussian copula does not have tail dependence. This may cast some doubt on the
appropriateness of this model for underlyings that have a high probability of joint extreme
price movements.

Malevergne and Sornette [1] show that a Gaussian copula may indeed not always be a feasible
choice. They succeed in rejecting the hypothesis of the dependence between a number of
metals traded on the London Metal Exchange being described by a Gaussian copula.

For the univariate case similar problems have been dealt with earlier: the classic Black-Scholes
model assumed a normal distribution for daily increments of the underlyings underestimating
the probability of extreme (univariate) price changes. This is usually solved by using a
parametrization of equivalent normal volatilities, i.e. the volatilities that lead to the correct
market prices when used in the Black-Scholes model instead of one constant number. Due to
the typical shape of such parametrizations the problem of underestimation of univariate tails
is usually referred to as ‘volatility smile’. Tail dependence similarly leads to a ‘correlation
skew’ in the implied correlation surface.

In our adjusted model, we want to be able to account for both tail dependence and — to
be consistent with the univariate case — volatility smile. Copulas are a convenient tool in
modelling dependence since the marginal distributions of the underlyings can be specified
independently. However, we will have to look at copulas other than the Gaussian.

The first part of this thesis gives an overview of the theory of copulas and dependence.
Sections 2 and 3 explain what copulas are and how they relate to multivariate distribution
functions. In Section 4 it is described what kind of dependence is captured by copulas. This,
among other things, includes measures of concordance like Kendall’s tau and Spearman’s rho.
Next, Section 5 summarizes the properties of a number of well-known parametric families of
copulas.

The second part of the thesis describes how copulas can be used in pricing multi-asset financial
derivatives. A pricing model is outlined in Section 6. This model relies on Monte Carlo
methods to calculate option prices. For this we need to generate samples from Archimedean
copulas. This is the topic of Section 7.

Before copulas can be used in a pricing model, they have to be calibrated. This is discussed
in Section 8. Results can be found in Section 9 followed by a conclusion in Section 10.
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Appendix A provides a brief introduction to derivatives pricing. Appendix B describes some
alternative models for univariate asset price distributions.

1.1 Evidence of tail dependence

How can we recognise the presence of tail dependence in pairs of financial assets? Informally
speaking, tail dependence expresses the probability of a random variable taking extreme values
conditional on another random variable taking extremes — a formal definition can be found
in Section 4.4. For two random variables X,Y with respective distribution functions F,G the
definition reads

Lower tail dependence coefficient = lim
u↓0

P[F (X) < u, G(Y ) < u]
P[G(Y ) < u]

, (1.1)

Upper tail dependence coefficient = lim
u↑1

P[F (X) > u,G(Y ) > u]
P[G(Y ) > u]

. (1.2)

Given a set of historical observations from (X,Y ) consisting of the pairs (xi, yi), 1 ≤ i ≤ n,
for fixed u the probabilities in (1.1) can be approximated by their empirical counterparts:

P[F (Y ) < u,G(Y ) < u] =
1
n

n∑
i=1

1(F emp(xi) < u, Gemp(yi) < u) ,

P[G(Y ) < u] =
1
n

n∑
i=1

1(Gemp(yi) < u) ,

where

F emp(u) =
1
n

n∑
i=1

1(xi < u) , Gemp(u) =
1
n

n∑
i=1

1(yi < u) .

A similar approach may be used to approximate (1.2).

Figures 1.1—1.6 show estimates of lower and upper tail dependence in historical asset returns.
The solid line represents the empirical approximation to the conditional probabilities (1.1) and
(1.2) for fixed u. The tail dependence coefficients are defined as the limit of these probabilities
as u → 0 (lower) or u → 1 (upper). If the solid line tends to zero in this limit (Figure 1.4)
this means absence of tail dependence. If on the other hand the line does not tend to zero it
may indicate the presence of tail dependence (Figures 1.1, 1.2, 1.3, 1.5, 1.6). The dashed lines
represent conditional probabilities (1.1) and (1.2) for different copulas calibrated to the data
sets. The Clayton copula is seen to have lower tail dependence (limit tends to 0.6 in Figure
1.6) and the Gumbel copula exhibits upper tail dependence (limit tends to 0.1 in Figure 1.2).

A more extensive overview is presented in Table 1.1. It shows that tail dependence is much
more profound in daily returns than in price levels.

1.2 Scope of the project

In this thesis we will look at specific contracts over specific underlyings. The choice of under-
lyings is inspired by our observations in Section 1.1:
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Table 1.1: Empirical evidence for tail dependence in pairs of financial assets (++ = clear
empirical evidence of tail dependence, + = possibly tail dependent, − = unclear, −− = no
tail dependence).

Correlation Tail dependence
Lower Upper

Daily returns
Hangseng, SP500 0.3 − +

Nikkei, SP500 0.3 −− ++
Corn, wheat 0.6 ++ −

Nikkei, Hangseng 0.19 −− +
Oil, gas −0.04 −− −−

USD 5Y swap, SP500 futures 0.14 + ++
Copper, nickel 0.48 −− −−
Gold, copper 0.13 ++ −−
Nickel, gold 0.08 −− +

Price levels
Corn, wheat 0.87 −− −

Hangseng, SP500 0.94 −− −
Nikkei, SP500 0.34 − −−

USD 5Y swap, SP500 futures 0.54 −− −
Nikkei, Hangseng 0.41 −− −
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Figure 1.1: Estimated lower tail
dependence coefficient for 2-year
SP500 and USD swap futures.
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Figure 1.2: Estimated upper tail
dependence coefficient for 2-year
SP500 and USD swap futures.
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Copper & Gold
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Figure 1.3: Estimated lower tail de-
pendence coefficient for copper and
gold.
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Figure 1.4: Estimated lower tail de-
pendence coefficient for copper and
gold.
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Figure 1.5: Estimated upper tail
dependence coefficient for Nikkei 225
and SP500
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Figure 1.6: Estimated lower tail de-
pendence coefficient for 1-year corn
and wheat futures
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• Nikkei 225 and SP500, August 2001 until August 2007,

• Gold and copper, March 2000 until March 2007,

• Corn and wheat 1-year futures, March 2000 until June 2006, traded on CBOT,

• 2-year futures on SP500 and USD 5-year swaps, March 2000 until December 2006 .

We will focus on European bivariate payoff structures with a single maturity, that is, contracts
whose payoff depends on two simultaneous observations (one from each underlying) and the
payment is made without delay. The choice of contracts is based on concerns in industry
about possible sensitivity to tail dependence:

Best-of returns = max
(
S1(T )
S1(0)

,
S2(T )
S2(0)

)
, (1.3)

Worst-of returns = max
(

0,min(
S1(T )
S1(0)

,
S2(T )
S2(0)

)
)
, (1.4)

Spread on returns = max
(

0,
S1(T )
S1(0)

− S2(T )
S2(0)

)
, (1.5)

At-the-money spread = max(0, S1(T )− S2(T )− S1(0) + S2(0)) . (1.6)

Note that the above payoff structures will be most susceptible to tail dependence if they act
on returns or if they are at-the-money, i.e. the strike is chosen such that the value of the
option initially is zero. The reason is that prices of different underlyings can be an order of
magnitude apart, so that the minimum or maximum of the levels S1(T ), S2(T ) will always
stem from the same underlying.
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2 Bivariate copulas

This section introduces copulas and describes how they relate to multivariate distributions
(Sklar’s theorem, Section 2.1). Section 2.2 discusses maximal and minimal bounds for copula
functions. In the bivariate case these bounds turn out to be copulas themselves (the Fréchet-
Hoeffding copulas). It is further explained what it means for a multivariate distribution if its
copula is maximal or minimal. Finally, in Section 2.3, survival copulas will be defined which
are essentially a mirrored version of the original copula. In particular, they have the useful
property that upper and lower tail properties are interchanged.

The extended real line R∪ {−∞,+∞} is denoted by R.

Definition 2.1 Let S1, S2 ⊂ R be nonempty sets and let H be a S1×S2 → R function. The
H-volume of B = [x1, x2]× [y1, y2] where x1 ≤ x2 and y1 ≤ y2 is defined to be

VH(B) = H(x2, y2)−H(x2, y1)−H(x1, y2) +H(x1, y1).

H is 2-increasing if VH(B) ≥ 0 for all B ⊂ S1 × S2.

Definition 2.2 Suppose b1 = maxS1 and b2 = maxS2 exist. Then the margins F and G
of H are given by

F : S1 → R, F (x) = H(x, b2),

G : S2 → R, G(y) = H(b1, y).

Note that b1 and b2 can possibly be +∞.

Definition 2.3 Suppose also a1 = minS1 and a2 = minS2 exist. H is called grounded if

H(a1, y) = H(x, a2) = 0

for all (x, y) ∈ S1 × S2.

Again, a1 and a2 can be −∞.

If H is 2-increasing we have, from definition 2.1,

H(x2, y2)−H(x1, y2) ≥ H(x2, y1)−H(x1, y1) (2.1)

and
H(x2, y2)−H(x2, y1) ≥ H(x1, y2)−H(x1, y1) (2.2)

for every [x1, x2] × [y1, y2] ⊂ S1 × S2. By setting x1 = a1 in (2.1) and y1 = a2 in (2.2) we
obtain the following lemma.

Lemma 2.4 Any grounded, 2-increasing function H : S1 × S2 → R is nondecreasing in both
arguments, that is, for all x1 ≤ x2 in S1 and y1 ≤ y2 in S2

H(u , y2) ≥ H(u , y1),
H(x2, v ) ≥ H(x1, v ),

9



Figure 2.1: Schematic proof of lemma 2.5. Apply 2-increasingness to rectangles I–III and
combine the resulting inequalities. For the absolute value bars, use that H is nondecreasing
in both arguments (lemma 2.4).

for all u and all v in R.

From lemma 2.4 it follows that (2.1) and (2.2) also hold in absolute value:

|F (x2)− F (x1)| ≥ |H(x2, y2)−H(x1, y2)| { Ineq. (2.1) applied to rectangle I, Fig. 2.1 }
|G(y2)−G(y1)| ≥ |H(x2, y2)−H(x2, y1)| { Ineq. (2.2) applied to rectangle II, Fig. 2.1 }

——————————————————– +

|F (x2)−F (x1)|+ |G(y2)−G(y1)| ≥ | 2H(x2, y2)−H(x1, y2)−H(x2, y1) | { Triangle ineq. }

Applying the definition of a 2-increasing function to rectangle III, Figure 2.1, yields

2H(x2, y2)−H(x1, y2)−H(x2, y1) ≥ H(x2, y2)−H(x1, y1) ≥ 0 .

We thus have the next lemma.

Lemma 2.5 For any grounded, 2-increasing function H : S1 × S2 → R,

|H(x2, y2)−H(x1, y1)| ≤ |F (x2)− F (x1)|+ |G(y2)−G(y1)|

for every [x1, x2]× [y1, y2] ⊂ S1 × S2.

Definition 2.6 A grounded, 2-increasing function C ′ : S1 × S2 → R where S1 and S2 are
subsets of [0, 1] containing 0 and 1, is called a (two dimensional) subcopula if for all (u, v) ∈
S1 × S2

C ′(u, 1) = u,

C ′(1, v) = v.

10



Definition 2.7 A (two dimensional) copula is a subcopula whose domain is [0, 1]2.

Remark 2.8 Note that reformulating lemma 2.5 in terms of subcopulas immediately leads to
the Lipschitz condition

|C ′(u2, v2)− C ′(u1, v1)| ≤ |u2 − u1|+ |v2 − v1|, (u1, v1), (u2, v2) ∈ S1 × S2,

which guarantees continuity of (sub)copulas.

Definition 2.9 If C is differentiable on S1 × S2, then the density associated with C is

c(u, v) =
∂2C(u, v)
∂u∂v

.

2.1 Sklar’s theorem

The theorem under consideration in this section, due to Sklar in 1959, is the very reason
why copulas are popular for modeling purposes. It says that every joint distribution with
continuous margins can be uniquely written as a copula function of its marginal distributions.
This provides a way to separate the study of joint distributions into the marginal distributions
and their joining copula.

Following Nelsen [2], we state Sklar’s theorem for subcopulas first, the proof of which is short.
The corresponding result for copulas follows from a straightforward, but elaborate, extension
that will be omitted.

Definition 2.10 Given a probability space (Ω,F ,P) — where Ω is the sample space, P a
measure such that P(Ω) = 1 and F ⊂ 2Ω a sigma-algebra — a random variable is defined
to be a mapping

X : Ω → R

such that X is F-measurable.

Definition 2.11 Let X be a random variable. The cumulative distribution function
(CDF) of X is

F : R→ [0, 1], F (x) := P[X ≤ x].

This will be denoted “X ∼ F”.

Definition 2.12 If the derivative of the CDF of X exists, it is called the probability density
function (pdf) of X.

Definition 2.13 Let X and Y be random variables. The joint distribution function of
X and Y is

H(x, y) := P[X ≤ x, Y ≤ y].

The margins of H are F (x) := limy→∞H(x, y) and G(y) := limx→∞H(x, y).
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Definition 2.14 A random variable is said to be continuous if its CDF is continuous.

Lemma 2.15 Let H be a joint distribution function with margins F and G. Then there
exists a unique subcopula C ′ such that

DomC ′ = RanF × RanG

and
H(x, y) = C ′(F (x), G(y)) (2.3)

for all (x, y) ∈ R.

Proof
Unicity:
For C ′ to be unique, every (u, v) ∈ RanF × RanG should have only one possible image
C ′(u, v) that is consistent with (2.3). Suppose to the contrary that C ′

1(u, v) 6= C ′
2(u, v) are

both consistent with (2.3), i.e. there exist (x1, y1), (x2, y2) ∈ R
2 such that

H(x1, y1) = C ′
1(F (x1), G(y1)) = C ′

1(u, v),

H(x2, y2) = C ′
2(F (x2), G(y2)) = C ′

2(u, v).

Thus, it must hold that u = F (x1) = F (x2) and v = G(y1) = G(y2). Being a joint CDF, H
satisfies the requirements of lemma 2.5 and this yields

|H(x2, y2)−H(x1, y1)| ≤ |F (x2)− F (x1)|+ |G(y2)−G(y1)| = 0,

so C ′
1 and C ′

2 agree on (u, v).

Existence:
Now define C ′ to be the (unique) function mapping the pairs (F (x), G(y)) to H(x, y), for
(x, y) ∈ R2. It remains to show that C ′ is a 2-subcopula.

Groundedness:
C ′(0, G(y)) = C ′(F (−∞), G(y)) = H(−∞, y) = 0

C ′(F (x), 0) = C ′(F (x), G(−∞)) = H(x,−∞) = 0

2-increasingness:
Let u1 ≤ u2 be in Ran F and v1 ≤ v2 in Ran G. As CDFs are nondecreasing, there exist
unique x1 ≤ x2, y1 ≤ y2 with F (x1) = u1, F (x2) = u2, G(y1) = v1 and G(y2) = v2.

C ′(u2, v2)− C ′(u1, v2)− C ′(u2, v1) + C ′(u1, v1)
= C ′(F (x2), G(y2))− C ′(F (x1), G(y2))− C ′(F (x2), G(y1)) + C ′(F (x1), G(y1))
= H(u2, v2)−H(u1, v2)−H(u2, v1) +H(u1, v1) ≥ 0

The last inequality follows from the sigma-additivity of P.

Margins are the identity mapping:

C ′(1, G(y)) = C ′(F (∞), G(y)) = H(∞, y) = G(y)

C ′(F (x), 1) = C ′(F (x), G(∞)) = H(x,∞) = F (x) �

12



Remark 2.16 The converse of lemma 2.15 also holds: every H defined by (2.3) is a joint
distribution. This follows from the properties of a subcopula.

Theorem 2.17 (Sklar’s theorem) Let H be a joint distribution function with margins F
and G. Then there exists a unique 2-copula C such that for all (x, y) ∈ R2

H(x, y) = C(F (x), G(y)). (2.4)

If F and G are continuous then C is unique.

Conversely, if F and G are distribution functions and C is a copula, then H defined by (2.4)
is a joint distribution function with margins F and G.

Proof Lemma 2.15 provides us with a unique subcopula C ′ satisfying (2.4). If F and G are
continuous, then RanF ×RanG = I2 so C := C ′ is a copula. If not, it can be shown (see [2])
that C ′ can be extended to a copula C.

The converse is a restatement of remark 2.16 for copulas. �

Now that the connection between random variables and copulas is established via Sklar’s
theorem, let us have a look at some implications.

Theorem 2.18 (C invariant under increasing transformations of X and Y ) Let X ∼ F
and Y ∼ G be random variables with copula C. If α, β are increasing functions on RanX
and RanY , then α ◦X ∼ F ◦ α−1 := Fα and β ◦ Y ∼ G ◦ β−1 := Gβ have copula Cαβ = C.

Proof

Cαβ(Fα(x), Gβ(y)) = P[α ◦X ≤ x, β ◦ Y ≤ y] = P[X < α−1(x), Y < β−1(y)]
= C(F ◦ α−1(x), G ◦ β−1(y)) = C(P[X < α−1(x)],P[Y < β−1(y)])
= C(P[α ◦X < x],P[β ◦ Y < y]) = C(Fα(x), Gβ(y)) �

Let X ∼ F and Y ∼ G be continuous random variables with joint distribution H. X and Y
are independent iff. H(x, y) = F (x)G(y). In terms of copulas this reads

Remark 2.19 The continuous random variables X and Y are independent if and only if
their copula is C⊥(u, v) = uv.

C⊥ is called the product copula.

2.2 Fréchet-Hoeffding bounds

In this section we will show the existence of a maximal and a minimal bivariate copula, usually
referred to as the Fréchet-Hoeffing bounds. All other copulas take values in between these
bounds on each point of their domain, the unit square. The Fréchet upper bound corresponds
to perfect positive dependence and the lower bound to perfect negative dependence.
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Figure 2.2: Fréchet-Hoeffding
lower bound
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Figure 2.3: Fréchet-Hoeffding up-
per bound

Theorem 2.20 For any subcopula C ′ with domain S1 × S2

C−(u, v) := max(u+ v − 1, 0) ≤ C ′(u, v) ≤ min(u, v) =: C+(u, v),

for every (u, v) ∈ S1 × S2. C+ and C− are called the Fréchet-Hoeffding upper and lower
bounds respectively.

Proof From lemma 2.4 we have C ′(u, v) ≤ C ′(u, 1) = u and C ′(u, v) ≤ C ′(1, v) = v, thus the
upper bound.

VH([u, 1]× [v, 1]) ≥ 0 gives C ′(u, v) ≥ u+v−1 and VH([0, u]× [0, v]) ≥ 0 leads to C ′(u, v) ≥ 0.
Combining these two gives the lower bound. �

Plots of C+ and C− are provided in Figures 2.2 and 2.3. The remaining part of this section
is devoted to the question under what condition these bounds are attained.

Definition 2.21 A set S ⊂ S1×S2 ⊂ R2 is called nondecreasing if for every (x1, y1), (x2, y2) ∈
S it holds that x1 < x2 ⇒ y1 ≤ y2. S is called nonincreasing if x1 > x2 ⇒ y1 ≤ y2.

An example of a nondecreasing set can be found in Figure 2.4.

Definition 2.22 The support of a distribution function H is the complement of the union
of all open subsets of R2 with H-volume zero.

Remark 2.23 Why not define the support of a distribution as the set where the joint density
function is non-zero?

1. The joint density does not necessarily exist.
2. The joint density can be non-zero in isolated points. These isolated points are not included in

definition 2.22.

14



Figure 2.4: Example of a nondecreasing set.

Let X and Y be random variables with joint distribution H and continuous margins F : S1 →
R and G : S1 → R. Fix (x, y) ∈ R2. Suppose H is equal to the Fréchet upper bound, then
either H(x, y) = F (x) or H(x, y) = G(y). On the other hand we have

F (x) = H(x, y) + P[X ≤ x, Y > y],
G(y) = H(x, y) + P[X > x, Y ≤ y].

It follows that either P[X ≤ x, Y > y] or P[X > x, Y ≤ y] is zero. As suggested by Figure
2.5 this can only be true if the support of H is a nondecreasing set.

This intuition is confirmed by the next theorem, a proof of which can be found in Nelsen [2].

Theorem 2.24 Let X and Y be random variables with joint distribution function H.

H is equal to the upper Fréchet-Hoeffding bound if and only if the support of H is a nonde-
creasing subset of R2.

H is equal to the lower Fréchet-Hoeffding bound if and only if the support of H is a nonin-
creasing subset of R2.

Remark 2.25 If X and Y are continuous random variables, then the support of H cannot
have horizontal or vertical segments. Indeed, suppose the support of H would have a horizontal
line segment, then a relation of the form 0 < P[a ≤ X ≤ b] = P[Y = c] would hold, implying
that the CDF of Y had a jump at c.

Thus, in case of continuous X and Y , theorem 2.24 implies the support of H to be an almost
surely increasing (decreasing) set if and only if H is equal to the upper (lower) Fréchet-
Hoeffding bound.
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Figure 2.5: In case of non-perfect positive dependence, the shaded area always contains
points with nonzero probability.

Remark 2.26 The support of H being an almost surely (in)(de)creasing set means that if
you observe X, there is only one Y that can be observed simultaneously, and vice versa.
Intuitively, this is exactly the notion of ‘perfect dependence’.

2.3 Survival copula

Every copula has a survival copula associated with it which is a mirrored version of the
original copula. Particularly useful is the fact that its upper and lower tail properties are
interchanged.

Let X ∼ F and Y ∼ G be random variables with copula C. The joint survival function for the
vector (F (X), G(Y )) of uniform random variables represents, when evaluated in (u, v), the
joint probability that (F (X), G(Y )) be greater (component-wise) than (u, v). Due to Sklar’s
theorem this joint survival function is a copula. It is called the survival copula of C.

Lemma 2.27 The survival copula C associated with the copula C satisfies

C(u, v) = 1− u− v + C(u, v).

Proof

C(u, v) =: P[F (X) > u,G(Y ) > v]
= 1− P[F (X) < u]− P[G(Y ) < v] + P[F (X) < u,G(Y ) < v]
= 1− u− v + C(u, v) .
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3 Multivariate Copulas

The notion of copulas, introduced in section 2, will now be generalized to dimensions n ≥ 2.
This we will need to price derivatives on more than two underlyings.

The majority of the results of the previous section have equivalents in the multivariate case,
an exception being the generalized Fréchet-Hoeffding lower bound, which is not a copula for
n ≥ 3.

Definition 3.1 Let H be an S1 × S2 × . . . × Sn → R function, where the non-empty sets
Si ⊂ R have minimum ai and maximum bi, 1 ≤ i ≤ n. H is called grounded if for every u
in the domain of H that has at least one index k such that uk = ak:

H(u) = H(u1, . . . , uk−1, ak, uk+1, . . . , un) = 0.

Definition 3.2 Let x, y ∈ Rn such that x ≤ y holds component-wise. Define the n-box [x, y]
by

[x, y] := [x1, y1]× [x2, y2]× . . .× [xn, yn].

The set of vertices ver([x, y]) of [x, y] consists of the 2n points w that have wi = xi or wi = yi
for 1 ≤ i ≤ n. The product

sgn(w) :=
2n∏
i=1

sgn(2wi − xi − yi)

equals 0 if xi = yi for some 1 ≤ i ≤ n. If sgn(w) is non-zero, it equals +1 if w−x has an even
number of zero components and −1 if w − x has an odd number of zero components.

Using this inclusion-exclusion idea, we can now define n-increasingness:

Definition 3.3 The function H : S1 × . . . × Sn → R is said to be n-increasing if the
H-volume of every n-box [x, y] with ver([x,y]) ∈ S1 × . . .× Sn is nonnegative:∑

w∈ver([x,y])
sgn(w)H(w) ≥ 0 (3.1)

Definition 3.4 The k-dimensional margins of H : S1 × . . . × Sn → R are the functions
Fi1i2...ik : Si1 × . . .× Sik → R defined by

Fi1i2...ik(ui1 , . . . , uik) = H(b1, b2, . . . , ui1 , . . . , ui2 , . . . , uik , . . . , bn).

Definition 3.5 A grounded, n-increasing function C ′ : S1×. . .×Sn → R is an n-dimensional
subcopula if each Si contains at least 0 and 1 and all one-dimensional margins are the iden-
tity function.

Definition 3.6 An n-dimensional subcopula for which S1×. . .×Sn = In is an n-dimensional
copula.
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3.1 Sklar’s theorem

Theorem 3.7 (Sklar’s theorem, multivariate case) Let H be an n-dimensional distri-
bution function with margins F1, . . . , Fn. Then there exists an n-copula C such that for all
u ∈ Rn

H(u1, . . . , un) = C(F (u1), . . . , F (un)). (3.2)

If F1, . . . , Fn are continuous, then C is unique.

Conversely, if F1, . . . , Fn are distribution functions and C is a copula, then H defined by (3.2).
is a joint distribution function with margins F1, . . . , Fn.

3.2 Fréchet-Hoeffding bounds

Theorem 3.8 For every copula C and any u ∈ In

C−(u) := max(u1 + u2 + . . .+ un − n+ 1, 0) ≤ C(u) ≤ min(u1, u2, . . . , un) := C+(u).

In the multidimensional case, the upper bound is still a copula, but the lower bound is not.

The following example, due to Schweizer and Sklar [3], shows that C− does not satisfy equation
(3.1). Consider the n-box

[
1
2 , 1
]
× . . . ×

[
1
2 , 1
]
. For 2-increasingness, in particular, the H-

volume of this n-box has to be nonnegative. This is not the case for n > 2:

max
{

1 + . . .+ 1− n+ 1, 0
}

︸ ︷︷ ︸
=n−n+1=1

− n max
{

1
2

+ 1 + . . .+ 1− n+ 1, 0
}

︸ ︷︷ ︸
= 1

2
+(n−1)−n+1= 1

2

+
(
n

2

)
max

{
1
2

+
1
2

+ 1 + . . .+ 1− n+ 1, 0
}

︸ ︷︷ ︸
=0

+ . . . . . . ± max
{

1
2

+ . . .+
1
2
− n+ 1, 0

}
︸ ︷︷ ︸

=0

= 1− n

2
.

On the other hand, for every u ∈ In, n ≥ 3, there exists a copula C such that C(u) = C−(u)
(see Nelsen [2]). This shows that a sharper lower bound does not exist.

3.3 Survival copula

Analogous to the bivariate case (Section 2.3) one can define a multivariate survival copula.
Let Xi ∼ Fi, 1 ≤ i ≤ n, be random variables with copula C. The joint survival function
for the vector (F1(X1), . . . , Fn(Xn) ) of uniform random variables represents, when evaluated
in (u1, . . . , un), the joint probability that (F1(X1), . . . , Fn(Xn) ) be greater (component-wise)
than (u1, . . . , un). Due to the multivariate version of Sklar’s theorem, this joint survival
function is a copula. It is called the survival copula of C.
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4 Dependence

The dependence structure between random variables is completely described by their joint
distribution function. ‘Benchmarks’ like linear correlation only capture certain parts of this
dependence structure. Apart from linear correlation, there exist several other measures of
association. These, and their relation to copulas, are the subject of this section.

Scarsini [4] describes measures of association as follows:

“Dependence is a matter of association between X and Y along any measurable function, i.e.
the more X and Y tend to cluster around the graph of a function, either y = f(x) or x = g(y),
the more they are dependent.”

There exists some freedom in how to define the ‘extent to which X and Y cluster around
the graph of a function’. The choice of this function is exactly the point where the most
important measures of association differ.

Section 4.1 explains the concept of linear correlation. It measures how well two random
variables cluster around a linear function. A major shortcoming is that linear correlation is
not invariant under non-linear monotonic transformations of the random variables.

The concordance and dependence measures (e.g. Kendall’s tau, Spearman’s rho) introduced in
sections 4.2 and 4.3 reflect the degree to which random variables cluster around a monotone
function. This is a consequence of these measures being defined such as only to depend on the
copula — see definition 4.5(6) — and copulas are invariant under monotone transformations
of the random variables.

Finally, in section 4.4 dependence will be studied in case the involved random variables
simultaneously take extreme values.

From now on the random variables X and Y are assumed to be continuous.

4.1 Linear correlation

Definition 4.1 For non-degenerate, square integrable random variables X and Y the linear
correlation coefficient ρ is

ρ =
Cov[X,Y ]

(Var[X]Var[Y ])
1
2

Correlation can be interpreted as the degree to which a linear relation succeeds to describe
the dependency between random variables. If two random variables are linearly dependent,
then ρ = 1 or ρ = −1.

Example 4.2 Let X be a uniformly distributed random variable on the interval (0, 1) and
set Y = Xn, n ≥ 1. X and Y thus are perfectly positive dependent.

The n-th moment of X is

E [Xn] =
∫ 1

0
xn dx =

1
1 + n

. (4.1)
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The linear correlation between X and Y is

ρ =
E [XY ]− E [X]E [Y ]

(E [X2]− E [X]2)
1
2 (E [Y 2]− E [Y ]2)

1
2

=
E
[
Xn+1

]
− E [X]E [Xn]

(E [X2]− E [X]2)
1
2 (E [X2n]− E [Xn]2)

1
2

(4.1)
=

√
3 + 6n
2 + n

.

For n = 1 the correlation coefficient equals 1, for n > 1 it is less than 1.

Corollary 4.3 From the above example we conclude:

(i). The linear correlation coefficient is not invariant under increasing, non-linear trans-
forms.

(ii). Random variables whose joint distribution has nondecreasing or nonincreasing support
can have correlation coefficient different from 1 or −1.

4.2 Measures of concordance

Consider the following definition of concordance and discordance. The first part applies to
observations from a pair of random variables, the second part to copula functions.

Definition 4.4

(i). Two observations (x1, y1) and (x2, y2) are concordant if x1 < x2 and y1 < y2 or if
x1 > x2 and y1 > y2. An equivalent characterisation is (x1 − x2)(y1 − y2) > 0. The
observations (x1, y1) and (x2, y2) are said to be discordant if (x1 − x2)(y1 − y2) < 0.

(ii). If C1 and C2 are copulas, we say that C1 is less concordant than C2 (or C2 is more
concordant than C1) and write C1 ≺ C2 (C2 � C1) if

C1(u) ≤ C2(u) and C1(u) ≤ C2(u) for all u ∈ Im. (4.2)

In the remaining part of this section we will only consider bivariate copulas. Part (ii) of
definition 4.4 is then equivalent to C1(u, v) ≤ C2(u, v) for all u ∈ I2, see lemma 2.27.

Definition 4.5 A measure of association κC = κX,Y is called a measure of concordance
if

1. κX,Y is defined for every pair X,Y of random variables,

2. −1 ≤ κX,Y ≤ 1, κX,X = 1, κ−X,X = −1,

3. κX,Y = κY,X ,
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4. if X and Y are independent then κX,Y = κC⊥ = 0,

5. κ−X,Y = κX,−Y = −κX,Y ,

6. if C1 and C2 are copulas such that C1 ≺ C2 then κC1 ≤ κC2,

7. if {(Xn, Yn)} is a sequence of continuous random variables with copulas Cn and if {Cn}
converges pointwise to C, then limn→∞ κXn,Yn = κC .

What is the connection between definition 4.4 and 4.5?

It is natural to think of a concordance measure as being defined by the copula only. Indeed, by
applying axiom (6) twice it follows that C1 = C2 implies κC1 = κC2 . If the random variables
X and Y have copula C and the transformations α and β are both strictly increasing, then
CX,Y = Cα(X),β(Y ) by theorem 2.18 and consequently κX,Y = κα(X),β(Y ). Via axiom (5)
a similar result for strictly decreasing transformations can be established. Measures of
concordance thus are invariant under strictly monotone transformations of the
random variables.

If Y = α(X) and α is stictly increasing (decreasing), it follows from CX,α(X) = CX,X and
axiom (2) that κX,Y = 1 (−1). In other words: a measure of concordance assumes its
maximal (minimal) value if the support of the joint distribution function of X
and Y contains only concordant (discordant) pairs. This explains how definitions 4.4
and 4.5 are related.

Summarizing,

Lemma 4.6

(i). Measures of concordance are invariant under strictly monotone transformations of the
random variables.

(ii). A measure of concordance assumes its maximal (minimal) value if the support of the
joint distribution function of X and Y contains only concordant (discordant) pairs.

Note that these properties are in conflict with the conclusions in corollary 4.3 for the linear
correlation coefficient. Linear correlation thus is not a measure of concordance.

In the remaining part of this section, two concordance measures will be described: Kendall’s
tau and Spearman’s rho.

4.2.1 Kendall’s tau

Let Q be the difference between the probability of concordance and discordance of two inde-
pendent random vectors (X1, Y1) and (X2, Y2):

Q = P[(X1 −X2)(Y1 − Y2) > 0]− P[(X1 −X2)(Y1 − Y2) < 0]. (4.3)

In case (X1, Y1) and (X2, Y2) are independent and identically distributed (i.i.d.) random
vectors, the quantity Q is called Kendall’s tau τ .
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Given a sample {(x1, y1), (x2, y2), . . . , (xn, yn)} of n observations from a random vector (X,Y ),
an unbiased estimator for τ is

t :=
c− d

c+ d
,

where c is the number of concordant pairs and d the number of discordant pairs in the sample.

Nelsen [2] shows that if (X1, Y1) and (X2, Y2) are independent random vectors with (possibly
different) distributions H1 and H2, but with common margins F , G and copulas C1, C2

Q = 4
∫∫

I2
C2(u, v) dC1(u, v)− 1. (4.4)

It follows that the probability of concordance between two bivariate distributions (with com-
mon margins) minus the probability of discordance only depends on the copulas of each of
the bivariate distributions.

Note that if C1 = C2 := C, then, since we already assumed common margins, the distributions
H1 and H2 are equal which means that (X1, Y1) and (X2, Y2) are identically distributed. In
that case, (4.4) gives Kendall’s tau for the i.i.d. random vectors (X1, Y1), (X2, Y2) with
copula C.

Furthermore it can be shown that

τ = 1− 4
∫∫

I2

∂C(u, v)
∂u

∂C(u, v)
∂v

du dv. (4.5)

In the particular case that C is absolutely continuous, the above relation can be deduced via
integration by parts.

As an example of the use of (4.5), consider

Lemma 4.7 τC = τC .

Proof

τC = 1− 4
∫∫

I2

∂C

∂u

∂C

∂v
du dv

= 1− 4
∫∫

I2
[1− ∂C

∂u
][1− ∂C

∂v
] du dv

= τC − 4
∫∫

I2
[1− ∂C

∂u
− ∂C

∂v
] du dv. (4.6)

The second term of the integrand of (4.6) reduces to∫∫
I2

∂C

∂u
du dv =

∫ 1

0
C(1, v)− C(0, v) dv =

∫ 1

0
C(1, v) dv =

∫ 1

0
v dv =

1
2
.

Similarly, ∫∫
I2

∂C

∂v
du dv =

1
2
.

Substituting in (4.6) yields the lemma. �

22



Scarsini [4] proves that axioms (1)–(7) of definition 4.5 are satisfied by Kendall’s tau.

The next lemma holds for Kendall’s tau, but not for concordance measures in general.

Lemma 4.8 Let H be a joint distribution with copula C.

C = C+ iff. τ = 1,
C = C− iff. τ = −1.

Proof We will prove the first statement, C = C+ iff. τ = 1, via the following steps:

(i) τ = 1 ⇒ H has nondecreasing support
(ii) H has nondecreasing support ⇒ H = C+

(iii) H = C+ ⇒ τ = 1

Step (ii) is immediate from theorem 2.24. Step (iii) follows from substitution of C+ in
formula (4.4) and straightforward calculation. This step in fact also follows from axiom (6)
in definition 4.5.

It remains to show that τ = 1 implies H to have a nondecreasing support. Suppose τ = 1
and H does not have a nondecreasing support so that there exists at least one discordant pair
(x1, y1), (x2, y2) in H. Define δ := 1

2 |min{x1 − x2, y1 − y2}| and

B1 := Bδ(x1, y1),
B2 := Bδ(x2, y2),

where Br(x, y) denotes an open 2-ball with radius r and centre (x, y). From the definition of
the support of a CDF it follows that both P[B1] > 0 and P[B2] > 0. Because τ = 1 we have
from equation (4.3) that

0 = P[(X1 −X2)(Y1 − Y2) < 0]

=
∫∫

suppH
P[(X2 −X1)(Y2 − Y1) < 0|(X1, Y1) = (u, v)] dH(u, v)

=
∫∫

suppH

{
P[X2 > u, Y2 < v] + P[X2 < u, Y2 > v]

}
dH(u, v)

≥
∫∫

B1∪suppH

{
P[X2 > u, Y2 < v] + P[X2 < u, Y2 > v]

}
dH(u, v)

≥
∫∫

B1∪suppH
P[B2] dH(u, v) = P[B2]

∫∫
B1∪suppH

dH(u, v) = P[B1]P[B2].

This is a contradiction. �

4.2.2 Spearman’s rho

Let (X1, Y1), (X2, Y2) and (X3, Y3) be i.i.d. random vectors with common joint distributionH,
margins F , G and copula C. Spearman’s rho is defined to be proportional to the probability
of concordance minus the probability of discordance of the pairs (X1, Y1︸ ︷︷ ︸

Joint distr. H

) and (X2, Y3︸ ︷︷ ︸
Independent

):

ρS = 3 ( P[(X1 −X2)(Y1 − Y3) > 0]− P[(X1 −X2)(Y1 − Y3) < 0] ).
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Note that X2 and Y3, being independent, have copula C⊥. By (4.4), three times the concor-
dance difference between C and C⊥ is

ρS = 3
(

4
∫∫

I2
C(u, v)dC⊥(u, v)− 1

)
= 12

∫∫
I2
C(u, v) du dv − 3. (4.7)

Spearman’s rho satisfies the axioms in definition 4.5 (see Nelsen [2]).

Let X ∼ F and Y ∼ G be random variables with copula C, then Spearman’s rho is equiv-
alent to the linear correlation between F (X) and G(Y ). To see this, recall from prob-
ability theory that F (X) and G(Y ) are uniformly distributed on the interval (0, 1), so
E [F (X)] = E [G(Y )] = 1/2 and Var[F (X)] = Var[G(Y )] = 1/12. We thus have

ρS

(4.7)
= 12E [F (X), G(Y )]− 3

=
E [F (X), G(Y )]− (1/2)2

1/12

=
E [F (X), G(Y )]− E [F (X)]E [G(Y )]

(Var[F (X)]Var[G(Y )])
1
2

=
Cov[F (X), G(Y )]

(Var[F (X)]Var[G(Y )])
1
2

.

Cherubini et al. [5] state that for Spearman’s rho a statement similar to lemma 4.8 holds:
C = C± iff. ρS = ±1.

4.2.3 Gini’s gamma

Whereas Spearman’s rho measures the concordance difference between a copula C and inde-
pendence, Gini’s gamma γC measures the concordance difference between a copula C and
monotone dependence, i.e. the copulas C+ and C− (Section 2.2),

γC

(4.4)
=

∫∫
I2
C(u, v)dC−(u, v) +

∫∫
I2
C(u, v)dC+(u, v)

[2, Corollary 5.1.14]
= 4

[∫ 1

0
C(u, 1− u)du−

∫ 1

0

(
u− C(u, u)

)
du

]
.

Gini’s gamma thus can be interpreted as the area between the secondary diagonal sections of
C and C−,

C(u, 1− u)− C−(u, 1− u) = C(u, 1− u)−max(u+ (1− u)− 1, 0) = C(u, 1− u) ,
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minus the area between the diagonal sections of C+ and C,

C+(u, u)− C(u, u) = min(u, u)− C(u, u) = u− C(u, u) .

4.3 Measures of dependence

Definition 4.9 A measure of association δC = δX,Y is called a measure of dependence if

1. δX,Y is defined for every pair X,Y of random variables,

2. 0 ≤ δX,Y ≤ 1

3. δX,Y = δY,X ,

4. δX,Y = 0 iff. X and Y are independent,

5. δX,Y = 1 iff. Y = f(X) where f is a strictly monotone function,

6. if α and β are strictly monotone functions on Ran X and Ran Y respectively, then
δX,Y = δα(X),β(Y ),

7. if {(Xn, Yn)} is a sequence of continuous random variables with copulas Cn and if {Cn}
converges pointwise to C, then limn→∞ δXn,Yn = δC .

The differences between dependence and concordance measures are:

(i). Concordance measures assume their maximal (minimal) values if the concerning random
variables are perfectly positive (negative) dependent. Dependence measures assume
their extreme values if and only if the random variables are perfectly dependent.

(ii). Concordance measures are zero in case of independence. Dependence measures are zero
if and only if the random variables under consideration are independent.

(iii). The stronger properties of dependence measures over concordance measures go at the
cost of a sign: dependence is a measure of association with respect to a monotone
function — indifferently increasing or decreasing — whereas concordance accounts for
the kind of monotonicity [4].

4.3.1 Schweizer and Wolff’s sigma

Schweizer and Wolff’s sigma for two random variables with copula C is given by

σC = 12
∫∫

I2

∣∣C(u, v)− uv
∣∣ du dv.

Nelsen [2] shows that this association measure satisfies the properties of definition 4.9.
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4.4 Tail dependence

This section examines dependence in the upper-right and lower-left quadrant of I2.

Definition 4.10 Given two random variables X ∼ F and Y ∼ G with copula C, define the
coefficients of tail dependence

λL := lim
u↓0

P[F (X) < u|G(Y ) < u] = lim
u↓0

C(u, u)
u

, (4.8)

λU := lim
u↑1

P[F (X) > u|G(Y ) > u] = lim
u↑1

1− 2u+ C(u, u)
1− u

. (4.9)

C is said to have lower (upper) tail dependence iff. λL 6= 0 (λU 6= 0).

The coefficients of tail dependence express the probability of two random variables both taking
extreme values.

Lemma 4.11 Denote the lower (upper) coefficient of tail dependence of the survival copula
C by λL (λU ), then

λL = λU ,

λU = λL.

Proof

λL = lim
u↓0

C(u, u)
u

= lim
v↑1

C(1− v, 1− v)
1− v

= lim
v↑1

1− 2v + C(v, v)
1− v

= λU

λU = lim
u↑1

1− 2u+ C(u, u)
1− u

= lim
u↓0

2v − 1 + C(1− v, 1− v)
v

= lim
u↓0

C(v, v)
v

= λL �

Example 4.12 As an example, consider the Gumbel copula

CGumbel(u, v) := exp{−[(− log u)
1
α + (− log v)

1
α ]α}, α ∈ [1,∞)

with diagonal section

C̃Gumbel(u) := CGumbel(u, u) = u2α
.

C̃ is differentiable in both u = 0 and u = 1, this is a sufficient condition for the limits (4.8)
and (4.9) to exist:

λL =
dC̃

du
(0)

=
[
d

du
u2α

]
u=0

=
[
2αu2α−1

]
u=0

= 0 ,

λU = λL =
d

du

[
2u− 1 + C̃(1− u)

]
u=0

= 2− dC̃

du
(1)

= 2−
[
d

du
u2α

]
u=1

= 2−
[
2αu2α−1

]
u=1

= 2− 2α.

So the Gumbel copula has no lower tail dependency. It has upper tail dependency iff. α 6= 1.
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4.5 Multivariate dependence

Most of the concordance and dependence measures introduced in the previous sections have
one or more multivariate generalizations.

Joe [6] obtains the following generalized version of Kendall’s tau. Let X = (X1, . . . , Xm) and
Y = (Y1, . . . , Ym) be i.i.d. random vectors with copula C and define Dj := Xj − Yj . Denote
by Bk,m−k the set of m-tuples in Rm with k positive and m − k negative components. A
generalized version of Kendall’s tau is given by

τC =
m∑

k=bm+1
2

c

wk P( (D1, . . . , Dm) ∈ Bk,m−k)

where the weights wk, bm+1
2 c ≤ k ≤ m, are such that

(i). τC = 1 if C = C+,

(ii). τC = 0 if C = C⊥,

(iii). τC1 < τC2 whenever C1 ≺ C2.

The implications of (i) and (ii) for the wk’s are straightforward:

(i). wm = 1,

(ii).
∑m

k=0wk
(
m
k

)
= 0 (wk := wm−k for k < bm+1

2 c).

The implication of (iii) is more involved (see [6, p. 18]), though it is clear that at least
wm ≥ wm−1 ≥ . . . ≥ wbm+1

2
c should hold.

For m = 3 the only weights satisfying (i)–(iii) are w3 = 1 and w2 = −1
3 . The minimal value

of τ for m = 3 thus is −1
3 . For m = 4 there exists a one-dimensional family of generalizations

of Kendall’s tau.

In terms of copulas, Joe’s generalization of Spearman’s rho [6, pp. 22-24] for a m-multivariate
distribution function having copula C reads

ωC =
(∫

. . .

∫
Im

C(u) du1 . . . dum − 2−m
)/(

(m+ 1)−1 + 2−m
)
.

Properties (i) and (ii) are taken care of by the scaling and normalization constants and can be
checked by substituting C+ and C⊥. The increasingness of ω with respect to ≺ is immediate
from definition 4.4(ii).

There also exist multivariate measures of dependence. For instance, Nelsen [2] mentions the
following generalization of Schweizer and Wolff’s sigma:

σC =
2m(m+ 1)

2m − (m+ 1)

∫
. . .

∫
Im

|C(u1, . . . , um)− u1 . . . um| du1 . . . dum,

where C is an m-copula.
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5 Parametric families of copulas

This section gives an overview of some types of parametric families of copulas. We are
particularly interested in their coefficients of tail dependence.

The Fréchet family (section 5.1) arises by taking affine linear combinations of the product
copula and the Fréchet-Hoeffding upper and lower bounds. Tail dependence is determined by
the weights in the linear combination.

In section 5.2 copulas are introduced which stem from elliptical distributions. Because of
their symmetric nature, upper and lower tail dependence coefficients are equal.

Any function satisfying certain properties (described in section 5.3) generates an Archimedean
copula. These copulas can take a great variety of forms. Furthermore, they can have dis-
tinct upper and lower tail dependence coefficients. This makes them suitable candidates for
modeling asset prices, since in market data either upper or lower tail dependence tends to be
more profound.

Multivariate Archimedean copulas however are of limited use in practice as all bivariate
margins are equal. Therefore in section 5.4 an extension of the class of Archimedean copulas
will be discussed that allows for several distinct bivariate margins.

5.1 Fréchet family

Every affine linear combination of copulas is a new copula. This fact can be used for instance
to construct the Fréchet family of copulas

CF (u, v) = pC−(u, v) + (1− p− q)C⊥(u, v) + qC+(u, v)
= pmax(u+ v − 1, 0) + (1− p− q)uv + qmin(u, v)

where C⊥(u, v) = uv is the product copula and 0 ≤ p, q,≤ 1, p+ q ≤ 1.

The product copula models independence, whereas the Fréchet-Hoeffding upper and lower
bounds ‘add’ positive and negative dependence respectively. This intuition is confirmed by
Spearman’s rho:

ρS CF = 12
∫∫

I2
CF (u, v) du dv − 3

= 12
∫ 1

0

∫ 1

1−v
p(u+ v − 1) du dv + 12 (1− p− q)

∫∫
I2
uv du dv

+12
∫ 1

0

∫ u

0
qv dv du+ 12

∫ 1

0

∫ 1

u
qu dv du− 3

= q − p.

Indeed, the weight p (of C−) has negative sign and q (of C+) has positive sign.

The Fréchet family has upper and lower tail dependence coefficient q.
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5.2 Elliptical distributions

The n-dimensional random vector X is said to follow an elliptical distribution if X − µ, for
some µ ∈ Rn, has a characteristic function of the form φX−µ(t) = Ψ(tTΣt), where Ψ is a
[0,∞) → R function (characteristic generator) and Σ ∈ Rn×n a symmetric positive definite
matrix. If the density functions exist, it has the form

f(x) = |Σ|−
1
2 g[(x− µ)TΣ−1(x− µ)], x ∈ Rn,

for some [0,∞) → [0,∞) function g (density generator).

Taking g(y) = 1
2π exp{−y

2} gives the Gaussian distribution (Section 5.2.1) and g(y) =
(
1 + ty

ν

)− 2+ν
2

leads to a Student’s t distribution with ν degrees of freedom (Section 5.2.2).

Schmidt [7, Theorem 2.4α] shows that elliptical distributions are upper and lower tail depen-
dent if the tail of their density generator is a regularly varying function with index α < −n/2.
A function g is called regularly varying with index α if for every t > 0

lim
x→∞

g(tx)
g(x)

= tα.

Whether or not the generator being regularly varying is a necessary condition for tail de-
pendence is still an open problem, but Schmidt [7, Theorem 2.4γ] proves that to have tail
dependency the density generator g must be O-regularly varying, that is it must satisfy

0 < lim inf
x→∞

g(tx)
g(x)

≤ lim sup
x→∞

g(tx)
g(x)

< ∞,

for every t ≥ 1.

5.2.1 Bivariate Gaussian copula

The bivariate Gaussian copula is defined as

CGa(u, v) = Φρ(Φ−1(u),Φ−1(v)),

where

Φρ(x, y) =
∫ x

−∞

∫ y

−∞

1

2π
√

1− ρ2
e

2ρst−s2−t2

2(1−ρ2) ds dt

and Φ denotes the standard normal CDF.

The Gaussian copula generates the joint standard normal distribution iff. u = Φ(x) and
v = Φ(y), that is iff. the margins are standard normal.

Gaussian copulas have no tail dependency unless ρ = 1. This follows from Schmidt’s [7]
characterisation of tail dependent elliptical distributions, since the density generator for the
bivariate Gaussian distribution (ρ 6= 1) is not O-regularly varying:

lim
x→∞

g(tx)
g(x)

= lim
x→∞

exp{−1
2
x(t− 1)} = 0, t ≥ 1.

29



5.2.2 Bivariate Student’s t copula

Let tν denote the central univariate Student’s t distribution function, with ν degrees of
freedom:

tν(x) =
∫ x

−∞

Γ((ν + 1)/2)√
πν Γ(ν/2)

(
1 +

s2

ν

)− ν+1
2
ds,

where Γ is Euler function and tρ,ν , ρ ∈ [0, 1], the bivariate distribution corresponding to tν :

tρ,ν(x, y) =
∫ x

−∞

∫ y

−∞

1

2π
√

1− ρ2

(
1 +

s2 + t2 − 2ρst
ν(1− ρ2)

)− ν+2
2
ds dt.

The bivariate Student’s copula Tρ,ν is defined as

Tρ,ν(u, z) = tρ,ν(t−1
ν (u), t−1

ν (v)).

The generator for the Student’s t is regularly varying:

lim
x→∞

g(tx)
g(x)

= lim
x→∞

(
1 +

tx

ν

)− 2+ν
2 (

1 +
x

ν

) 2+ν
2 = lim

x→∞

(
ν + x

ν + tx

) 2+ν
2

= t−
2+ν
2 .

It follows that the Student’s t distribution has tail dependence for all ν > 0.

5.3 Archimedean copulas

Every continuous, decreasing, convex function φ : [0, 1] → [0,∞) such that φ(1) = 0 is a
generator for an Archimedean copula. If furthermore φ(0) = +∞, then the generator is
called strict. Parametric generators give rise to families of Archimedean copulas.

Define the pseudo-inverse of φ as

φ[−1] =
{
φ−1(u), 0 ≤ u ≤ φ(0),
0, φ(0) ≤ u ≤ ∞.

In case of a strict generator, φ[−1] = φ−1 holds.

The function
CA(u, v) = φ[−1](φ(u) + φ(v)) (5.1)

is a copula [2, Theorem 4.1.4] and is called the Archimedean copula with generator φ.
The density of CA is given by

cA(u, v) =
−φ′′(C(u, v))φ′(u)φ′(v)

[φ′(C(u, v))]3
.
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Table 5.1: One-parameter Archimedean copulas. The families marked with * include C−,
C⊥ and C+.

Name Cθ(u, v) φθ(t) θ ∈ τ λL λU

Clayton*
(
max{0, u−θ + v−θ − 1}

)− 1
θ 1

θ (t
−θ − 1) [−1,∞)\{0} θ

θ+2 2−
1
θ 0

Gumbel-
Hougaard

exp
(
−
[
(− log u)θ + (− log v)θ

] 1
θ

)
(− log t)θ [1,∞) θ−1

θ 0 2− 2
1
θ

Gumbel-
Barnett

uv exp(−θ log u log v) log(1− θ log t) (0, 1] 0 0

Frank* −1
θ log

(
1 + (e−θu−1)(e−θv−1)

e−θ−1

)
− log e−θt−1

e−θ−1
(−∞,∞)\{0} 0 0

5.3.1 One-parameter families

The Gumbel copula from example 4.12 is Archimedean with generator φ(u) = (− log(u))θ,
θ ∈ [1,∞). Some other examples are listed in table 5.1.

The Fréchet-Hoeffding lower bound C− is Archimedean (φ(u) = 1− u), whereas the Fréchet-
Hoeffding upper bound is not. To see this, note that φ[−1] is strictly decreasing on [0, φ(0)].
Clearly, 2φ(u) > φ(u), so we have for the diagonal section of an Archimedean copula that

CA(u, u) = φ[−1](2φ(u)) < φ[−1](φ(u)) = u. (5.2)

As C+(u, u) = u, inequality (5.2) implies that C+ is not Archimedean.

Marshall and Olkin [8] show that if Λ(θ) is a distribution function with Λ(0) = 0 and Laplace
transform

ψ(t) =
∫ ∞

0
e−θtdΛ(θ),

then φ = ψ−1 generates a strict Archimedean copula.

5.3.2 Two-parameter families

Nelsen [2] shows that if φ is a strict generator, then also φ(tα) (interior power family) and
[φ(t)]β (exterior power family) are strict generators for α ∈ (0, 1] and β ≥ 1. If φ is twice
differentiable, then the interior power family is a strict generator for all α > 0. Two-parameter
families of Archimedean copulas can now be constructed by taking

φα,β = [φ(tα)]β

as the generator function.

For example, choosing φ(t) = 1
t − 1 gives φα,β = (t−α − 1)β for α > 0 and β ≥ 1. This

generates the family

Cα,β(u, v) =
{[

(u−α − 1)β + (v−α − 1)β
] 1

β − 1
}
.

For β = 1 this is (part of) the one-parameter Clayton family — see table 5.1.
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5.3.3 Multivariate Archimedean copulas

This section extends the notion of an Archimedean copula to dimensions n ≥ 2.

Kimberling [9] proves that if φ is a strict generator satisfying

(−1)k
dkφ−1(t)
dtk

≥ 0 for all t ∈ [0,∞), k = 1, . . . , n (5.3)

then
CA(u1, . . . , un) = φ−1(φ(u1) + . . .+ φ(un))

is an n-copula.

For example, the generator φθ(t) = t−θ−1 (θ > 0) of the bivariate Clayton family has inverse
φ−1
θ (t) = (1 + t)−

1
θ which is readily seen to satisfy (5.3). Thus,

Cθ(u1, . . . , un) =
(
u−θ1 + . . .+ u−θn − n+ 1

)− 1
θ

is a family of n-copulas.

It can be proven (see [10]) that Laplace transforms of distribution functions Λ(θ) satisfy (5.3)
and Λ(0) = 1. The inverses of these transforms thus are a source of Archimedean n-copulas.

Archimedean n-copulas have practical restraints. To begin with, all k-margins are identical.
Also, since there are usually only two parameters, Archimedean n-copulas are not very flexible
to fit the n dimensional dependence structure. Furthermore, Archimedean copulas that have
generators with complete monotonic inverse, are always more concordant than the product
copula, i.e. they always model positive dependence.

There exist extensions of Archimedean copulas that have a number of mutually distinct
bivariate margins. This is discussed in the next section.

5.4 Extension of Archimedean copulas

Generators of Archimedean copulas can be used to construct other (non-Archimedean) cop-
ulas. One such extension is discussed in Joe [11]. Copulas that are constructed in this way
have the property of partial exchangeability, i.e. a number of bivariate margins are mutu-
ally distinct. We will only address the three dimensional case, but generalizations to higher
dimensions are similar.

First, let φ be a strict generator and note that Archimedean copulas are associative:

C(u, v, w) = φ−1(φ(u) + φ(v) + φ(w))
= φ−1(φ ◦ φ−1(φ(u) + φ(v))︸ ︷︷ ︸

C(u,v)

+φ(w))

= C(C(u, v), w).

If we would choose the generator of the ‘inner’ and the ‘outer’ copula to be different, would
the composition then still be a copula? In other words, for which functions φ, ψ is

Cφ(Cψ(u, v), w) (5.4)
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a copula? If it is, then the (1,2) bivariate margin is different from the (1,3) margin, but the
(2,3) margin is equal to the (1,3) margin.

For n = 1, 2, . . . ,∞, consider the following function classes:

Ln =
{
φ : [0, φ) → [0, 1]

∣∣∣φ(0) = 1, φ(∞) = 0, (−1)k
dkφ(t)
dtk

≥ 0 for all t ∈ [0,∞), k = 1, . . . , n
}
,

L∗n =
{
ω : [0,∞) → [0,∞)

∣∣∣ω(0) = 0, ω(∞) = ∞, (−1)k−1d
kω(t)
dtk

≥ 0 for all t ∈ [0,∞), k = 1, . . . , n
}
,

Note that if φ−1 ∈ L1, then φ is a strict generator for an Archimedean copula.

It turns out that if φ, ψ ∈ L1 and φ ◦ψ−1 ∈ L∗∞, then (5.4) is a copula. For general n-copulas
similar conditions exist. In the n-dimensional case, n− 1 of the 1

2n(n− 1) bivariate margins
are distinct.
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6 The multivariate-multitemporal pricing model

The multivariate-multitemporal (multi-multi) model [12] is a pricing framework for multi-
asset financial contracts where the payoff depends on a discrete number of observations. The
basic building block is a multivariate Black-Scholes framework, i.e. a Gaussian copula and
lognormal marginal distributions, resulting from modelling the forward price processes of the
underlyings by correlated Brownian motions. To be consistent with single-asset derivatives
prices, this model is then fitted to market prices by replacing the lognormal marginal distri-
butions by market observed marginal densities. These are parametrized (terminal) densities
resulting from a Displaced Diffusion (Section 6.1.1) or SABR (Section 6.1.2) process.

First we will discuss the case where the Gaussian terminal copula is taken from the multi-
variate Black-Scholes setup and only the marginal distributions are replaced by risk-neutral
distributions (Section 6.2.1).

Next, in Section 6.2.2, not only the marginal distributions, but also the Gaussian copula will
be replaced to allow for tail dependence. Since multi-asset derivatives in general are not liquid
in the market, this copula will not be risk-neutral (like the implied marginal densities) but is
calibrated to historical market data.

6.1 Marginal distributions

Unlike the Black-Scholes model whose marginal terminal densities are lognormal, the multi-
multi model uses market implied marginal distributions (Appendix B.1). These distributions
are inferred from vanilla option prices.

To determine the market implied densities, quotes are needed for call options at every possible
strike. Such a continuum of prices is not available in the market. Instead of interpolating the
available option prices to implicitly fix the marginal distribution, it is common to parametrize
the implied volatility surface. In the standard Black-Scholes setup, specifying all implied
volatilities completely determines the Black-implied distribution:

P[F T (T ) < K]
(B.3)
= Φ(−d2) + F T (0)

√
T φ(d1)

∂σ̂

∂K
.

Here, F T (0) is the forward value of the underlying at maturity T seen from inception, σ̂ is
the Black-implied volatility and d1, d2 are given by (A.11) and (A.12) respectively.

Sections 6.1.1 and 6.1.2 describe two volatility parametrizations. The corresponding terminal
distributions have tails that are heavier than in the lognormal case, i.e. they incorporate
volatility smile.

6.1.1 Displaced Diffusion

The displaced diffusion model assumes forward prices follow the dynamics

dF T (t) = µF T (t) dt+ σ(t) [βS(t) + (1− β)F T (0)]dW (t) . (6.1)
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Figure 6.1: SABR implied volatility smile (β = 0.5, σ0 = 1, α = 0.4, ρ = −0.3).
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The parameter β takes real values and determines the slope of the skew. For β = 0 and β = 1
displaced diffusion corresponds to a normal and a lognormal process respectively. At time T
the solution of the stochastic differential equation (6.1) is

F T (T ) =
F T (0)
β

[
exp

(
−1

2
β2

∫ T

0
σ2(s) ds + β

∫ T

0
σ(s) dW (s)

)
− (1− β)

]
. (6.2)

The distribution of
∫ T
0 σ(s)dW (s) is known to be N (0, σ̂) where σ̂2 = 1

T

∫ T
0 σ(s)2 ds. It follows

that

P[S(T ) < K] = Φ

− log FT (0)
βK−(1−β)FT (0)

− 1
2β

2
∫ T
0 σ2(s) ds

β
(∫ T

0 σ2(s) ds
) 1

2

 .

6.1.2 SABR

The stochastic-αβρ (SABR) model, originally proposed by Hagan et al. [13], models forward
price and volatility as two correlated processes:

dF T (t) = σ(t)F T (t)β dW1(t) ,
dσ(t) = ασ(t) dW2(t) , σ(0) = σ0 ,
dW1 dW2 = ρ dt .

(6.3)

The correlation ρ between the forward and the volatility process takes values on [−1, 1], the
instantaneous volatility σ and the ‘volatility of volatility’ α are positive and β is any real
number, though generally lies in [0, 1]. These dynamics produce a ‘smile’ in the implied
volatility curve of the terminal distribution (Figure 6.1). Prices of European options can be
approximated using perturbation techniques [13, Appendix A]. From this an expression for
the implied volatility can be derived:

σ̂(F T (0),K, T, σ, α, β, ρ) = σ0
1 + ηT
√
g h

z

χ
, (6.4)
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where

g := (F T (0)K)1−β ,
x := log(F T (0)/K) ,

h := 1 +
(1− β)2

24
x2 +

(1− β)4

1920
x4 ,

η :=
(1− β)2

24
σ2

0

g
+
σ0αβρ

4
√
g

+
2− 3ρ2

24
α2 ,

z :=
α

σ0
x
√
g ,

χ := log
z − ρ+

√
1− 2ρz + z2

1− ρ
.

6.2 Dependence

If we are pricing a hybrid contract over n underlyings S1, . . . , Sn where the payoff depends on
observations at m timepoints t1, . . . , tm, we need a copula specifying the dependence structure
between the terminal distributions S1(t1), . . . , Sn(t1), . . . , S1(tm), . . . , Sn(tm). We will refer to
this as terminal dependence.

For calibration one usually looks at instantaneous dependence — i.e. dependence between
periodic returns — instead of dependence between terminal levels. The reason for this is
that consecutive asset prices are not independent, whereas autocorrelation in daily returns
usually is low — see for example Table 6.1. Autocorrelation between levels (not listed in the
table) generally is near unity. The presence of autocorrelation in data series obstructs the
calibration of the copula since the maximum likelihood approach assumes the observations to
be independent (Section 8.1).

Table 6.1: Autocorrelation in daily and monthly log-returns.

Autocorrelation in log-returns
Daily Monthly

SP500 0.005 -0.098
NIKKEI 225 −0.016 0.062

NASDAQ 0.056 0.124
Corn 0.004 0.100

Wheat −0.044 −0.077

If we calibrate a copula to daily or monthly returns, we need to ‘transform’ the instantaneous
dependence described by this copula into terminal dependence. In case of a multivariate
Black-Scholes model with correlated Brownian motions driving the forward price processes,
there is a natural way to calculate the terminal covariances (Section 6.2.1). If we are to use a
general copula to allow for tail dependence, we have to calculate the convolution of daily or
monthly increments by means of Monte Carlo simulation (Section 6.2.2).
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Figure 6.2: Correlation matrix used in the multi-multi model. The cross-time correlations
(N) are given by equation (6.7), the cross-asset correlations (◦) by (6.8).

S1(t1) . . . S1(tm) S2(t1) . . . S2(tm) . . . Sn(t1) . . . Sn(tm)
S1(t1) 1 N N ◦ ◦ ◦ ◦ ◦ ◦

...
. . . N ◦ ◦ ◦ ◦ ◦ ◦

S1(tm) 1 ◦ ◦ ◦ ◦ ◦ ◦
S2(t1) 1 N N ◦ ◦ ◦

...
. . . N ◦ ◦ ◦

S2(tm) 1 ◦ ◦ ◦
...

. . .
Sn(t1) 1 N N

...
. . . N

Sn(tm) 1

6.2.1 Normal copula

The multi-multi framework basically is a multivariate Black-Scholes model where the marginal
distributions are replaced to incorporate volatility smile and to be consistent with single-asset
derivatives prices. The covariance matrix of the Gaussian copula however is taken from the
multivariate Black-Scholes case, i.e. as if the marginal distributions were lognormal. The
Brownian motions driving the spot price processes thus are assumed to follow the dynamics

dx(t) = σx(t) dWx(t) ,
dy(t) = σy(t) dWy(t) ,
dWx(t) dWy(t) = ρ dt ,

(6.5)

where σx, σy are the instantaneous volatilities of the Brownian motions. The instantaneous
correlation ρ can be calculated via

ρ = 2 sin(
π

6
ρS )

where ρS is Spearman’s rank correlation coefficient for the logarithm of the returns of the
spot prices.

Var[x(t)] = E
[
x(t)2

]
− (E [x(t)])2︸ ︷︷ ︸

=0

= E

[(∫ t

0
σx(s) dWx(s)

)2
]

Ito isometry
=

∫ t

0
|σx(s) |2 ds := t σ2

x(t) (6.6)

The variance per unit time σ2
x is chosen to match the at-the-money implied volatilities at

t1, . . . , tm.
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For t ≤ s the covariance of x(t) and x(s) is

Cov[x(t), x(s)] = E [x(t)x(s) ]− E [x(t)]E [x(s)]︸ ︷︷ ︸
= 0

= E

[∫ t

0
σx(u) dWx(u)

∫ s

0
σx(u) dWx(u)

]
= E

[(∫ t

0
σx(u) dWx(u)

)2

+
∫ t

0
σx(u) dWx(u)

∫ s

t
σx(u) dW (u)

]
Indep.

increments
= E

[
x(t)2

] (6.6)
= t σ2

x(t) .

Dividing by the product of the standard deviations gives the cross-time correlation

Corr(x(t), x(s)) =
Cov[x(t), x(s)]√

Var[x(t)] Var[x(s)]
=

σ2
x(t) t

σx(t)
√
t σx(s)

√
s

=
σx(t)
σx(s)

√
t√
s
. (6.7)

Equation (6.6) must hold for the at-the-money volatilities at t = t1, . . . , tm, but this constraint
is satisfied by infinitely many instantaneous volatility functions σx. By assuming some term
structure for the instantaneous volatility (e.g. piecewise constant) we can fix σx, σy and
calculate the cross-asset covariance

Cov[x(t), y(s)] = E [x(t)y(s) ]− E [x(t)]E [y(s)]︸ ︷︷ ︸
= 0

= E

[∫ t

0
σx(u) dWx(u)

∫ t

0
σy(u) dWy(u)

]
+ E

[∫ t

0
σx(u) dWx(u)

∫ s

t
σy(u) dWy(u)

]
Indep.

increments
= E

[∫ t

0
σx(u) dWx(u)

∫ t

0
σy(u) dWy(u)

]

=
∫ t

0
ρ σx(u)σy(u) du := t σ2

xy(t) .

Therefore,

Corr(x(t), y(s)) =
σ2
xy(t)

σx(t)σy(s)

√
t√
s
. (6.8)

Equations (6.7) and (6.8) together completely specify the covariance matrix of the normal
copula.
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Figure 6.3: Convergence of a worst-of option price for the multi-multi model with a Clayton
survival copula calibrated to daily returns.

6.2.2 Alternative copula

In the preceding section the copula modelling the dependence between underlyings was as-
sumed to be Gaussian. We will now lift this assumption and extend the multi-multi model
for use with a general copula, but limit ourselves to options where the payoff depends on ob-
servations at maturity only. In case of the Gaussian copula the covariance matrix was taken
from the multivariate Black-Scholes model. For a general copula, which is not parametrized
in terms of covariances, this approach cannot be used.

The maximum likelihood method (Section 8.1) that is used to calibrate the copula assumes
consecutive observations in the historical data set to be independent. Empirical evidence
indicates that price levels are not independent. Therefore we will focus on (log-)returns
instead.

The copula, being calibrated to returns, captures instantaneous dependence between un-
derlyings, that is, dependence between price changes on a daily, weekly or monthly timescale.
By compounding several of those price changes we can construct returns for larger timescales,
for instance the return to maturity. Up to a multiplication by the (non-stochastic) initial price
level this is the same as the terminal level whose dependence structure we are interested in.

Since we are now modelling returns rather than levels, we should also specify the marginal
distribution of the returns. To be consistent with liquid single-asset contracts, we will
derive the marginal return densities from the same processes we previously used to generate
terminal univariate price distributions:

Lognormal case In case of lognormal margins and under risk neutrality the forwards
F1, . . . , Fn with maturity tm of the underlyings follow the process

dFj(t) = σj(t)Fj(t) dWj(t), j = 1, . . . , n . (6.9)

Suppose we have a model for the dependence between ∆t-periodic returns. Partition the
interval [0, tm], into subintervals of length ∆t. We can simulate observations from the forwards
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at maturity tm using the solution of (6.9): for k = 0, ∆t, 2∆t, . . . , tm/∆t− 1 calculate

log
Fj( (k + 1)∆t )
Fj( k∆t )

= −1
2
∆t (σj)2 +

√
∆t σj Φ−1(ukj ) . (6.10)

The ukj are independent and uniformly distributed for fixed j. For fixed k, their joint distri-
bution is determined by the choice of the copula.

In case of a normal copula, this procedure is equivalent to the approach described in Section
6.2.1 with lognormal margins.

Displaced diffusion case If the underlying follows a displaced diffusion process, formula
(6.10) becomes

log
Fj( (k + 1)∆t )
Fj( k∆t )

= − log β − 1
2
β2∆t (σj)2 + β

√
∆t σj Φ−1(ukj ) . (6.11)

By adding up the joint distributions of price increments over a small time periods we arrive
at the distribution of price changes on the time interval to maturity. This essentially means
calculating a convolution. We will approximate this convolution by Monte Carlo simulation.
Figure 6.3 shows that it roughly takes 100000 simulatons for the option price to converge.

Summarizing, to calculate the option price we proceed as follows:

Algorithm 6.1

1. Calibrate a copula to historical ∆t periodical returns (Section 8).

2. For each k in [0, tm) step size ∆t:
(i) Simulate (Section 7) an observation (uk1, . . . , u

k
n) from the copula obtained in step 1.

(ii) Update the forwards F1((k + 1)∆t), . . . , Fn((k + 1)∆t) using (6.10) or (6.11).

3. Calculate the option price which is a function of the spot prices F1(tm), . . . , Fn(tm) of
the underlyings at maturity.

4. Repeat steps 2 and 3 and average the option price.
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7 Simulation

This section covers methods for sampling from Archimedean copulas. Marshall and Olkin’s
approach (Section 7.2) generates samples from general n-dimensional Archimedean copulas
but it requires a draw from the distribution corresponding to the inverse Laplace transforma-
tion of the generator of the copula. Alternatively, the conditional sampling approach (Section
7.1) does not require such a draw, but is not applicable for all Archimedean copulas (for
instance not for the Gumbel copula) and sometimes involves equations that have to be solved
numerically (like the n-Frank copula which requires solving an n− 1 dimensional polynomial
equation).

7.1 Conditional sampling

In the conditional sampling approach, the components of the realization of the copula are
generated one by one. The first component is drawn from a uniform distribution, the second is
based on the copula conditional on the first draw and so on. Examples 7.1 and 7.2 demonstrate
this procedure for Clayton and Frank copulas.

Adopting the notation

Ck(u1, . . . , uk) := C(u1, . . . , uk, 1, . . . , 1) , 1 ≤ k ≤ n ,

the conditional distribution of the k-th component given the preceding ones is

P[Uk ≤ uk |U1 = u1, . . . , Uk−1 = uk−1] =
P[Uk ≤ uk, U1 = u1, . . . , Uk−1 = uk−1]

P[U1 = u1, . . . , Uk−1 = uk−1]

=
∂k−1Ck(u1, . . . , uk)/(∂u1 . . . ∂uk−1)

∂k−1Ck−1(u1, . . . , uk−1)/(∂u1 . . . ∂uk−1)
.

Nelsen [2] therefore proposes the following algorithm:

• Simulate a vector (v1, . . . , vn) of uniform random variates.

• Put


v1 = u1

v2 = P[U2 ≤ u2 |U1 = u1]
...

vk = P[Un ≤ un |U1 = u1, . . . , Un−1 = un−1]

• The solution (u1, . . . , un) of this system is a realization of the copula.

Cherubini et al. [5] show that for Archimedean copulas

P[Uk ≤ uk |U1 = u1, . . . , Uk−1 = uk−1] =
∂k−1φ−1

∂tk−1 (φ(u1) + . . .+ φ(uk) )
∂k−1φ−1

∂tk−1 (φ(u1) + . . .+ φ(uk−1) )
. (7.1)

The following algorithms for generating Clayton and Frank variates are stated for the bivariate
case, but can easily be generalized to the multidimensional case — see [5, p. 185].
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Example 7.1 (Clayton copula simulation) The generator of the Clayton copula is φ(u) =
u−θ−1 with inverse φ−1(t) = (t+1)−

1
θ and ∂t φ−1 = 1

θ (t+1)−
1+θ

θ . Draw v1, v2 from a uniform
distribution on [0,1] and put

v1 = u1 ,

v2

(7.1)
= ∂t φ−1(φ(u1)+φ(u2) )

∂t φ−1(φ(u1) )
=
(
u−θ
1 +u−θ

2 −1

u−θ
1

)− 1+θ
θ

.

Solving for u2 gives

u2 =
(
u−θ1

(
v
− θ

1+θ

2 − 1
)

+ 1
)− 1

θ

.

Figure 7.1 shows 700 simulations from a Clayton copula with parameter 5.

Example 7.2 (Frank copula simulation) The generator of the Frank copula is φ(u) =
log e−θu−1

e−θ−1
with inverse φ−1(t) = −1

θ log(1 + et(e−θ − 1)) and ∂t φ−1 = −1
θ

et(e−θ−1)
1+et(e−θ−1)

. Draw
v1, v2 from a uniform distribution on [0,1] and put

v1 = u1 ,

v2

(7.1)
= ∂t φ−1(φ(u1)+φ(u2) )

∂t φ−1(φ(u1) )
= e−θu2−1

e−θ−1+(e−θu1−1)(e−θu2−1)
.

Solving for u2 gives

u2 = −1
θ

log
(

1 +
v2(1− e−θ)

v2(e−θu1 − 1)− e−θu1

)
.

Figure 7.2 shows 700 simulations from a Frank copula with parameter −10.

7.2 Marshall and Olkin’s method

This section closely follows Marshall and Olkin [8].

Let F,G be two univariate distributions, then

H(x) :=
∫
F (x)γdG(γ) (7.2)

is also a distribution function — it is the mixture of distributions F γ with weights determined
by G. Recall that

τ(x) =
∫
e−xγdG(γ)

is the Laplace transform of G. It follows that

τ(− logF (x)) = H(x) ,
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Figure 7.1: Scatterplot of
Clayton(5) copula.
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Figure 7.2: Scatterplot of
Frank(−10) copula.

or equivalently,
F (x) = exp(− τ−1H(x) ) , (7.3)

i.e. given H and G, there always exists a distribution function F such that (7.2) holds.

Now let G be a bivariate distribution having margins G1, G2. The margins H1,H2 of

H(x1, x2) =
∫∫

F1(x1)γ1F2(x2)γ2 dG(γ1, γ2) (7.4)

are given by Hi(x) =
∫
F γi
i (x) dGi(γi) . Conversely, if

Fi(x) = exp(−τ−1
i Hi(x)) , (7.5)

where τi is the Laplace transform of Gi, then H given by (7.4) is a bivariate distribution with
margins H1 and H2.

Consider the special case where G is the Fréchet-Hoeffding upper bound and the margins Gi,
1 ≤ i ≤ n, are equal:

G(γ1, . . . , γn) = C+(G1(γ1), . . . , G1(γn)) = min
1≤i≤n

G1(γi) .

In this case the n-dimensional version of (7.4) reduces to

H(x1, . . . , xn) =
∫
F1(x1)γ . . . Fn(xn)γ dG1(γ)

= τ1(− log[F1(x1) . . . Fn(xn)] )
= τ1(− logF1(x1)− . . .− logFn(xn))

(7.3)
= τ1 [ τ−1

1 (H1(x1) ) + . . .+ τ−1
1 (Hn(xn) ) ]

= φ−1 [φ(H1(x1) ) + . . .+ φ(Hn(xn) ) ] , (7.6)
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where φ := τ−1
1 is the inverse Laplace transform of G1. This shows that Archimedean copulas

can be thought of as mixture distributions. To simulate observations from (7.6) one can thus
first determine the mixture component to be drawn from and then generate a vector from
that distribution.

To determine the mixture component to be drawn from, simulate a number γ from G, the
distribution whose Laplace transform is the inverse of φ. Next, generate a vector (u1, . . . , un)
of numbers from a uniform distribution over [0,1] and put

Fi(x)γ = ui, 1 ≤ i ≤ n .

From (7.5) it follows that the ranks are given by

Hi(x) = τ(−1
γ

log ui), 1 ≤ i ≤ n . (7.7)

Example 7.3 (Gumbel copula simulation) The generator φ(t) = (− log t)θ of the Gum-
bel copula with inverse τ = exp(−s

1
θ ) is the Laplace transform of a stable distribution (Section

B.2) with α = 1
θ , β = 1 and both scale and location parameter 0. Chambers et al. [14] give

the following algorithm to sample from this distribution:

• Draw a standard exponential variable W , i.e. W = − log(V ) where V is uniform on
[0, 1].

• Draw a variable Z from a uniform distribution on [0, π].

• Set γ = sin((1− 1
θ
)Z)θ−1 sin(Z

θ
)

W θ−1 sin(Z)θ . This variable follows a Stable(1
θ , 1) distribution.

Given a vector (u1, . . . , un) of numbers from a uniform distribution over [0, 1] and using (7.7)
one obtains the Gumbel realizations

Hi(x) = exp(−(−1
γ

log ui)
1
θ ) , 1 ≤ i ≤ n .

Figure 7.3 shows 700 simulations from a Gumbel copula with parameter 2.5.
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Figure 7.3: Scatterplot of Gumbel(2.5) copula.
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8 Calibration of copulas to market data

This section is concerned with the question which member of a parametric family of copulas
fits best to a given set of market data.

Consider a stochastic process {Yt, t = 1, 2, . . .} taking values in Rn. Our data consists in a
realisation {(x1t, . . . , xnt) : t = 1, . . . , T} of the vectors {Yt, t = 1, . . . , T}.

8.1 Maximum likelihood method

Let Xi ∼ Fi, 1 ≤ i ≤ n, be random variables with joint distribution H. From the multidi-
mensional version of Sklar’s theorem we know there exists a copula C such that

H(u1, . . . , un) = C(F (u1), . . . , F (un)).

Differentiating this expression with respect to u1, u2, . . . , un sequentially yields the canonical
representation

h(u1, . . . , un) = c(F1(u1), . . . , Fn(un))
n∏
i=1

fi(ui), (8.1)

where c is the copula density.

The maximum likelihood method implies choosing C and F1, . . . , Fn such that the probability
of observing the data set is maximal. The data set is assumed to consist of independent
observations.

The possible choices for the copula and the margins are unlimited, or, in the words of Cheru-
bini et al. [5], “copulas allow a double infinity of degrees of freedom”. Therefore we usually
restrict ourselves to certain classes of functions, parametrized by some vector θ ∈ Θ ⊂ Rn.

We should thus find θ ∈ Θ that maximizes the likelihood

l(θ) :=
T∏
t=1

(
c(F1(x1t), . . . , Fn(xnt); θ)

n∏
i=1

fi(xit; θ)

)
. (8.2)

This θ also maximimes the log-likelihood

log l(θ) =
T∑
t=1

log c(F1(x1t), . . . , Fn(xnt); θ) +
T∑
t=1

n∑
i=1

log fi(xit; θ). (8.3)

The latter expression is often computationally more convenient. The vector θ that maximizes
l(θ) is called the maximum likelihood estimator (MLE):

θMLE := argmax
θ ∈ Θ

l(θ).

If ∂l(θ)/∂θ exists, then the solutions of

∂l(θ)
∂θ

= 0
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Figure 8.1: Maximum likelihood estimation applied to a Clayton(1.4) copula for different
sample sizes.
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Figure 8.2: Maximum likelihood estimation applied to a Gumbel(1.2) copula for different
sample sizes.

are possible candidates for θMLE. But these solutions can also be local maxima, minima or
inflection points. On the other hand, maxima can occur at the boundary of Θ (or if ||θ|| → ∞),
in discontinuity points and in points where the likelihood is not differentiable.

For joint distributions satisfying some regularity conditions, it can be shown (Shao [15]) that
if the sample size increases, the subsequent MLEs converge to a limit. This property is called
consistency.

Figures 8.1 and 8.2 show relative errors in the estimation of the parameter of a Clayton and
a Gumbel copula for different sample sizes. The samples were generated via the methods
described in Section 7. These experiments show that maximum likelihood estimation applied
to a sample containing less than 1000 observations can be expected to lead to relative errors
that exceed 5%.

47



8.2 IFM method

The log-likelihood (8.3) consists of two positive parts. Joe and Xu [16] proposed the set
of parameters θ to be estimated in two steps: first the margins’ parameters and then the
copulas’. By doing so, the computational cost of finding the optimal set of parameters reduces
significantly. This approach is called the Inference for the Margins (IFM) method.

θ1 = argmax
θ2

T∑
t=1

n∑
i=1

log fi(xit; θ1)

θ2 = argmax
θ1

T∑
t=1

log c(F1(x1t), . . . , Fn(xnt); θ1, θ2)

Set θIFM := (θ1, θ2) to be the IFM estimator. In general, this estimator will be different from
the MLE, but it can be shown that the IFM estimator is consistent.

8.3 CML method

In the Canonical Maximum Likelihood (CML) method first the margins are estimated using
empirical distributions F̂1, . . . , F̂n. Then, the copula parameters are estimated using an ML
approach:

θCML := argmax
θ

T∑
t=1

log c(F̂1(x1t), . . . , F̂n(xnt); θ).

8.4 Expectation Maximization algorithm

Even though the number of parameters to be optimized simultaneously is reduced by the
IFM or CML approach, finding the maximum likelihood estimator can still be hard for a
mixture of copulas. The Expectation Maximization (EM) algorithm provides a way to find
the weights and the parameters that maximize the likelihood of mixture distributions.

In short the EM algorithm proceeds as follows. First a lower bound to the log-likelihood is
constructed. This lower bound can be interpreted as an expected value. Given the current
parameter estimate it finds the distribution for which the expected value is maximal. Fixing
the distribution, the algorithm then finds the parameters that maximize the lower bound.
This will turn out to be surprisingly easy as the optimization over the weights and each of
the component densities can be done separately. Repeating this procedure yields a sequence
of parameter estimates with monotonically increasing likelihood.

We will now describe the EM algorithm in more detail, based on [17] and [18]. Also, conver-
gence will be discussed and we will compare EM to alternative numerical methods.

Given a dataset X = (x1, . . . , xm) that is assumed to be generated from a mixture distribution
with density

P[x|B,Θ] =
n∑
i=1

βi pi(x | θi ) ,
n∑
i=1

βi = 1 , (8.4)
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where Θ = (θ1, . . . , θn), B = (β1, . . . , βn) and p1, . . . , pn are the component density functions,
consider the problem of finding (B,Θ) maximizing the log-likelihood

`(B,Θ|X) := logP[X|B,Θ] =
m∑
j=1

log

(
n∑
i=1

βi pi(xj | θi )

)
. (8.5)

We cannot observe the random vector Y = (y1, . . . , ym) ∈ {1, . . . , n}m whose values represent
the components by which each data item was generated. The EM algorithm therefore finds
parameters (B,Θ) that maximize the log-likelihood of the dataset X :

`(B,Θ|X) = logP[X|B,Θ] = log
∑

Y ∈{1,...,n}m

P[X,Y |B,Θ] (8.6)

Denote by f any discrete probability distribution of Y over {1, . . . , n}m. Jensen’s inequality1

provides a lower bound to the log-likelihood (8.6):∑
Y ∈{1,...,n}m

f(Y ) log
P[X,Y |B,Θ]

f(Y )︸ ︷︷ ︸
:= Qf (B,Θ)

≤ log
∑

Y ∈{1,...,n}m

f(Y )
P[X,Y |B,Θ]

f(Y )︸ ︷︷ ︸
= `(B,Θ|X)

. (8.7)

The next step is to determine the distribution f t for which the lower bound Qf
t
(B,Θ) is

maximal in the current parameter estimate (Bt,Θt). To ensure
∑

Y ∈{1,...,n}m f t(Y ) = 1 a
Lagrange multiplier λ is used. The objective function becomes

G(f t) := λ
[
1−

∑
Y ∈{1,...,n}m

f t(Y )
]

+
∑

Y ∈{1,...,n}m

f t(Y ) log P[X,Y |Bt,Θt] −
∑

Y ∈{1,...,n}m

f t(Y ) log f t(Y ) .

As f t is a discrete distribution which is completely specified by the nm values f t(Y ), Y ∈
{1, . . . , n}m, we can set the derivative of G to every one of these values equal to zero:

0 =
∂G

∂f t(Y )
= −λ + log P[X,Y |Bt,Θt] − log f t(Y )− 1 . (8.8)

Equation (8.8) is equivalent to

f t(Y ) = e−λ−1 P[X,Y |Bt,Θt] .

Summing over all Y ∈ {1, . . . , n}m yields

1 =
∑

Y ∈{1,...,n}m

e−λ−1P[X,Y |Bt,Θt] ,

or equivalently,
λ = −1 + log

∑
Y ∈{1,...,n}m

P[X,Y |Bt,Θt] .

1Jensen’s inequality for a concave function φ, numbers x1, . . . , xn in Dom φ and positive weights a1, . . . , an

states that P
i aiφ(xi)P

i ai
≤ φ

„ P
i aixiP

ai

«
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Substitution into (8.8) leads to

0 = − log
∑

Y ′∈{1,...,n}m

P[X,Y ′|Bt,Θt] + log P[X,Y |Bt,Θt] − log f t(Y ) .

Finally, solving for f t(Y ),

f t(Y ) =
P[X,Y |Bt,Θt]∑

Y ′∈{1,...,n}m P[X,Y ′|Bt,Θt]
=

P[X,Y |Bt,Θt]
P[X|Bt,Θt]

= P[Y |X,Bt,Θt] . (8.9)

This probability distribution maximizesQf (Bt,Θt) with respect to f . Furthermore, (8.7) holds
with equality in the current guess (Bt,Θt) :

Qf
t
(Bt,Θt) =

∑
Y ∈{1,...,n}m

P[Y |X,Bt,Θt] log
P[X,Y |Bt,Θt]
P[Y |X,Bt,Θt]

=
∑

Y ∈{1,...,n}m

P[Y |X,Bt,Θt] log P[X|Bt,Θt] = log P[X|Bt,Θt] .

This makes sure that the likelihood in each consecutive step of the algorithm is at least as
large as the likelihood of the previous parameter estimate.

We proceed by maximizing Qf
t
(B,Θ) with respect to (B,Θ). Using the definition of condi-

tional probability we can rewrite the lower bound as

Qf
t
(B,Θ) =

∑
Y ∈{1,...,n}m

f t(Y ) log P[X|Y,B,Θ] = Ef
t(Y ) [ log P[X|Y,B,Θ] ] (8.10)

This explains the name ‘Expectation Maximization’. Using (8.9) and (8.10):

Qf
t
(B,Θ) =

∑
Y ∈{1,...,n}m

P[Y |X,Bt,Θt] log P[X|Y,B,Θ]

=
∑

Y ∈{1,...,n}m

P[Y |X,Bt,Θt]
m∑
j=1

log
(
βyj pyj (xj | θyj )

)
=

m∑
j=1

∑
Y ∈{1,...,n}m

P[Y |X,Bt,Θt] log
(
βyj pyj (xj | θyj )

)
=

m∑
j=1

n∑
l=1

log (βl pl(xj | θl))
∑

Y ∈ {1, . . . , n}m

yj = l

P[Y |X,Bt,Θt]

=
m∑
j=1

n∑
l=1

log (βl pl(xj | θl)) P[yj = l|xj , βtj , θtj ]

=
m∑
j=1

n∑
l=1

{
log (βl) + log (pl(xj | θl))

}
P[yj = l|xj , βtj , θtj ] (8.11)

where

P[yj = l|xj , βtj , θtj ] =
βtlpl(xj |θtl )∑m
k=1 β

t
kpk(xj |θtk)

.
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The lower bound (8.11) has split into two parts, the first of which only contains the unknowns
B and the second involving only Θ. The maximization procedure of the latter term depends
on the component density functions, so in general one has to rely on numerical methods. To
maximize the first term we again use a Lagrange multiplier λ′ to account for

∑n
i=1 βi = 1:

0 =
∂

∂βl

λ′( n∑
i=1

βi − 1

)
+

m∑
j=1

n∑
l=1

log (βl) P[yj = l|xj , βtj , θtj ]


= λ′ +

n∑
i=1

1
βl
P[yj = l|xj , βtj , θtj ] .

After summing both sides over l, solving for λ′ and substituting this value back one obtains

βl =
1
n

n∑
i=1

P[yj = l|xj , βtj , θtj ]

=
1
n

∑n
i=1 β

t
lpl(xj |θtl )∑m

k=1 β
t
kpk(xj |θtk)

.

This concludes the optimization of Qf
t
(B,Θ) with respect to (B,Θ). The algorithm is illus-

trated graphically in Figure 8.3.

By construction, the likelihood of the sequence of EM estimates increases monotonically. This
sequence thus has a (possibly infinite) limit `∗ := `(B∗,Θ∗|X). Redner and Walker [19] show
(Theorem 4.1, p. 218) that `∗ is finite if the likelihood function ` and the lower bound Q are
continuous. If furthermore ` and Q are differentiable in (B∗,Θ∗), then the derivative of the
likelihood function to each of the parameters is zero in this point, a necessary condition for a
maximum likelihood estimate.

The speed of convergence generally is slow: it can be shown that under certain conditions
[19, Theorem 5.2] local convergence is linear.

The main advantage of EM over alternative methods such as (quasi-) Newton and Conjugate
Gradient methods, some of which exhibit superlinear convergence, is its good global conver-
gence properties. Although there exists only empirical evidence, Redner and Walker state
that only in ‘pathological’ cases EM fails to converge to a global maximum.

To demonstrate the algorithm, we generate a sample from a Normal–Gumbel mixture via the
methods described in Section 7 and try to retrieve the parameters by calibrating a Normal–
Gumbel copula via the EM algorithm. Figure 8.4 shows the relative estimation error (i.e. the
average relative error of the parameters specifying the copula) as a function of the number
of steps of the algorithm. The line flattens, but does not go to zero. This means that the
algorithm converges but not to the parameters that were used to generate the sample. To
achieve the latter we also have to increase the sample size. Indeed, Figure 8.5 shows that
the relative error tends to zero when the sample size grows. For the error to be less than 5%
approximately 10000 observations are needed in this example.
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Figure 8.3: Two steps of the EM algorithm. In each step the algorithm finds the distribution
J that optimizes the lower bound Q to the likelihood function ` in the current estimate. Fixing
the distribution, the lower bound is then maximized with respect to (B,Θ). This leads to the
next estimate.
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Figure 8.4: Estimation error in consecutive steps of the EM algorithm. Calibration to
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Figure 8.5: Error of the EM algorithm for different sample sizes. Calibration to Normal–
Clayton mixture.
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9 Results

We will now apply the techniques introduced in the previous sections to historical market
data. First, based on Section 8, the impact of incorporating tail dependence on the quality of
fitted copulas is discussed (Section 9.1). Next, using the pricing model set out in Section 6,
we will assess the implication of changing copulas on derivatives prices (Section 9.2). Finally,
hedging performance is compared for a model that uses a Gaussian dependence structure and
one that takes into account tail dependence (Section 9.3).

9.1 Calibration results

We calibrate different copulas to historical data, compare their quality of fit and discuss
whether the tail dependence in the calibrated copulas coincides with what we expect from
Figures 1.1–1.6. We study the dependence between daily log-returns of the underlyings listed
in Section 1.2.

As a measure for the quality of fit we will look at the likelihood (Section 8.1) of observing
the historical data given some copula. This likelihood is optimized in the calibration.

An alternative measure we will consider is the L2-norm of the difference between the estimated
copula C and the empirical copula Cemp, that is,

||C − Cemp ||2L2 =
∫∫

(u,v)∈(0,1)2
|C(u, v)− Cemp(u, v) |2 du dv ,

where, given some sample {(xi, yi)}ni=1 from a continuous bivariate distribution, the empirical
copula is defined as

Cemp(u, v) =
number of pairs (x, y) in the sample such that x ≤ x(i) and y ≤ y(j)

n
,

in which i = bunc, j = bvnc and {x(i)}ni=1, {y(i)}ni=1 denote the order statistics. This L2-
norm can only be used to compare the quality of fitted copulas and not for hypothesis testing
because its asymptotic laws depend not only on the copula, but also on the marginal distri-
butions of the data the copula was calibrated to [20].

In calculating the likelihood, each element in the data set is used only once. Getting a
reasonable approximation of the L2-norm between the empirical and the calibrated copula
however is much more expensive. Therefore we will not use the L2-norm for calibration, but
only to assess the impact of choosing a different calibration criterion on the relative quality
of fit of different copulas.

Table 9.1 shows calibration results for Nikkei 225 and SP500. The normal copula is
immediately seen not to have the highest likelihood. Instead, the copulas with upper tail
dependence (Gumbel, Clayton survival) show a better fit to the data. This indeed is consistent
with Figure 1.5 which also suggested upper tail dependence. Mixtures of copulas, such as
Normal and Clayton survival, calibrated via the EM algorithm described in Section 8.4 can
even further improve the likelihood. Figure 9.1 shows a density plot of this copula together
with the diagonal section. In these pictures the tail dependence is clearly visible.

As for the mixtures, it should be noted that their likelihood should always be at least the
minimum of those of the individual copulas. Otherwise assigning zero weight to one of the
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Table 9.1: Copulas calibrated to Nikkei 225 and SP500 daily logreturns.
Copula Parameter Tail Likelihood ||C − Cemp||2L2

Lower Upper
100.00% Normal 0.239 0.000 0.000 14.18 0.0387
100.00% Gumbel 1.201 0.000 0.219 21.26 0.0368
100.00% Gumbel survival 1.144 0.168 0.000 10.0881 0.0417
100.00% Clayton 0.201 0.032 0.000 6.39 0.0447
100.00% Clayton survival 0.394 0.000 0.172 20.72 0.0363
100.00% Frank 1.403 0.000 0.000 13.11 0.0382
23.62% Normal -0.230 0.000 0.259 22.193 0.0373
76.38% Clayton survival 0.641
23.74% Gumbel 1.812 0.000 0.155 21.708 0.0361
76.26% Clayton survival 0.211

copulas would improve the fit. So either a mixture improves the calibration, or it is not listed
because one of the copulas ‘drops out’.

Calibration results for gold and copper are shown in Table 9.2. This pair was believed
to have lower tail dependence from Figure 1.3. The likelihood of copulas having lower tail
dependence (Clayton, Gumbel survival) indeed is higher than the others, and in particular
higher than the likelihood of the normal copula.

In case of corn and wheat, single alternative copulas do not improve the likelihood of
observing the historical data set — see Table 9.3. Mixtures that contain the normal copula
do lead to a better fit though (Normal and Clayton, Clayton survival, Gumbel survival).
Looking at the empirical copula suggests the presence of lower tail dependence (Figure 1.6)
but this is not evident from the calibration.

Calibration to historical observations from USD swap futures and SP500 futures (Table
9.4) shows that both copulas with upper and with lower tail dependence are an improvement
over the normal copula. This is in agreement to Figures 1.1 and 1.2 that suggest these
underlyings to have two-sided tail dependence. The density and the diagonal section of the
best fit (Clayton and Gumbel) are shown in Figure 9.2.

We thus see that tail dependence properties that are observed empirically also show up in the
calibration, i.e. copulas with the right tail properties improve the fit to historical data. We
now turn to the question of what effect changing copulas has on prices of derivatives.

9.2 Pricing results

This section addresses the following question: how does changing from the normal copula
to one that accounts for tail dependence affect the prices of derivatives. Since the normal
copula is usually calibrated by direct calculation of the correlation coefficient, we will first
look at the effect of changing the copula while keeping Spearman’s rank correlation coefficient
constant (Section 9.2.1). Thereafter, prices will be compared in case each copula is calibrated
via maximum likelihood (Section 9.2.2).
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Table 9.2: Copulas calibrated to gold and copper daily logreturns.
Copula Parameter Tail Likelihood ||C − Cemp||2L2

Lower Upper
100.00% Normal 0.116 0.000 0.000 12.222 0.0072
100.00% Gumbel 1.060 0.000 0.076 8.191 0.0082
100.00% Gumbel survival 1.077 0.097 0.000 18.237 0.0072
100.00% Clayton 0.148 0.009 0.000 16.023 0.0075
100.00% Clayton survival 0.092 0.000 0.001 5.868 0.0091
100.00% Frank 0.641 0.000 0.000 10.108 0.0073

Table 9.3: Copulas calibrated to daily logreturns of 1-year corn and wheat futures.
Copula Parameter Tail Likelihood ||C − Cemp||2L2

Lower Upper
100.00% Normal 0.596 0.000 0.000 402.252 0.0028
100.00% Gumbel 1.607 0.000 0.461 374.078 0.0065
100.00% Gumbel survival 1.595 0.456 0.000 363.123 0.0082
100.00% Clayton 0.893 0.460 0.000 300.049 0.0170
100.00% Clayton survival 0.930 0.000 0.475 317.767 0.0151
100.00% Frank 4.210 0.000 0.000 363.469 0.0054
87.48% Normal 0.652 0.006 0.000 406.096 0.0028
12.52% Clayton 0.225
82.62% Normal 0.652 0.038 0.000 405.978 0.0029
16.38% Gumbel survival 1.219
81.50% Normal 0.660 0.000 0.038 406.514 0.0025
18.50% Clayton survival 0.438

Table 9.4: Copulas calibrated to daily logreturns of 2-year SP500 futures and 2-year USD
5-year swap futures.

Copula Parameter Tail Likelihood ||C − Cemp||2L2

Lower Upper
100.00% Normal 0.123 0.000 0.000 13.774 0.0052
100.00% Gumbel 1.078 0.000 0.098 17.122 0.0050
100.00% Gumbel survival 1.075 0.095 0.000 16.016 0.0044
72.15% Normal -0.039 0.000 0.115 17.621 0.0048
27.78% Gumbel 1.540
28.30% Normal 0.473 0.000 0.000 19.410 0.0058
71.70% Clayton 0.001
80.29% Clayton 0.071 0.071 0.017 19.942 0.0054
19.71% Gumbel 1.428
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Figure 9.1: Diagonal section (left) and density plot (right) of Normal – Clayton survival
mixture calibrated to NIKKEI 225 and SP500 daily log-returns.
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Figure 9.2: Diagonal section (left) and density plot (right) of Clayton – Gumbel mixture
calibrated to daily log-returns of 2-year futures on SP500 and USD 5-year swaps.
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9.2.1 Calibration via Spearman’s rho

To understand the effect of changing copulas on option prices independently from the effect of
changing the calibration procedure, we will price some of the contracts introduced in Section
1.2 — namely a best-of returns option (1.3), a worst-of returns option (1.4) and an at-the-
money spread (1.6) — using different copulas while keeping Spearman’s rho fixed.

For the copulas under consideration (Normal, Clayton and Gumbel) there exist one-to-one
relationships between Spearman’s rank correlation coefficient and the copula parameter. Note
that the Gumbel copula can only capture positive dependence. Therefore we will only consider
positive rank correlation values.

The prices are calculated via 65535 Monte Carlo simulations. Observations from the copula
are drawn using the algorithms described in Section 7. Lognormal marginal distributions
were chosen with implied volatility σ = 0.3. The results are shown in Figures 9.3, 9.4 and
9.5.

For the normal case one can prove [21] that spread prices are a decreasing function of the
correlation parameter. This is indeed seen in Figure 9.3. The Clayton copula gives a higher
price over the whole range of positive dependence with a maximum of 15% relative difference
whereas Gumbel and Clayton survival have a negative effect on the price that does not exceed
10%.

The price of a worst-of returns contract can be shown to be positively related to correlation
[21]. This is also clear from Figure 9.4. Prices for other copulas show a relative difference of
less than 1%. In case of Gumbel and Clayton survival this difference is positive, for Gumbel
survival and Clayton it is negative.

Finally also Figure 9.5 agrees with theoretical results in [21]: best-of returns option prices
are a decreasing function of correlation. Only the Clayton copula leads to a higher price, the
others give comparable or slightly lower prices. Relative differences remain within 1%.

9.2.2 Calibration via maximum likelihood

In the previous section we compared pricing results for different copulas while keeping Spear-
man’s rank correlation coefficient fixed. We will now compare prices where each copula is
calibrated via maximum likelihood using the pricing model described in Section 6.2.2. Cop-
ulas are calibrated to historical NIKKEI 225 and SP500 prices. Lognormal margins are used
with historical volatility.

Tables 9.5, 9.6 and 9.7 list premia for worst-of, best-of and spread options with a 1-year
maturity that are priced using different copulas. These copulas are calibrated via maximum
likelihood to daily returns, monthly returns and levels. Prices for a Gumbel–Clayton survival
mixture in case of calibration to levels are not given since the likelihood of the combination
did not exceed the likelihood of the single copulas.

Spearman’s rank correlation for the estimated copulas is seen to be approximately 0.15 for all
copulas calibrated to daily returns, 0.25 in case of monthly returns and much higher for copulas
calibrated to levels. The increasing rank correlation is a result of the calibration procedure
assuming the time series not to be autocorrelated (Section 8.1). In reality consecutive returns
become more dependent for larger time windows (see Table 6.1) leading to an overestimation
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Figure 9.3: At-the-money spread prices in terms of Spearman’s rho for different copulas.
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Figure 9.5: Best-of returns prices in terms of Spearman’s rho for different copulas.

of the likelihood of copulas with high dependence [22, Figure 3]. Calibration to levels thus is,
from a practical and theoretical point of view, hard to defend.

Relative price differences due to changing the copula in the multi-multi model are roughly
around 1% for the contracts under consideration if one calibrates to periodic returns (either
daily or monthly). When calibrating to levels outcomes can deviate substantially.

Reason for the price differences being very small in case of calibration to daily returns is the
central limit theorem: the pricing model essentially calculates the convolution of the distribu-
tion of daily price changes and this convolution tends to a multivariate normal distribution.
The ‘shape’ of the terminal dependence structure thus will be the same for all copulas.

The question remains whether these new prices are an improvement. This can only be an-
swered by assessing the model’s ability to hedge the options it is expected to price.
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Table 9.5: Worst-of returns prices for different copulas calibrated to daily returns, monthly
returns and levels. Underlyings are NIKKEI 225 and SP500.

Copula Daily returns Monthly returns Levels
ρS Price Rel. diff. ρS Price Rel. diff. ρS Price Rel. diff.

Normal 0.158 5.05 0.00% 0.240 5.00 0.00% 0.916 6.97 0.00%
Gumbel 0.142 4.98 -1.39% 0.257 5.07 1.40% 0.917 7.05 1.17%

Clayton survival 0.110 4.88 -3.37% 0.260 5.12 2.40% 0.877 6.98 0.18%
Normal 0.156 5.04 -0.20% 0.231 5.03 0.60% 0.934 7.06 1.37%

Clayton survival
Gumbel 0.140 5.00 -0.99% 0.265 5.13 2.60% −

Clayton survival

Table 9.6: Best-of returns performance prices for different copulas calibrated to daily returns,
monthly returns and levels. Underlyings are NIKKEI 225 and SP500.

Copula Daily returns Monthly returns Levels
ρS Price Rel. diff. ρS Price Rel. diff. ρS Price Rel. diff.

Normal 0.158 14.74 0.00% 0.240 14.68 0.00% 0.916 12.76 0.00%
Gumbel 0.142 14.77 0.20% 0.257 14.65 -0.20% 0.917 12.71 -0.39%

Clayton survival 0.110 14.79 0.34% 0.260 14.66 -0.14% 0.877 12.74 -0.11%
Normal 0.156 14.76 0.14% 0.231 14.72 0.27% 0.934 12.66 -0.78%

Clayton survival
Gumbel 0.140 14.78 0.27% 0.265 14.63 -0.34% −

Clayton survival

Table 9.7: At-the-money spread prices for different copulas calibrated to daily returns,
monthly returns and levels. Underlyings are NIKKEI 225 and SP500.

Copula Daily returns Monthly returns Levels
ρS Price Rel. diff. ρS Price Rel. diff. ρS Price Rel. diff.

Normal 0.158 13.63 0.00% 0.240 13.77 0.00% 0.916 13.45 0.00%
Gumbel 0.142 13.62 -0.07% 0.257 13.80 0.22% 0.917 13.49 0.29%

Clayton surv. 0.110 13.67 0.29% 0.260 13.88 0.85% 0.877 13.49 0.32%
Normal 0.156 13.71 0.59% 0.231 13.86 0.67% 0.934 13.45 0.01%

Clayton surv.
Gumbel 0.140 13.65 0.15% 0.265 13.84 0.53% −

Clayton surv.
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9.3 Hedging

Pricing of financial contracts is based on absence of arbitrage, i.e. the argument that an
option whose payoff at maturity coincides with the value of a self-financing portfolio2 of
liquid tradable assets should have the same value as this portfolio at every prior point in
time. Therefore, given a certain pricing model, it is important that the price of the replicating
portfolio follows the price of the option closely. A replicating portfolio can be constructed
from the pricing model by calculating the sensitivity of the contract’s value to the prices
of the hedging instruments and assembling the portfolio accordingly. These sensitivities are
referred to as ‘the greeks’ because they are usually denoted by a greek letter. For our hedging
we will consider the ‘deltas’, i.e. the first partial derivatives of the option price to the prices
of the underlying assets.

Definition of delta neutrality Let V be the present value of a position in the option that
we seek to delta hedge. Suppose the price of this option depends on the market observable
quantities x1, . . . , xn. These can for instance be prices of assets, prices of other contracts
or interest rates. To hedge the option we take positions ξ1, . . . , ξn in n hedging instruments
whose present values will be denoted H1, . . . ,Hn respectively. To make the option position
‘delta neutral’ the ξ1, . . . , ξn have to satisfy

−


∂V
∂x1
...
∂V
∂xn

 =


∂H1
∂x1

. . . ∂Hn
∂x1

...
...

∂H1
∂xn

. . . ∂Hn
∂xn

 ·

 ξ1
...
ξn

 . (9.1)

In theory the portfolio should be rehedged continuously, meaning that the positions should
be updated constantly in order to satisfy (9.1) for all points in time. In practise continuous
rehedging is not possible. Instead, we will update the portfolio on a daily basis.

Hedging performance can be improved by rehedging more frequently or by considering higher
order partial derivatives, such as the ‘gammas’, i.e. second order partial derivatives of the
option price to the underlying assets.

Delta hedging of a European option on two assets We will now apply this principle
for the particular case of a European option on two underlyings, such as a spread, best-of
or worst-of. As hedging instruments we choose futures on the two underlyings and a zero
coupon bond3, all of which have the same maturity as the option we are hedging. These
futures are quoted in the market by their ‘par strike’, i.e. by the strike that makes the value
of the contract zero. The present value of a contract whose strike is K where the current par
strike is Kpar equals

Present value future = Discount factor to maturity× (Kpar −K) . (9.2)

The partial derivatives of the futures’ present values can be calculated via (9.2). The value V
of the European option at time t depends on the par strikes F1(t, T ), F2(t, T ) of the underlyings

2A replicating portfolio is called self-financing if no money injections or withdrawals are needed to ensure
its value to coincide with some option’s payoff at maturity.

3A zero coupon bond is a contract that pays one unit currency at maturity.
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and the value of the bond B(t, T ) with maturity T . The partial derivatives of the option value
usually cannot be calculated analytically. We must therefore fall back on finite differences.
In case of a bivariate European option that is hedged with futures on the underlyings and a
bond, for small ε, the solution of system (9.1) is approximated by

Position in future 1 =
V ( (1 + ε)F1(t, T ), F2(t, T ), B(t, T )) − V (F1(t, T ), F2(t, T ), B(t, T ))

ε F1(t, T )B(t, T )
,

Position in future 2 =
V (F1(t, T ), (1 + ε)F2(t, T ), B(t, T )) − V (F1(t, T ), F2(t, T ), B(t, T ))

ε F2(t, T )B(t, T )
,

Position in bond = V (F1(t, T ), F2(t, T ), B(t, T )) .

Payoff formulas frequently are not differentiable in all points of their domain, for example
when the payoff is ‘capped’ or ‘floored’. The greeks of these contracts then are discontinuous
functions of their inputs. If Monte Carlo methods are used, these discontinuities may require
a larger number of simulations in order for the greeks to converge.

Hedge test To assess whether a certain model is able to succesfully hedge the contracts
that are priced with it, we construct and maintain a delta-neutral portfolio and investigate
its fluctuations in value:

• The option is sold and the premium is put in a money account earning the overnight
rate.

• The portfolio is delta hedged using futures on the underlying assets and zero coupon
bonds.

• The portfolio is revalued and rebalanced in the same way on each day of the simulation
period. Every day the hedging instruments are liquidated and replaced to re-establish
delta-neutrality.

Ideally the value of the hedged portfolio would continuously have zero mean and variance. In
practise this will not be the case since we are hedging in descrete time. However, we still aim
for these numbers to be as small as possible in absolute value.

To be able to compare hedging performance for different products, the mean and variance
are scaled by the (initial) value of the option position. Intuitively one should also consider
the fact that the prices of certain contracts, by nature of their underlyings, are more volatile
than others. This suggests looking at the quotient of the standard deviation of the values of
the hedged portfolio and the standard deviation of the prices of the item being hedged. The
‘volatility reduction’ will be defined as:

Volatility reduction = 1− Standard deviation hedged portfolio
Standard deviation naked option position

.

Market incompleteness issues The risk involved in the (stochastic) discount factor of the
payoff’s expected value is delta hedged using a bond with the same maturity as the contract
that is being hedged. In practise these bonds might not always be available in the market. In
these cases a ‘virtual’ bond is constructed by linear interpolation between zero rates obtained
from deposit and swap rates.
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Table 9.8: Hedging performance of the multi-multi model with a normal copula (no tail
dependence) and a Normal–Clayton survival mixture copula (upper tail dependence).

Average Standard deviation Volatility
Option Pos. Hedging ptf. Option Pos. Hedging ptf. reduction

Call Return Corn 1.514 -0.044 -0.700 -0.016 0.977
Best-of Returns

Normal copula 1.455 -0.021 -0.333 -0.009 0.973
Normal–Clayton surv. 1.985 0.021 -1.028 -0.011 0.990

Worst-of Returns
Normal copula 1.760 -0.005 -0.880 -0.009 0.989

Normal–Clayton surv. 1.985 0.021 -1.028 -0.011 0.990
Spread Returns

Normal copula 1.253 -0.039 -0.338 -0.015 0.957
Normal–Clayton surv. 1.449 -0.008 -0.441 -0.006 0.987

ATM Spread
Normal copula 1.311 -0.168 -0.658 -0.070 0.894

Normal–Clayton surv. 1.860 0.217 -1.239 -0.236 0.809

Effect of tail dependence on hedging To get an impression of the hedging performance
of European options on tail dependent underlyings, we perform a hedge test for different
options on corn and wheat. In this test we use futures prices of corn and wheat taken
from the Chicago Board of Trading (CBOT) over a one-year period from December 2005
until December 2006. The marginal terminal distributions are modelled lognormal where the
volatility is set to the in-sample historical volatility. We will use two models for calculating the
greeks. The first one is the multi-multi model with a normal copula calibrated as described
in Section 6.2.1. The second is multi-multi with a 11% Normal (ρ = 0.78) – 89% Clayton
survival (θ = 2.45) mixture copula that was calibrated to historical levels.

We will compare the volatility reduction of a vanilla call on return option

Call on return = max
(

0,
S(T )
S(0)

− 1
)
,

to the hedging performance of a best-of returns option, a worst of returns option, a spread
on returns and an at-the-money spread option — see equations (1.3)–(1.6).

The results are summarized in Table 9.8. The hedging portfolio should replicate the option
as closely as possible, that is, the average and the variance of the hedged portfolio have to be
close to zero. In case of the normal copula, volatility reduction for the multi-asset contracts
is of the same order of magnitude as for the vanilla call option, except for the at-the-money
spread option whose hedging performance is slightly worse. This is also seen in Figures 9.6–
9.9 which show the value of the hedged portfolio as it changes over time. This hedge test thus
suggests that not taking into account tail dependence in pricing best-of, worst-of and spread
options on returns does not lead to hedging performance that is significantly worse than for
a vanilla call option.

The mixture copula model that incorporates upper tail dependence does not significantly
improve volatility reduction for the multi-asset options. For the at-the-money spread option,
the normal copula outperformes the normal-Clayton survival mixture.
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Figure 9.6: Daily profit and loss for a worst-of returns option hedged using a normal copula
(left) and using a normal-Clayton mixture copula with upper tail dependence (right).
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Figure 9.7: Daily profit and loss for a best-of returns option hedged using a normal copula
(left) and using a normal-Clayton mixture copula with upper tail dependence (right).
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Figure 9.8: Daily profit and loss for a spread on returns option hedged using a normal
copula (left) and using a normal-Clayton mixture copula with upper tail dependence (right).
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Figure 9.9: Daily profit and loss for an at-the-money spread option hedged using a normal
copula (left) and using a normal-Clayton mixture copula with upper tail dependence (right).
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10 Conclusions and recommendations

The multivariate Black-Scholes pricing model uses a Gaussian copula to model the dependence
between underlyings. However, empirical tests show that this copula underestimates the
probability of extreme events. For some financial contracts which depend on the tails of the
terminal distributions of the underlyings — such as worst-of, best-of and spread options, see
equations (1.3)–(1.6) — this may have implications on the price.

Empirical evidence of tail dependence is most profound in daily returns, much less in the
levels of the underlyings (Table 1.1). This means that extreme jumps in daily price changes
are possibly underestimated by a Gaussian copula, extreme ‘overall’ levels of the stock are
not.

The concept of copulas is very appealing since we can replace the Gaussian copula while leav-
ing the marginal distributions intact to be consistent with models for single-asset derivatives.
The new copula needs to have the right amount of upper and lower tail dependence. Most
of the widely-used copulas are parametrized in a way that upper and lower tail dependence
cannot be controlled independently. Therefore, Hu [22] suggests to calibrate mixtures — i.e.
affine linear combinations — of copulas to historical stock returns.

In case maximum likelihood is chosen as the calibration criterion, an optimization problem
has to be solved numerically. A common approach for mixture distributions is to use the
Expectation Maximization algorithm (Section 8.4). Calibration to historical returns (Tables
9.1–9.4) leads to copula estimates whose tail properties coincide with empirical observations.
Also, these copulas show a better fit to the data according to the distance between the
empirical and the calibrated copula.

If a Gaussian copula is used the covariance matrix of the terminal joint distribution can
be taken from the multivariate Black-Scholes model even if the marginal distributions are
not lognormal. For other copulas, that are not parametrized in terms of covariances, this
is not possible. Therefore we will have to numerically approximate the convolution of the
distribution of daily or monthly price changes (Section 6.2.2). This slows down computation
and requires a larger Monte Carlo simulation.

As for the impact on pricing, we have to distinguish two effects: the first is the change of
copula and the second is the change of the calibration procedure since in traditional mod-
els calibration of the dependence structure is based on correlation rather than maximum
likelihood.

To single out the effect of changing the copula, we first fix Spearman’s rank correlation
coefficient. The shift of prices due to changing copulas for worst-of and best-of returns
contracts remain within 1% relative difference (Figures 9.5 and 9.4). For at-the-money spread
options the relative differences are larger (Figure 9.3).

Calibration to daily and monthly returns via maximum likelihood leads to relative price differ-
ences around 1% (Tables 9.5–9.7). Spearman’s rank correlation hardly varies per calibrated
copula, but increases with the period of the returns (i.e. daily or monthly). This is due to
autocorrelation being more profound for larger return windows (Table 6.1) contradicting the
maximum likelihood assumption of independent observations.

For the Expectation Maximization algorithm to converge, a large number of observations is
needed (Figure 8.5). When calibrating to non-overlapping monthly returns, the necessary
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amount of data is hard to attain.

Calibration to levels leads to prices that are much different from the ones that stem from
calibration to returns. These prices are likely to be wrong since autocorrelation in levels
tends to be very high.

Hedge tests for best-of, worst-of and spread options on tail dependent underlyings (Section
9.3) show that the new model incorporating tail dependence does not clearly improve the
volatility reduction (Table 9.8) as compared to the normal copula. However, in absolute
sense, hedging performance of both models is not significantly worse for best-of, worst-of and
spread structures than for vanilla call options.

Summarizing, the impact of taking into account tail dependence in pricing at-the-money
bivariate best-of, worst-of and spread contracts is small. This is partly due to the central
limit theorem leading to a Gaussian terminal dependence structure even when the returns are
modelled to have heavy tails and partly due to the low strike not emphasizing the bivariate
tails. For the contracts studied, hedge tests show no clear indication of problems arising from
using a model that does not incorporate tail dependence in spite of the underlyings showing
clear empirical evidence of being tail dependent.

Further research may be carried out to find whether the same conclusions hold when volatility
smile is accounted for in the hedge tests. In this study we only considered hedging with
lognormal marginal distributions.

The effect of changing copulas on prices of worst-of, best-of and spread contracts may be small,
for more path dependent products tail dependence can be of greater influence since extreme
jumps in daily price changes occur more frequently than extreme levels of the underlyings.
To model path dependent derivatives, also dependence in the time direction has to be taken
into account. This is more difficult since it is not clear how this can be done while still being
consistent with the time dependence contained in the processes that model the forward prices
of the underlyings. Also this would require using higher dimensional copulas with mutually
distinct bivariate margins (Section 5.4).
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A Basics of derivatives pricing

Consider a market model consisting of price processes

S(t) =


S1(t)

...

...
Sn(t)

 (A.1)

defined on the probability space (Ω,F ,P). Also, let B(t) denote the value of the money
account at time t. For the time being, assume the interest rate to be deterministic.

Let FS
t denote the sigma algebra generated by S over the interval [0, t]:

FS
t = σ{(S1(s), . . . , Sn(s)) : s ≤ t}.

Intuitively, an event belongs to the sigma algebra generated by S over [0, t] if, from the
trajectory of S(t) over [0, t], it is possible to decide whether the event has occured or not.

A T-claim is any FS
T-measurable random variable X .

Question: what should be the price Π(t;X ) of the T-claim X at time t?

A.1 No arbitrage and the market price of risk

To be able to assign a price to a derivative, the market is assumed to be arbitrage free, i.e.
it is not possible to make a risk-free profit. The next characterisation of risk-free markets will
be used extensively throughout this section.

Consider two assets S1, S2 driven by the same Wiener process, i.e.

dS1 = µ1 dt+ σ1 dW,

dS2 = µ2 dt+ σ2 dW,

but with different volatilities σ1 6= σ2. Construct a portfolio V based on S1 and S2 as follows:

V =
σ2

σ2 − σ1
S1 +

−σ1

σ2 − σ1
S2.

This combination eliminates the dW -term from the V -dynamics:

dV =
[

σ2

σ2 − σ1
µ1 +

−σ1

σ2 − σ1
µ2

]
dt.

Thus, the portfolio is risk-free. The no arbitrage assumption requires

σ2

σ2 − σ1
µ1 +

−σ1

σ2 − σ1
µ2 = r,

where r is the interest rate. This relation is equivalent to

µ1 − r

σ1
=
µ2 − r

σ2
:= λ.
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The no arbitrage condition thus entails the market price of risk λ to be equal for all
assets in a market that are driven by the same Wiener process. This characterisation
will be used in section A.3 to derive the Black-Scholes fundamental PDE.

Note that for the above argument to be valid, the assets have to be tradable and the market
must be liquid, i.e. assets can be bought and sold quickly. Furthermore, it must to be possible
to sell a borrowed stock (short selling). It is also assumed that there are no transaction costs,
no taxes and no storage costs.

A.2 Ito formula

Theorem A.1 (Ito’s formula for two standard processes) Let f be an R × R → R
function such that all derivatives up to order 2 exist and are square integrable. Assume the
processes X(t) and Y (t) to follow the dynamics

dX(t) = a(t) dt+ b(t) dW (t),
dY (t) = α(t) dt+ β(t) dW (t).

If Z(t) = f(X(t), Y (t) ), then

dZ(t) = fx(X(t), Y (t) ) dX(t) + fy(X(t), Y (t) ) dY (t)

+
1
2
fxx(X(t), Y (t) ) dX(t) dX(t) +

1
2
fyy(X(t), Y (t) ) dY (t) dY (t)

+ fxy(X(t), Y (t) ) dX(t) dY (t).

A proof can be found in Steele [23]. Particularly useful is the case when f(x, y) = x/y:

Corollary A.2 (Ito’s division rule) Assume the processes X(t) and Y (t) to follow the
dynamics

dX(t) = µX X(t) dt+ σXX(t) dW (t),
dY (t) = µY Y (t) dt+ σY Y (t) dW (t).

Then Z(t) = X(t)/Y (t) has dynamics

dZ(t) = µZ Z(t) dt+ σZ Z(t) dW (t),
σZ = σX − σY ,

µZ = µX − µY + σY (σY − σX).

A.3 Fundamental PDE, Black-Scholes

The price of a contingent claim can be recovered by solving the fundamental PDE associated
with the model.
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As an example, consider the Black-Scholes model consisting of two assets with the following
dynamics:

dB(t) = rB(t)dt,
dS(t) = µS(t)dt+ σS(t)dW (t). (A.2)

The interest rate r and the volatility σ are assumed to be constant.

The claim X = Ψ(S(T )) has price process

Π(t) = F (t, S(t)) (A.3)

where F is a smooth function. Applying Ito’s formula to (A.3) and omitting arguments:

dΠ = µΠ Π dt+ σΠ Π dW,

µΠ =
Ft + µSFS + 1

2σ
2S2FSS

F
,

σΠ =
σSFS
F

.

No arbitrage implies the market price of risk to be the same for all assets driven by the same
Wiener process:

µ− r

σ
=
µΠ − r

σΠ
= λ,

so
Ft + (r + λσ)SFS + 1

2σ
2S2FSS

F
= µΠ = r + λσΠ = r + λ

σSFS
F

.

This yields, after rearranging terms, the fundamental PDE for the Black-Scholes model:{
Ft + rSFS + 1

2σ
2S2FSS = rF ,

F (T, S(T )) = Ψ(S(T )).

For a call option, i.e. Ψ(S(T )) = max(0, S(T )−K), the solution of this PDE is the well-known
Black-Scholes equation:

F (t, S(t)) = S(0)Φ(d1)−Ke−rTΦ(d2) , (A.4)

where

d1 =
log S(0)

K + (r + σ2

2 )T

σ
√
T

,

d2 = d1 − σ
√
T .

A.4 Martingale approach

An alternative way to determine the price of a contingent claim is to exploit martingale
properties. The martingale approach consists in changing the measure of the Wiener process
driving the asset prices, such that, under the new measure, all tradable assets (including the
money account) have the same instantaneous rate of return. From Ito’s division rule it then
follows that choosing the money account as the numéraire yields a process with zero drift.
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Modulo a technicality, this means that each quotient of an asset price and the money account
is a martingale. This leads to pricing formula (A.6). We will now repeat this argument in
more detail.

First, we need to relate a change in the drift of a Wiener process to a change of measure.
This relation is described by Girsanov’s theorem.

Theorem A.3 (Girsanov Theorem) Let WP be a standard P-Wiener process on (Ω,F ,P)
and let φ(t) be a vector process that, for every t, is measurable by the sigma-algebra generated
by WP on [0,t]. If φ(t) satisfies the Novikov condition

EP
[
e

1
2

R T
0 ||φ(t)||2 dt

]
<∞, (A.5)

then there exists a measure Q, equivalent to P, such that

dQ

dP
= e−

R T
0 φ(t) dWP(t)− 1

2

R T
0 φ2(t) dt,

dWP(t) = φ(t)dt+ dWQ(t).

For a proof, refer to Björk [24].

How does the no arbitrage condition come across in the marginale approach? Consider an
asset S with dynamics

dS(t) = µS(t)dt+ σS(t)dWP(t).

Then,

EP
[
dS(t)
S(t)

]
= µdt := (r + λσ)dt,

where λ is the market price of risk.

dS(t) = (r + λσ)S(t)dt+ σS(t)dWP

= rS(t)dt+ σS(t)(λdt+ dWP)

Girsanov’s theorem implies the existence of a new measure Q such that λdt+dWP is a Wiener
process:

dS(t) = rS(t)dt+ σS(t)dWQ

Under the new measure, the instantaneous rate of return on the asset equals r:

EQ
[
dS(t)
S(t)

]
= rdt.

Note that the risk-neutral measure Q only depends on the market price of risk λ,
which is the same for all assets in the market. Thus, under Q, all assets in the market
have instantaneous rate of return equal to the instantaneous yield r of the risk free asset B.

From Ito’s division rule (Corollary A.2) it follows that the process S(t)/B(t) has zero drift
under the new measure Q. If the volatility of this process satifies the Novikov condition (A.5),
then zero drift implies S(t)/B(t) to be a martingale4. Pricing formula (A.6) is an immediate

4 In general, zero drift does not imply a stochastic process to be a martingale. The implication holds under
an extra condition, see [25] p. 79. For exponential martingales, this condition is equivalent to the (more
practical) Novikov condition.
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consequence of this. In the following we will denote Q =: M(B(·)) to emphasize the relation
between measure and numéraire.

A measure like M(B(·)) under which the prices of all assets in the market discounted by the
risk-neutral bond, are martingales, is called an equivalent martingale measure. ‘Equiva-
lent’ means that P and M(B(·)) agree on the same zero sets.

Theorem A.4 (First Fundamental Pricing Theorem) If a market model has a risk-
neutral probability measure, then it does not admit arbitrage.

Theorem A.5 (General pricing formula) The arbitrage free price process for the T-claim
X is given by

Π(t;X )
B(t)

= EM(B(·))

[
Π(T ;X )
B(T )

∣∣∣∣∣Ft
]

= EM(B(·))

[
X

B(T )

∣∣∣∣∣Ft
]

(A.6)

where Q is the (not necessarily unique) martingale measure for the market B,S1, . . . Sn with
B as the numéraire.

A.5 Change of numéraire

The next lemma describes which change of measure turns the product of a martingale and a
positive stochastic process into a new martingale.

Lemma A.6 (Change of numéraire) Assume that M(S1(·)) is a martingale measure for
the numéraire S1 (on FT ) and assume that S2 is a positive asset price process such that
S2(t)/S1(t) is a M(S1(·)) martingale. Define M(S2(·)) on FT by the likelihood process

L2
1(t) =

S1(0)
S2(0)

S2(t)
S1(t)

, 0 ≤ t ≤ T. (A.7)

Then M(S2(·)) is a martingale measure for the numéraire S2.

Proofs of theorems A.4, A.5 and lemma A.6 can be found in Björk [24].

Remark A.7 Assuming S-dynamics of the form

dSi(t) = αi(t)Si(t)dt+ Si(t)σi(t)dWP, i = 1, 2 ,

Ito’s formula applied to (A.7) gives the Girsanov kernel for the transition from M(S1(·)) to
M(S2(·)):

φ2
1(t) = σ2(t)− σ1(t).

A zero-coupon bond is an asset that pays one unit currency at maturity T .
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Definition A.8 The risk-neutral martingale measure that arises from choosing the zero-
coupon bond with maturity T as the numéraire in lemma A.6 is called the T-forward mea-
sure M(p(·, T )).

The change of numéraire lemma A.6 provides us with a Radon-Nikomdym derivative

L
M(p(·,T ))
M(B(·)) =

B(0)
p(0, T )

p(s, T )
B(s)

(A.8)

relating M(B(·)) to M(p(·, T )). It follows that

Π(s)
p(s, T )

=
B(s)
p(s, T )

Π(s)
B(s)

thm. A.5
=

B(s)
p(s, T )

EM(B(·))

[
Π(t)
B(t)

∣∣∣∣∣Fs
]

=

B(0)
p(0,T )E

M(B(·))
[

Π(t)
B(t)

∣∣∣Fs]
p(s,T )
p(0,T )

B(0)
B(s)

(A.8)
=

EM(B(·))
[
L
M(p(·,T ))
M(B(·))

Π(t)
p(t,T )

∣∣∣Fs]
L
M(p(·,T ))
M(B(·))

Bayes’ form.
= EM(p(·,T ))

[
Π(t)
p(t, T )

∣∣∣∣∣Fs
]
.

In particular, as p(T, T ) = 1:

Lemma A.9 For any T -claim X

Π(t;X )
p(t, T )

= EM(p(·,T ))

[
Π(T ;X )
p(T, T )

∣∣∣∣∣Ft
]

= EM(p(·,T )) [X|Ft] .

Lemma A.10 M(B(·)) is equal to M(p(·, T )) iff. the interest rate r is deterministic.

Proof The two measures M(p(·, T )) and M(B(·)) being equal implies their Radon-Nikodym
derivative to be one. From equation (A.8) it can be seen that this is equivalent with the
relation p(t, T ) = p(0, T )B(t) to hold for all 0 ≤ t ≤ T . In an arbitrage free market with
stochastic interest rate such a relation cannot hold since it implies you can always exchange
a position in the bond for a position in the money account and vice versa, at no cost. If, on
the other hand, the interest rate is deterministic, then p(t, T ) 6= p(0, T )B(t) for some t clearly
leads to arbitrage opportunities.

Example A.11 (Call option with stochastic interest rate) Given a financial market
with stochastic short rate r and a strictly positive asset price process S(t), consider a Eu-
ropean call on S with maturity T and strike K, i.e. a T -claim X = max{0, S(T ) − K}.
Using the General pricing formula (Theorem A.5) and changing the numéraire we obtain the
following expression for the option price:

CALL(S, T ; 0,K) = B(0) EM(B(·))
[
max{ 0, S(T )−K }

B(T )

]
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= B(0) EM(B(·))
[
S(T )
B(T )

1(S(T ) > K)
]
−KB(0) EM(B(·))

[
1

B(T )
1(S(T ) > K)

]

= S(0) EM(S(·))
[
S(T )
S(T )

1(S(T ) > K)
]
−K p(0, T ) EM(p(·,T ))

[
1

p(T, T )
1(S(T ) > K)

]

= S(0) EM(S(·)) [1(S(T ) > K)]−K p(0, T ) EM(p(·,T )) [1(S(T ) > K)] , (A.9)

where CALL(S, T ; t,K) denotes the price at time t of a call option on S with maturity T
and strike K.

Under the assumptions of the Black-Scholes model (asset and money account are driven by the
same Wiener process, deterministic interest rate) equation (A.9) reduces to the Black-Scholes
formula (A.4).

If interest rate is stochastic, but S(t)/p(t, T ) has deterministic volatility, equation (A.9) can
still be evaluated analytically:

Lemma A.12 (Geman–El Karoui–Rochet) Under the assumption that the process S(t)
p(t,T )

has deterministic volatility σS,T (t), equation (A.9) reduces to

CALL(S, T ; 0,K) = S(0)N [d1]−Kp(0, T )N [d2], (A.10)

where

d1 = d2 + σ̂S,T (T )
√
T , (A.11)

d2 =
log( S(0)

Kp(0,T ))−
1
2 σ̂

2
S,T (T )T

σ̂S,T (T )
√
T

, (A.12)

σ̂2
S,T (T ) =

1
T

∫ T

0
||σS,T (t)||2dt. (A.13)
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B The assumption of lognormality

Consider the Black-Scholes model of Example A.3. The solution of SDE (A.2) is given by

S(t) = S(0) exp{(µ− 1
2
σ2)t+ σW (t)}.

Thus, under Black-Scholes, the price S(t) is lognormally distributed for all t. In practise
though, the distribution appears to be different. In particular, the tails of the distribution
which represent the probability of extreme values of the stock are heavier than assumed in
Black-Scholes.

Two possible solutions to this problem are described in the following sections. A common
approach is to parametrize the implied distribution, i.e. the (possibly non-normal) dis-
tribution that prices back the options observed in the market. In the particular case of the
Black-Scholes model, there exists a one-to-one relationship between the implied distribution
and the equivalent normal volatility or implied volatility that (given the returns being
normal) leads to the correct market prices for calls and puts. This approach may seem du-
bious as in fact one ‘cancels out’ the effect of a wrong model by adapting the volatility. Its
popularity is mainly due to normal distributions being analytically easy to handle.

Another solution is to use a different distribution for modelling the asset returns. The class of
stable distributions which is described in Section B.2 allows for fat tails and contains normal
distributions as a subset.

B.1 Implied distribution

Breeden and Litzenberger [26] showed that specifying all call option prices (i.e. for every
possible strike) completely determines the terminal distribution of the asset underlying the
options:

− er(T−t)
∂CALL(S, t;T,K)

∂K
= M(B(·)) (S(T ) ≥ K | Ft). (B.1)

Similarly, for the price of a put option:

er(T−t)
∂PUT(S, t;T,K)

∂K
= M(B(·)) (S(T ) ≤ K | Ft). (B.2)

Given prices of options observed in the market, these relations specify the market implied
distribution. Dupire [27] showed that under risk neutrality, there is a unique local volatility
function σ(t, T ) consistent with the implied distribution.

Analogously, the implied volatility is the equivalent normal volatility that prices back
market observed quotes using the Black-Scholes formula (A.4). It can be shown that specifying

76



these implied volatilities for every strike completely determines the distribution:

P[S(T ) < K]
(B.1)
= 1 + p(0, T )−1 ∂

∂K
CALL(T,K; t = 0)

(A.10)
= 1 +

∂

∂K

(
F T (0)Φ(d1)−KΦ(d2)

)
= 1− Φ(d2)−K

∂

∂K
Φ(d2) +

∂

∂K
Φ(d1)F T (0)

= Φ(−d2)−K φ(d2)
∂d2

∂K
+ F T (0)φ(d1)

( ∂d2

∂K
+
√
T
∂σ̂

∂K

)
= Φ(−d2) + F T (0)

√
T φ(d1)

∂σ̂

∂K
+
(
F T (0)φ(d1)−Kφ(d2)

) ∂d2

∂K

where d1, d2 are given by equations (A.11) and (A.12). The last term can be seen to be zero:

φ(d2) = exp(−1
2
d2

1) = exp
(
−1

2
(d2

2 + 2 σ̂
√
T d2 + σ̂2 T )

)
= exp(−1

2
d2

2) exp(−σ̂
√
T d2 −

1
2
σ̂2 T ) =

F T (0)
K

φ(d1) .

We are thus left with

P[S(T ) < K] = Φ(−d2) + F T (0)
√
T φ(d1)

∂σ̂

∂K
. (B.3)

B.2 Stable distributions

Stable distributions are implicitly defined by the property that sums of independent and
identically distributed copies of a stable random variable follow the same distribution up to
multiplication by a positive constant and a constant shift. Normal distributions for example
satisfy this property.

An equivalent definition [28] is to call a random variable X stable if and only if it is equal
in distribution to aZ + b where a > 0, b ∈ R, 0 < α ≤ 2, −1 ≤ β ≤ 1 and Z is a random
variable with characteristic function

E
[
eiuZ

]
=
{

exp(−|u|α[1− iβ tan(πα2 sign u) ] ) α 6= 1,
exp(−|u| [1 + iβ 2

π ( sign u ) log |u| ] ) α = 1.

The limiting behaviour of the tails is determined by the index of stability α. The special
case α = 2 corresponds to the normal distribution where the tails behave as an exponential
function. If α < 2 the tails are heavier than exponential, i.e. xα P[X > x] → c+ and
xα P[X < −x] → c− as x→∞ where c+, c−∈ R [28, Theorem 1.12].

Stable distributions are the only distributions that can occur as limiting cases of sums of i.i.d.
random variables [28, Theorem 1.20]. This result is known as the Generalized Central Limit
Theorem. The generalization lies in the fact that the random variables to which this theorem
applies need not to have a finite second moment as is the case for the standard Central Limit
Theorem.
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The property of heavy tails led to the use of stable distributions in financial returns modelling,
initially by Mandelbrot in his 1963 article on cotton prices [29, Chapter E14]. A drawback
of this approach is the fact that the second moment of stable random variables for α < 2
is infinite and many consider this to be an unrealistic assumption for asset returns. Also,
the index of stability which determines the tail behaviour is invariant under (i.i.d.) addition
leading to overestimation of the tails on larger timescales [30, Figure 2]. In the literature,
solutions have been proposed to repair both the convergence issue (slower than normal, faster
than stable) and the finite variance — for instance by means of truncated Lévy flights [31].
Analytically though, these appoaches are much less attractive than the normal distribution.
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