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Outline

• Discretization for Black-Scholes equation

– use only a few grid points

• Discrete dividend

• American-style options

⇒ “PDE on a grid” is straightforward, some modeling questions remain
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Black-Scholes option pricing

Point of Departure (here)

- The asset price follows the lognormal random walk.

- Interest rate r and volatility σc are known functions of t.

- Transaction costs for hedging are not included in the model.

- There are no arbitrage possibilities.

⇒ Black-Scholes partial differential equation:
(for a European option)
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• The Black-Scholes equation is a parabolic partial differential equation
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Options on dividend-paying equities

• At the time that a dividend is paid there will be a drop in the value of the stock.

• The price of an option on an dividend-paying asset is affected by these payments.

• Different structures are possible for the dividend payment (deterministic or stochastic
with payments continuously or at discrete times)

• We consider discrete deterministic dividends, whose amount and timing are known.

• Arbitrage arguments require:

u(S, t−d ) = u(S −D, t+d )
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Final/Boundary conditions

• European Call option: Right to buy assets at maturity t = T for exercise price K.

• Final condition: u(S, T ) = max(S −K, 0)

• Boundary conditions S = 0: u(0, t) = 0,

for S → ∞: u(Smax, t) = Smax −Ke−r(T−t) −De−r(td−t) or uss = 0.

• The strategy to solve the Black-Scholes equation numerically is as follows

– Start solving from t = T to t = td with the usual pay-off.

– Apply an interpolation to calculate the new asset and option price on the grid
discounted with D.

– Restart the numerical process with the PDE from the interpolated price as final
condition from td to t = 0.
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Discretization
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• Grid in space and time with N and M points; mesh width h = 1/N, k = 1/M

• Finite differences, based on Taylor’s expansion

• O(h2 + k2) is easily achieved by central differencing and Crank-Nicolson discretization

• Our aim: High accuracy with only a few grid points

⇒ Grid stretching in space and 4th order discretizations in space and in time
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Grid stretching

• A coordinate transformation that clusters points in the region of interest.

• Boundary at infinity: truncate the domain at a safe place (option value is not influ-
enced) according to a well-known formula

• An equidistant grid discretization can be used after the analytic transformation

• Consider a general parabolic PDE with non-constant coefficients

∂v

∂t
= α(s)

∂2v

∂s2
+ β(s)

∂v

∂s
+ γ(s)v(s, t)

v(a, t) = L(t), v(b, t) = R(t), v(s, 0) = φ(s).
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Grid stretching

• Consider a coordinate transformation y = ψ(s) (one-to-one),
inverse s = ϕ(y) = ψ−1(y) and let v̂(y, t) := v(s, t).

• Chain rule, the first and second derivative:

∂v

∂s
=

1

ϕ′(y)

∂v̂

∂y
, (1)
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(ϕ′(y))2
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Application changes the factors α, β and γ into:

α̂(y) =
α(ϕ(y))

(ϕ′(y))2
, β̂(y) =

β(ϕ(y))

ϕ′(y)
− α(ϕ(y))

ϕ′′(y)

(ϕ′(y))3
, γ̂(y) = γ(ϕ(y)). (3)
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Grid stretching
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• Spatial transformation used for Black-Scholes [Clarke-Parrott, Tavella-Randall]:

y = ψ(s) = sinh−1 (µ (s−K)) + sinh−1 (µK) . (4)

• The grid is refined around s = K, i.e. the nondifferentiability in the final condition.

• Parameter µ determines the rate of stretching; keep µK constant

• Stretching is possible at several places: grid is defined numerically
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Discretization

• Fourth order in space (long stencils):

∂v̂i
∂t
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(5)

• Fourth order in time: BDF4 scheme (preceded by CN, BDF3). BDF4 reads
(

25
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)
uj+1 = 4uj − 3uj−1 +
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3
uj−2 +

1

4
uj−3, (6)

• No stability complications observed

• Well-suited for linear complementarity problems (for American options)
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Accuracy

European option pricing experiment, no dividend

• Error in uh and hedge parameters ∆h,Γh

• K = 15, s0 = K, σc = 0.3, r = 0.05, D = 0.03, T = 0.5.

Scheme Grid ‖u− uex‖∞ c∞ ‖∆ − ∆ex‖∞ c∞ ‖Γ − Γex‖∞ c∞
10 × 10 1.1 × 10−2 2.4 × 10−2 6.3 × 10−3

O(h4 + k4) 20 × 20 1.1 × 10−3 10.1 3.1 × 10−3 7.6 1.3 × 10−3 4.8
40 × 40 9.4 × 10−5 11.2 2.9 × 10−4 10.8 9.7 × 10−5 13.6

Scheme Grid ‖u− uex‖∞ c∞ ‖∆ − ∆ex‖∞ c∞ ‖Γ − Γex‖∞ c∞
10 × 10 2.7 × 10−1 1.7 × 10−1 4.2 × 10−2

µ = 12 20 × 20 1.5 × 10−2 18.1 1.5 × 10−2 11.5 4.2 × 10−3 9.9
stretching 40 × 40 9.1 × 10−4 16.5 1.7 × 10−3 8.6 5.3 × 10−4 8.0
O(h4 + k4) 80 × 80 5.7 × 10−5 16.0 1.5 × 10−4 11.6 4.2 × 10−5 12.7
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Accuracy

European option pricing experiment
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Example European option

Multiple discrete dividends

• Multiple discrete dividends: analytic solution not available

• Parameters: s0 = K = 100, r = 0.06, σc = 0.25, multiple dividends of 4 (ex-dividend
date is each half year), T = 1, 2, 3, 4, 5, 6. Grid: smax = RK(3 ≤ R ≤ 7), µ = 0.15

Grid T = 1 Grid T = 2 Grid T = 3
20 × 20 10.660 20 × 40 15.202 20 × 80 18.607
40 × 40 10.661 40 × 80 15.201 40 × 160 18.600

Lewis (Wilmott Mag. 2003) 10.661 15.199 18.598
Grid T = 4 Grid T = 5 Grid T = 6

20 × 80 21.370 20 × 100 23.697 20 × 120 25.710
40 × 160 21.362 40 × 200 23.691 40 × 240 25.698

Lewis 21.364 23.697 25.710
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Example European option

Zero interest rate

• Case r = 0, the ex-dividend date td should not matter for the option price.

• Black-Scholes does not satisfy this market principle.

• Correction of volatility in Black-Scholes:

dS = µSdt + (S −De−rtd)dW t ∈ [0, td]

σ(S, t,D) =

{
σc

S−D exp(−rtd)
S t ∈ [0, td]

σc t ∈ [td, T ]

td =0 td =3 months td =6 months td =9 months td =12 months
Black-Scholes 8.3386 8.5522 8.7590 8.9587 9.1511
Vol. correction 8.3386 8.3386 8.3386 8.3386 8.3386

European Call, K = 100, D = 7, r = 0, T = 1, σ = 0.3
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American Options

Linear Complementarity

• American options are contracts that may be exercised early. This right to exercise is
valuable: The American option cannot be worth less than the equivalent European.

• The problem we need to solve for an American call option contract reads:

Au :=
∂u

∂t
+

1

2
σ2S2∂

2u

∂S2
+ rS

∂u

∂S
− ru ≤ 0

u(S, T ) = max (S −K, 0), u(S, td) = max {S −Ke−r(T−td) −D,S −K},

u(S, t) ≥ final condition
∂u

∂S
continuous

u(Smax, t) = max{Smax −Ke−r(T−t) −De−r(td−t), Smax −Ke−r(td−t)}, t < td

• Early exercise valuable only if D > K(1 − e−r(T−td), just before the asset goes ex-
dividend [Kwok].

• Reformulation of the obstacle problem into a linear complementarity problem:
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American Put with one Discrete Dividend

• K = 100, T = 0.5, d = 2.0, td = 0.3, σc = 0.4, r = 0.08, µ = 0.15, smax = 3K

Grid uh(80, t = 0) uh(100, t = 0) uh(120, t = 0)

20 × 20 0.223 0.105 0.043

40 × 40 0.223 0.105 0.043

Meyer (J. C. Fin. 2001): 0.223 0.105 0.043

• d = 0 (black line) , d = 2 (blue line) vs. d = 0.98S (red line)
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American Call with one Dividends

• Problem parameters: K = 100, σc = 0.3, r = 0.05, td = 51 weeks, D1 = 4, T = 50
weeks versus T=1 year

Vorst Haug Black Scholes Vol. correction Eur. corr.
td = 51 weeks, T=50 weeks 13.88 13.92 13.92 13.92 13.49
td = 51 weeks, T=52 weeks 13.63 13.64 14.08 13.65

• American price is lower than European

• One should maybe (but this will not happen in practice !) adapt the European price
to avoid this contradiction with the volatility correction

ECCOMAS 2004 25.07.2004 /nr. 17



Conclusions

• Accurate option values with grid stretching in space and
4th order discretization in space and time

• Option price and hedge parameters are accurate with 20 -40 points

• Multiple discrete dividend payment can be included in a straightforward way

• American style early exercise does not pose any problems

⇒ Discrete dividends lead to interesting modeling issues.
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