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ON MULTIGRID FOR LINEAR COMPLEMENTARITY PROBLEMS WITH
APPLICATION TO AMERICAN-STYLE OPTIONS∗
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Abstract. We discuss a nonlinear multigrid method for a linear complementarity problem. The convergence is
improved by a recombination of iterants. The problem under consideration deals with option pricing from mathe-
matical finance. Linear complementarity problems arise from so-called American-style options. A 2D convection-
diffusion type operator is discretized with the help of second order upwind discretizations. The properties of
smoothers are analyzed with Fourier two-grid analysis. Numerical solutions obtained for the option pricing problem
are compared with reference results.
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1. Introduction. In this paper, we discuss multigrid methods for solving a time-dependent
2D partial differential equation (PDE) arising in option pricing theory. The problem consid-
ered is the computation of the value of an American-style option in a stochastic volatility
setting. It leads to the solution of a convection-diffusion type PDE with a free boundary. In
[23], it has been shown that for American-style options the theory of linear complementarity,
as it was developed in the 1970’s, applies. It is possible to rewrite the arising free boundary
problem as a linear complementarity problem (LCP) of the form

Lu ≤ f1 x ∈ Ω(1.1)

u ≥ f2 x ∈ Ω(1.2)

(u − f2)(Lu − f1) = 0 x ∈ Ω,(1.3)

plus boundary conditions, where L is a linear differential operator. The option pricing con-
text and the discretization of the LCP are discussed in Section 2. The LCP formulation is
beneficial for iterative solution, since the unknown boundary does not appear explicitly and
can be obtained in a postprocessing step.

In 1983, Brandt and Cryer [3] proposed a multigrid method for LCPs arising from
free boundary problems. The algorithm is a multigrid generalization of the projected SOR
method [7]. Due to the nonlinear character of the problem, the multigrid method is based on
the full approximation scheme [2], FAS, that is often used for solving nonlinear PDEs. The
solution method has therefore been called the projected full approximation scheme (PFAS)
in [3]. In the original paper, the operator L in (1.1), (1.3) was the nicely elliptic Laplace
operator and fast convergence was presented. PFAS has already been successfully used in
the financial community for American options with stochastic volatility in [6]. The smoother
applied in [6] is, however, somewhat involved. It is based on the pointwise PSOR method for
the detection of the free boundary, followed by a partial linewise step in order to deal with the
stretched numerical grid occurring in the financial problem. As the free boundary is unknown
and can be of general shape, the line relaxation may often need to be adapted. The need to
change multigrid components like the smoother for optimal convergence of a new problem at
hand is sometimes considered as unsatisfactory. This is, for example, stated in [25] where
an alternative formulation for American options with a penalty function is proposed and an
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ILU preconditioned CG-type solver is considered. This solver can be considered as being of
“black-box” type, but it is not hierarchical.

It is our aim with this paper to give more insight into the multigrid convergence for prob-
lems from option pricing. Fourier two-grid analysis [19] will be used to analyze favorable
smoothers and coarse grid correction components for the discrete operator under considera-
tion. The influence of different point- and linewise smoothers, or of under- and overrelaxation
parameters can be analyzed quantitatively in this way, as presented in Section 3.2. At the same
time, we introduce in Section 3 some recent developments in multigrid methods to the field of
LCPs, making the algorithms more robust, like overrelaxation parameters and recombination
techniques.

In the discretization of the operator arising in American-style option pricing by a sec-
ond order upwind scheme, different complications for optimal multigrid convergence, such
as anisotropies and positive off-diagonal stencil elements in space-dependent operator coef-
ficients, occur simultaneously. When pointwise Gauss-Seidel-type smoothing is combined
with a standard coarse grid correction, certain error components may remain large. In such
a situation, it is possible to choose a more expensive smoother, such as linewise relaxation
or to change the coarsening procedure, for example to semi-coarsening, or to improve the
convergence by a Krylov subspace acceleration. We will choose the subspace acceleration
approach here.

A well-known solution approach of the latter type for nonlinear equations is to apply
global (Newton) linearization, solve the arising linear system with a Krylov subspace method,
such as the GMRES method [18], and a multigrid preconditioner. This is not the approach fol-
lowed in this paper. We apply to the nonlinear problems a solution method based on PFAS as
the multigrid technique. The Krylov subspace acceleration can be interpreted as a technique,
in which intermediate iterates are recombined in order to obtain an improved approximation,
as explained in [20]. With this method many different nonlinear partial differential equations
have been solved, see, for example, [19, 16]. The solver is related to the acceleration cycle
presented in [4]. Here, we generalize this method to solving LCPs in Section 4. Numerical
results are presented in Section 5.

2. Option basics and the Black-Scholes equation. Research in option pricing theory
concerns, among many other issues, the computation of the value of an option during the
life of an option contract. A famous equation for this is the Black-Scholes partial differential
equation. It represents a simple model for the values of two basic options, the so-called put
option and call option.

In the case of a European put option, the holder of the option may sell at the expiration
date, a prescribed time in the future, certain assets, like shares or stocks, at the exercise price.
The other party of the option contract, the writer, must buy the asset, if the holder decides to
sell it. In the case of a European call option, the holder has the right to purchase an asset on a
certain date at a prescribed amount. The writer is then obliged to sell the asset. In this paper,
we concentrate on the put option.

Options have two main uses: speculation and hedging. Whereas speculation might be
well-known, hedging needs some more explanation. Let’s consider a portfolio with assets and
put options. If the asset price s falls, (based on the definition above) the value of a put option
increases: It is possible to sell assets at the expiration date for the exercise price, although
the actual price falls. The value of the portfolio therefore depends on the ratio between the
number of assets and the number of put options in the portfolio. A ratio exists, which results
in no movement in the value of the portfolio. This ratio is instantaneously risk-free. Hedging
means here reducing risk (for example against falling asset prices) by combining options with
assets in a portfolio.
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To derive the Black-Scholes equation, one assumes a geometric Brownian motion stochas-
tic differential equation as a model generating asset prices s to be valid,

(2.1) ds = s(σdw + µdt) .

Here, µdt is a deterministic return. The volatility σ measures the standard deviation of the
returns ds/s. The random variable dw is assumed to be a Wiener process with mean 0 and
variance dt, so that the mean of ds is µsdt and its variance is E [ds2] − E [ds]2 = σ2s2dt.
Furthermore, the equation has the Markov property: It does not depend on the past history of
the asset prices.

Although asset prices are valid for discrete time, the PDE models are set up in continuous
time with limit dt → 0. The value of the option is denoted by u = u(s, t) here. The value u
is influenced by the exercise price E, the expiration time T (0 ≤ t ≤ T ), the interest rate r
(here assumed to be constant), and the volatility σ.

Itô’s lemma makes it possible to handle the random term dw as dt → 0 (analogously to
Taylor’s expansion for deterministic variables). With the insight that the random walks in s
and u are driven by the same random variable dw, one can add in a portfolio an option with
value u to a number, Delta ”∆”, of assets s in such a way that the portfolio is instantaneously
risk free. By choosing ∆ := ∂u/∂s, the deterministic portfolio increment is obtained. At this
stage, the assumption that there are no arbitrage possibilities comes into play, which means
that risk free profits that are greater than placing money at a bank are not allowed in the
model. So, the instantaneously risk free portfolio must earn a rate of return that equals the
interest rate [10, 23]. Together with the assumptions in this model’s framework of constant
volatility, of no transaction costs for hedging, no dividend payment and no taxes involved,
this finally results in the Black-Scholes partial differential equation for the value of an option,

(2.2) Lu :=
∂u

∂t
+

1

2
σ2s2 ∂2u

∂s2
+ rs

∂u

∂s
− ru = 0

In its basic form, (2.2) is a convection-diffusion-reaction type equation in one “space-
like” dimension, the s direction. With the terms sj∂ju/∂sj , one recognizes an Eulerian
differential equation that can be transformed into a heat equation.

The Black-Scholes equation is a parabolic PDE with boundary and final conditions. At
expiry a European put option has the value E − s for s < E. It is worthless if s > E, see
Figure 2.1. So,

(2.3) u(s, T ) = max(E − s, 0) =: f2(s).

E

V

S

E

FIG. 2.1. Final conditions for a put option.

The boundary condition for a put (see, for example [10, 23]) at s = 0 is u(0, t) =
Ee−r(T−t). It represents the exponential growth for receiving an amount E at t = T with
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constant interest rates. Furthermore, u(s, t) → 0 as s → ∞, because one obviously cannot
gain by exercising the put option.

American options. Whereas for European options exercise is only possible at the expira-
tion date, the exercise of American options is permitted at any time during the life of an option,
0 < t ≤ T . This leads to the following considerations. It is well-known that a European put
option is, in a certain s range, less than the pay-off function, u(s, t) < max(E − s, 0) [23].
In the American context, this would mean that buying the option for u, selling the asset im-
mediately for E, and buying the asset on the market for s, would result in a risk-free profit of
E − u − s > 0 in this s range, which contradicts the arbitrage concept [10, 23]. Therefore,
when early exercise is permitted, a constraint

(2.4) u(s, t) ≥ max(E − s, 0) =: f2(s)

must be imposed in order to avoid an arbitrage possibility. In this s region, the value of the
American put option is raised compared to the value of the similar option of European type,
due to the constraint (2.4). The addition of the constraint to the PDE (2.2) or to (2.7) gives
rise to a free boundary problem: A special s value exists, the optimal exercise price sf , with
the following properties: on one side of sf it is beneficial to hold the option, on the other
side, it is advantageous to exercise the option. sf (t) is time dependent and not known in
advance. (Of course, optimal exercise also depends on other important parameters and, most
of all, on the option holder’s market strategy.) For an American put, if u > max(E − s, 0)
equation (2.2) or (2.7) holds (s > sf (t)); If u = E − s, an inequality,

(2.5) Lu < 0

holds (s ≤ sf (t)) with L as in (2.2) or in (2.7).
Based on the classical theory of linear complementarity, it is possible to formulate this

free boundary problem into an LCP of type (1.1),(1.2),(1.3), so that the free boundary condi-
tions need not be handled explicitly.

Stochastic volatility. A generalization of the Black-Scholes equation is obtained if the
restriction of constant volatility is replaced by the assumption of a stochastic volatility. In-
stead of (2.1), the following stochastic differential equations are assumed to govern the asset
price process s and its variance process y [11],

ds = µsdt +
√

ysdw1

dy = α(β − y)dt + γ
√

ydw2(2.6)

where w1, w2 represent standard Brownian motion with correlation coefficient ρ ∈ [−1, 1],
γ is the volatility of the variance process, α, β > 0 determine the mean reversion (so that the
variance will drift back to some mean value β at a rate governed by α). The volatility

√
y can

be shown to be positive valued provided that γ2 ≤ 2αβ. The assumption of the stochastic
processes (2.6) leads to a 2D PDE problem for the value of an option in which the variance
y is, besides s and t, a third variable (degree of freedom), see [1, 25] for the derivation. The
resulting PDE reads,

Lu : =
∂u

∂t
+

1

2
[s2y

∂2u

∂s2
+ 2ργys

∂2u

∂s∂y
+ γ2y

∂2u

∂y2
] +

rs
∂u

∂s
+ [α(β − y) − λγ

√
y]

∂u

∂y
− ru = 0, Ω = {(s, y)|s ≥ 0, y ≥ 0},(2.7)

where λ is the so-called “market price of the risk function” (for foreign currencies a nonzero
constant is parameter of choice). It has been set to 0 here, as in [6, 25]. For more details on
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the stochastic volatility concept, we refer to the financial literature [1, 10, 25]. The following
boundary conditions are proposed for a put option in [6],

u(0, y, t) = f2(0, t), ∀y ≥ 0, t ∈ [0, T ],(2.8)

u(s, 0, t) = f2(s, t), ∀s ≥ 0, t ∈ [0, T ],(2.9)

with f2 defined by (2.3). These boundary conditions imply an immediate exercise of the
put, in the case of a zero asset price and in the case of zero volatility. As for the other two
boundaries (s → ∞, y → ∞), the computational domain is commonly truncated at finite
values smax, ymax respectively, at which Neumann boundary conditions are imposed [6],

∂u(smax, y, t)

∂s
= 0, ∀y ∈ [0, ymax], t ∈ [0, T ](2.10)

∂u(s, ymax, t)

∂y
= 0, ∀s ∈ [0, smax], t ∈ [0, T ].(2.11)

Typically, ymax is set to one, smax to two times E. The computed values of the options are
generally not very sensitive with respect to the size of the truncation, as discussed in [6].

Summarizing, for American style options with the stochastic volatility model (2.6),(2.7),
the following LCP needs to be solved,

Lu(s, y, t) ≤ 0(2.12)

u(s, y, t) ≥ f2(s)(2.13)

(u(s, y, t) − f2(s))Lu(s, y, t) = 0(2.14)

with f2 defined by (2.4), L given by (2.7) and boundary conditions (2.8)–(2.11).

2.1. The discretization. The stochastic volatility problem leads to the numerical solu-
tion of a 2D time-dependent problem with an operator L of convection-diffusion type. Here
we outline the discretization of the operator in (2.7), which is in nonconservative form. Since
we expect solutions without steep gradients, it is possible to choose standard well-known
discretization schemes. After a transformation t∗ = T − t, the equation which is backward
in time with a final condition is transformed to an equation forward in time with an initial
condition. This puts a minus sign in front of the ∂/∂t term in (2.7).

For the time discretization, we consider the so-called backward difference formula BDF2 [8]
scheme,

(2.15)
3uh(s, y, t∗ + τ) − 4uh(s, y, t∗) + uh(s, y, t∗ − τ)

2τ
= Lhuh(s, y, t∗ + τ) .

The time discretization accuracy of this implicit scheme is O(τ 2). We prefer this discretiza-
tion over the well-known Crank-Nicolson scheme (also called trapezoid rule), because of its
better stability characteristics. The Crank-Nicolson scheme is not L-stable (see, for exam-
ple, [9]), whereas BDF2 is. BDF2 has more favorable damping properties than the Crank-
Nicolson scheme. In a forthcoming paper discussing another type of option, we will show
that the latter can result in undamped oscillations in important financial quantities, called the
hedge parameters.

The mixed derivative term is discretized by the O(h2) four-point discretization. The
second derivatives in both directions are handled by the usual three-point stencils. Linear
second order upwind discretizations, like the upwind κ-discretizations [14], are sufficiently
accurate for the discretization of the convective terms in the s− and y−directions. A 1D
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upwind κ-discretization can be written as a combination of a central difference discretization
plus a second-order dissipation term, which is proportional to the third derivative of u:

(aus)h = a

(
uh(s + hs, y, t∗) − uh(s − hs, y, t∗)

2hs

)
+

(
ah2

s(1 − κ)

4

)
·(2.16)

(
uh(s − hs, y, t∗) − 3uh(s, y, t∗) + 3uh(s + hs, y, t∗) − uh(s + 2hs, y, t∗)

h3
s

)

for a < 0 (for example, a = −rs after the transformation). In this paper, we use the Fromm
scheme for the discretization (i.e., κ = 0). The well-known central discretization scheme
κ = 1 again leads to oscillations in financial quantities, see for example [26]. The linear
κ-scheme is a first choice for obtaining second-order accurate schemes with a convection
term. The κ-schemes are, however, not monotone, which means that they have to be modified
(with limiters) for problems containing strong gradients, like shocks or boundary layers. In
that case, the BDF2 time discretization also needs to be modified in order to guarantee total
variation diminishing (TVD) solutions in space and time with relatively large time steps.
So-called partially implicit BDF blended schemes [12] from the family of implicit-explicit
(IMEX) time discretization schemes are an alternative in this situation. We will use them in
another financial setting in a forthcoming paper.

Since we will not encounter extremely steep gradients in this paper, the second order κ
upwind schemes and BDF2 time discretization are fully satisfactory. Unrealistic oscillations
in time or in (s, y)-space are not encountered.

By setting si = i ·hs, yj = j ·hy, i, j : 0, . . . , n, (i.e. choosing an equidistant grid Ωh),
the stencil for the second order accurate discretization of (2.7) transformed into an equation
forward in time reads in semi-discrete form

∂uh(s, y, t∗)

∂t∗
+




a
(2)
0,2

a
(2)
−1,1 a

(2)
0,1 a

(2)
1,1

a
(2)
−1,0 a

(2)
0,0 a

(2)
1,0 a

(2)
2,0

a
(2)
−1,−1 a

(2)
0,−1 a

(2)
1,−1

a
(2)
0,−2



uh(s, y, t∗) = 0,

(s, y, t∗) ∈ Ωh × (0, T ],(2.17)

with elements a
(2)
µ,ν given by

a
(2)
−1,1 = ργi · j/4, a

(2)
1,−1 = ργi · j/4,

a
(2)
1,1 = −ργi · j/4, a

(2)
−1,−1 = −ργi · j/4,

a
(2)
2,0 = (1 − κ)ri/4, a

(2)
−1,0 = −i2 · jhy/2 + (1 + κ)ri/4,

a
(2)
0,−2 = max(c(1 − κ)/4, 0), a

(2)
0,2 = −min(c(1 − κ)/4, 0),

a
(2)
1,0 = −i2 · jhy/2 − 1/4(5− 3κ)ri,

a
(2)
0,−1 = −γ2j/hy/2− min(0, c(1 − κ)/4) − max(0, c(5 − 3κ)/4),

a
(2)
0,1 = −γ2j/hy/2 + min(0, c(5 − 3κ)/4) + max(0, c(1− κ)/4),

a
(2)
0,0 = r + i2 · jhy + γ2j/hy + 3/4(1− κ)ri + 3|c|(1 − κ)/4,

with c = −(α(β − jhy) − λγ
√

jhy)/hy(2.18)
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from the (s, y) discretization explained above (with discrete boundary conditions and the time
discretization). An interesting aspect is that all powers of hs vanish after the discretization
of (2.7), which means that different mesh sizes in the s-direction do not play a role for the
multigrid convergence factors. This is not typical for general convection-diffusion-reaction
equations.

3. The solution method. We will discuss the multigrid solver in detail in different sub-
sections, starting with a discussion on suitable smoothing methods for the operator (2.7) with
discretization (2.17) in the LCP setting.

3.1. Smoother for convection-diffusion type operators. We use a projected version
of the well-known lexicographic pointwise Gauss-Seidel method as a smoother. Such an
iteration consists of two partial steps. In a first step, a lexicographic pointwise Gauss-Seidel
iteration is applied to (2.12) with the equality sign. In the second partial step, the solution is
projected, so that the constraint (2.13) is satisfied,

û(si, yj , t
∗) =

1

a
(2)
00





f1(si, yj , t
∗) −

∑

µ1∈Js,µ1≤0

(µ1,µ2)6=(0,0)

∑

µ2∈Jy ,

µ2≤0

a(2)
µ1µ2

u(si + µ1, yj + µ2, t
∗)

−
∑

µ1∈Js,µ1≥0

(µ1,µ2)6=(0,0)

∑

µ2∈Jy,

µ2≥0

a(2)
µ1µ2

u(si + µ1, yj + µ2, t
∗)





,(3.1)

u(si, yj , t
∗) = max{f2,h(si, yj , t

∗), û(si, yj , t
∗)} ∀(si, yj) ∈ Ωh,(3.2)

where u denotes an unknown after a relaxation and û an unknown after a partial relaxation
step, Js, Jy are the integer index sets related to the nonzero stencil elements in (2.17).

A Gauss-Seidel iteration will not give a good smoother for convection-dominatedconvection-
diffusion problems discretized with κ-schemes. Multistage smoothers, defect-correction ap-
proaches or KAPPA smoothers [15] are commonly used for second order accurate upwind
discretizations in convection-dominated problems. Here, however, for the problem at hand
the well-known Gauss-Seidel relaxation methods can be used as smoothers in multigrid, as
we will show by Fourier analysis in the following section. As the problem is not really
convection-dominated, the above mentioned convergence difficulties do not occur.

3.2. Two-grid Fourier analysis. An important analysis tool for multigrid methods is
Fourier analysis, see, for example [2], [19], [21]. It is, in fact, the main multigrid analysis
possibility for nonsymmetric problems. We will perform a Fourier two-grid analysis to study
the properties of a smoothing method and of the other multigrid components in a two-grid
method. The error vm

h = um
h −uh is transformed by the (m+1)-st two-grid cycle as follows:

(3.3) vm+1
h = MH

h vm
h , MH

h = Sν2

h CH
h Sν1

h ; CH
h = Ih − Ih

H (LH)−1IH
h Lh .

The spectral radius ρh(MH
h ) of the linear two-grid operator MH

h gives an indication of the
asymptotic rate of the multigrid convergence.

On a grid Gh := {x = (ksh, kyh) : ks, ky ∈ Z}, we consider functions that are linear
combinations of the Fourier components

ϕh(θ, x) = eikθ = ei(ksθs+kyθy)
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with x ∈ Gh, k = (ks, ky) ∈ Z
2 and frequencies θ = (θs, θy) ∈ IR2.

The Fourier space ε
h = span{eikθ : θ ∈ Θ = (−π, π]2} contains any infinite grid

function on Gh [19]. The discrete solution uh, the current approximation um
h and the error

vm
h (3.3) can be represented as linear combinations of the basis functions eikθ ∈ ε

h.
ε

h can be divided into four-dimensional sub-spaces, the harmonics (see Figure 3.1):

ε
h
θ

= span{ϕ(θαsαy , x) = eikθ
αsαy

; αs, αy ∈ {0, 1}}, x ∈ Gh,(3.4)

θ
00 ∈ Θ00 := (−π/2, π/2]2, θ

αsαy := (θs − αssign(θs)π, θy − αysign(θy)π)

x x

xx

PSfrag replacements

θ
00

θ
10

θ
01

θ
11

π

π

−π

−π

π
2

π
2

−π
2

−π
2

Θ0,0

FIG. 3.1. High (shaded region) and low frequency regions of εh with four harmonics

The 2D coarse grid correction operator CH
h leaves the 4-dimensional space of harmonics

ε
h
θ

(3.4) with an arbitrary θ ∈ Θ̃00 = Θ00 \ {θ : L̃H(2θ
00) = 0} invariant [19]. The same

invariance property is true for the smoothers considered,

CH
h : ε

h
θ
→ ε

h
θ
, Sh : ε

h
θ
→ ε

h
θ

(θ ∈ Θ̃00).

Hence MH
h is orthogonally equivalent to a block matrix consisting of 4 × 4 blocks, which

will be denoted by M̃H
h (θ) := MH

h |
ε

h
θ

(θ ∈ Θ̃00). We can determine the spectral radius

ρh(MH
h ) by calculating the spectral radii of 4 × 4 matrices:

(3.5) ρh(MH
h ) = max

θ∈Θ̃00

ρh(M̃H
h (θ)) .

To obtain the representation of the 4 × 4−blocks

M̃H
h (θ) = S̃ν2(I − P̃h(L̃H)−1R̃hL̃h)S̃ν1 ,

the Fourier symbols of the multigrid operators for the harmonic in ε
h
θ

are calculated.
The two-grid convergence properties of stencil (2.17) with the coefficients depending

on s and y are analyzed. Fourier analysis is, however, only exact for linear operators with
constant (or frozen) coefficients. Therefore, we locally freeze the s− and y−terms in front of
the derivatives in (2.7) and check the two-grid convergence factors for several relevant values
of these quantities. For this purpose, we divide the unit square in 256 intervals hs = hy =
1/256 and vary i and j in (2.17) by 8 units, i, j : 0, . . . , 256. For each (i, j)-set, we compute
ρ(Mh

H) (3.5), which brings many two-grid factors.
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In the analysis, we consider the steady equation (∂/∂t∗ = 0), since this represents a
worst case for multigrid convergence. Implicit time discretization brings a positive addition
to the main diagonal operator element, which is beneficial for the smoothing properties. The
parameter set considered in (2.7) is the following:

(3.6) α = 5, β = 0.16, γ = 0.9, ρ = 0.1, λ = 0, r = 0.1,

We start the analysis of the lexicographical point Gauss-Seidel smoothing method and the
coarse grid correction consisting of injection as the restriction operator (the reason for this is
explained in Section 3.3.1 in the LCP context), bilinear interpolation as the prolongation and
a direct discretization of the PDE on a standard coarsened grid, with H = 2h. The number
of smoothing iterations is set to 2 here.

Remark: Lexicographic smoothing means that for each index the iteration proceeds from
0 to the maximal value. The direction of the information propagation is, however, opposite.
This does not affect our results here. On much finer grids, however, one may expect multi-
grid convergence difficulties for small y- and large s-values, since then the convection term
becomes more dominant. In this situation, an “anti lexicographic” order for smoothing is
appropriate.

The computed (s, y)-dependent two-grid convergence factors are graphically presented
in the left-hand part of Figure 3.2. Near the domain boundary s = 0, ρ(Mh

H) ≈ 1 is observed
which is clearly unsatisfactory. For larger s-values, much better two-grid factors are obtained.
The right-hand side picture in Figure 3.2 shows the two-grid convergence results with s-line
Gauss-Seidel relaxation (i.e., lines with j = const.). In this case, only an isolated large
factor close to (s, y) = (0, 0) is observed; most factors are about 0.38. These two-grid

0.5

0.2

1
0.9

0.30.4

1

0.5
0.9

0
ys

0

1

0

0.3

1 0

1

s

0.4

1.3

1.0

0.38

y

FIG. 3.2. Fourier two-grid convergence factors ρ(Mh
H) for different (s, y)-values; left: lexicographic point

Gauss-Seidel, right: s-line Gauss-Seidel.

factors are confirmed by numerical multigrid experiments with the components used in the
two-grid analysis for equation (2.7) with Dirichlet boundary conditions on different domains
Ω. On Ωh = [0, 1]2, hs = hy = 1/256, we find poor multigrid convergence with the
lexicographic point Gauss-Seidel smoother and a very satisfactory multigrid convergence
factor of 0.35 with the s-line Gauss-Seidel smoother (see Table 3.1). The isolated large value
in the latter case can be considered as a boundary effect, due to the lack of ellipticity at the
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corner point, that is not observed in the actual numerical experiment with Dirichlet conditions
at the particular boundary. For other computational domains Ωh, away from the s = 0 axis,
we obtain a much improved multigrid convergence with the point Gauss-Seidel smoother,
see Table 3.1. We can expect this from the ρ(Mh

H)-values in the left-hand side picture in
Figure 3.2. Table 3.1 also presents the effect of an overrelaxation parameter ω = 1.2 on

TABLE 3.1
Multigrid convergence of the PDE (2.7) on a 2562-grid with varying domains and overrelaxation for point-

and linewise Gauss-Seidel iteration (ν1 = ν2 = 1).

Smoother: lex. point Gauss-Seidel s-line GS

Overrelaxation / Domain Ω: [0, 1]2 [0.2, 1]2 [0.4, 1]2 [0.6, 1]2 [0, 1]2

ω = 1 0.994 0.85 0.55 0.30 0.35
ω = 1.2 0.995 0.77 0.42 0.33 0.44

the multigrid convergence, since this can bring improved convergence for several elliptic
PDE problems of anisotropic-type [22, 24]. The numerical convergence with the relaxation
parameter has also been validated by Fourier analysis.

The reason for concentrating interest so much on the results with the point smoother is the
following. Due to the occurring free boundary in the LCP problem, large parts at the left-hand
side of a domain will not be processed explicitly by the multigrid smoothing and coarse grid
correction. At these parts, the second constraint (2.13) holds with equality sign. For the grid
points, where the smoothing will typically be applied for the option pricing problem under
consideration, the very satisfactory two-grid convergence factors are found in the left-hand
side picture of Figure 3.2 and Table 3.1. The convergence factors in this region are, in fact,
very similar for pointwise and linewise smoothing. A problem with linewise smoothing for
LCPs is, as explained in [6], that the lines should end at the free boundary for good smoothing
and convergence. Therefore a detection mechanism must be incorporated into the smoothing
method, which is in [6] the pointwise Gauss-Seidel iteration. For equidistant grids and the
LCP problem setting, however, the pointwise smoother is fully satisfactory. From (2.18), we
already observed that all powers of hs vanish in the discretization of (2.7). For the multigrid
convergence this means that also on severely stretched but equidistant grids in the s-direction,
as we find them here with smax = 20 or smax = 200 in (2.10),(2.11), very similar convergence
factors are observed by Fourier analysis and by the numerical experiments as the ones in
Figure 3.2 and Table 3.1.

The convergence factors increase drastically, however, if we deal with larger values of
hy and substantially fewer grid points in y- than in s-direction. Figure 3.3 shows the two-grid
factors for 32 points in y-direction, hy = 1/32 (hs = 1/256). This case is a limit case for the
convergence of the point smoother; more points in y-direction give satisfactory convergence,
less points worse convergence. Figure 3.3 also shows that the s-line smoother will give worse
convergence in this situation, similar to the point smoother. Domains other than [0, 1]2 will
not improve the convergence here, since the worst factors are now found at the right-hand side
domain boundary. An alternating line Gauss-Seidel smoother, for which ρ(M h

H) is presented
in Figure 3.3c, brings good convergence. These Fourier analysis results are all confirmed by
numerical experiments.

3.3. The Multigrid method for linear complementarity problems. The fundamental
idea of multigrid for nonlinear PDEs of the form

(3.7) Nu = f
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FIG. 3.3. Fourier two-grid factors for a grid with hs = 1/256, hy = 1/32, (a) with point Gauss-Seidel
smoother, (b) with s-line Gauss-Seidel, (c) alt. line Gauss-Seidel.

is the same as that for linear equations. First, the errors of the solution have to be smoothed so
that they can be approximated on a coarser grid. Then, a nonlinear analog of the linear defect
equation is transferred to the coarse grid. In the nonlinear case, the (exact) defect equation on
Ωh is given by

(3.8) Nh

(
um

h + vm
h

)
− Nhum

h = dm
h ,

with um
h the approximation of the solution after relaxation in the mth multigrid cycle, vm

h the
error and dm

h the corresponding defect. This equation is approximated on ΩH by

(3.9) NH

(
um

H + v̂m
H

)
− NHum

H = dm
H ,

where v̂m
H is the coarse grid approximation of the error vm

h . Not only is the defect dm
h trans-

ferred to the coarse grid by some restriction operator IH
h , but also the relaxed approximation

um
h itself by a restriction operator ÎH

h . On the coarse grid ΩH , we deal with the problem
NHwH = fH , where wH = um

H + v̂m
H and where the right-hand side fH is defined by

fH := IH
h (fh − Nhum

h ) + NH ÎH
h um

h .
The coarse grid corrections v̂H are interpolated back to the fine grid, where the fine

grid errors are smoothed again. The generalization from two grids to multigrid is done re-
cursively. If Nh and NH are linear operators, the FAS method is equivalent to the (linear)
multigrid correction scheme. It was shown in [3], that a variant of FAS, the projected full
approximation scheme, PFAS can be used to solve linear complementarity problems of the
form (2.12),(2.13),(2.14). PFAS is based on the projected Gauss-Seidel smoother (3.1),(3.2).
We now explain coarse grid correction parts for the problem (2.12),(2.13), (2.14) in some
more detail.
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3.3.1. The LCP coarse grid correction. Suppose that the error vm
h := uh − um

h is
smooth after relaxation. The following LCP holds for vm

h :

Lhvm
h ≤ dm

h , x ∈ Ω,

vm
h + um

h ≥ f2,h, x ∈ Ω,

(vm
h + um

h − f2,h)(Lhvm
h − dm

h )= 0, x ∈ Ω,

with defect: dm
h = f1,h − Lhum

h . A smooth error vm
h can be approximated on a coarse grid

without any essential loss of information. The LCP coarse grid equation for the coarse grid
approximation of the error v̂m

H is therefore defined in PFAS by:

LH v̂m
H ≤ IH

h dm
h ,

v̂m
H + ÎH

h um
h ≥ f2,H ,

(v̂m
H + ÎH

h um
h − f2,H)(LH v̂m

H − IH
h dm

h )= 0.

Since the problem is nonlinear and we are solving inequalities, we solve for a full approxi-
mation um

H := v̂m
H + IH

h um
h but interpolate only v̂m

H back to the fine grid.
A relevant difference between multigrid methods for equations and inequalities follows

from the requirement that, in the case of a converged solution on a fine grid um
h ≡ uh,

corrections from the coarse grid equation should be zero. Then, we need

Ih
H v̂m

H = Ih
H(um

H − ÎH
h um

h ) = 0,

leading to um
H = ÎH

h um
h (assuming operator IH

h keeps nonzero quantities nonzero). If for a
fine grid LCP with a converged solution we consider the coarse grid correction, it leads to the
following requirements [3] on the restriction operators,

IH
h (f1,h − Lhum

h ) ≥ 0,

ÎH
h um

h ≥ f2,H ,(3.10)

(ÎH
h um

h − f2,H)T IH
h (f1,h − Lhum

h )= 0.

For equations, since f1,h − Lhum
h ≡ 0 in this situation, these requirements are satisfied for

any reasonable choice of IH
h and ÎH

h . For LCPs, we choose for both restriction operators
straight injection in order to satisfy the requirements (3.10). The injection operator is in a
certain sense “constraint preserving”. (These requirements do not, however, prevent us from
using any residual transfer in the interior, away from the free boundary).

The prolongation operator Ih
H , bilinear interpolation, is applied only for unknowns on the

“inactive” points, as this resulted in the best convergence in [3] (for detail, see M6 in section
5 of [3]):

um
h ⇐ um

h + Ih
H v̂m

H if um
h > f2,h,

um
h ⇐ um

h elsewhere (um
h = f2,h).

This combination of restriction and prolongation does not satisfy the well-known rule [21,
19] on the orders of the transfer operators, for example, for PDEs with second derivatives.
Moreover, it is known that problems with Neumann boundary conditions, as they appear for
the option pricing problem in the stochastic volatility setting, converge rapidly with so-called
modified full weighting operators at the boundary [19]. These boundary transfer operators
cannot be used here, because of the requirements (3.10). From these points of view, the
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coarse grid correction part might be not as powerful as it is commonly for multigrid for
elliptic PDEs. Extra investment in smoothing (more iterations, line or ILU smoothers, etc.),
or other approaches for convergence improvement might be necessary for fast and robust
convergence.

The robustness of PFAS is also discussed in [13], where a convergence proof for a PFAS
competitor, the so-called monotone multigrid method is presented. The example on which
this discussion is based is not, however, a decisive example for possible robustness problems
of PFAS for the LCPs as we will show in Section 5.1. Notwithstanding this discussion, we
present an improvement for the robustness of PFAS by using it as a ”preconditioner” for an
acceleration method in Section 4.

4. Acceleration of Multigrid by Iterate Recombination (Multigrid as a Precondi-
tioner). In this section, we discuss multigrid used as a preconditioner for Krylov subspace
methods. From the multigrid point of view, multigrid as a preconditioner can also be in-
terpreted as an acceleration of multigrid by iterate recombination. This interpretation easily
allows generalizations, for example, to nonlinear problems and also to linear complementarity
problems.

Let u0
h be an initial approximation for solving Lhuh = fh and d0

h = fh − Lhu0
h its

defect. The Krylov subspace Km
h is defined by Km

h := span[d0
h, Lhd0

h, . . . , Lm−1
h d0

h]. This
subspace can also be represented by

Km
h = span[u1

h − u0
h, u2

h − u1
h, . . . , um

h − um−1
h ]

= span[u0
h − um

h , u1
h − um

h , . . . , um−1
h − um

h ] ,(4.1)

where the um
h = (Ih − Lh)um−1

h + fh are the iterates from the well-known Richardson’s
iteration. These representations are easily obtained by induction using

u1
h − u0

h = d0
h , ui+1

h − ui
h = (Ih − Lh)(ui

h − ui−1
h ) .

The Krylov subspace approximation

um
h,acc ∈ u0

h + Km
h = u0

h + span[d0
h, Lhd0

h, . . . , Lm−1
h d0

h]

is then characterized by finding approximations um
h,acc for m = 1, 2, . . . with minimal defect

in a suitable norm. The various Krylov subspace methods differ in the way the minimization
is carried out. If we use the || · ||2 norm for minimization, we obtain GMRES [18]. In
the same way as the classical single grid iterative methods can be used as preconditioners,
it is also possible to use a linear multigrid method (algebraic multigrid, for example) as a
preconditioner.

Multigrid acceleration by iterate recombination and multigrid preconditioning lead to
very similar algorithms: We search for an improved solution based on the second representa-
tion of the subspace in (4.1). In order to find an improved approximation um

h,acc, we consider

a linear combination of the m̃ + 1 latest approximations um−i
h , i = 0, · · · , m̃ (assuming

m ≥ m̃),

(4.2) um
h,acc = um

h +

m̃∑

i=1

αi(u
m−i
h − um

h ).

For linear equations, the corresponding defect, dm
h,acc = fh − Lhum

h,acc, is given by

(4.3) dm
h,acc = dm

h +

m̃∑

i=1

αi(d
m−i
h − dm

h ),
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where dm−i
h = fh − Lhum−i

h . In order to obtain an improved approximation um
h,acc, the pa-

rameters αi are determined in such a way that the defect dm
h,acc is minimized, for example

with respect to the l2-norm || · ||2. This is a classical defect minimization problem. Here,
we solve the system of normal equations. The work for solving the minimization problem is
small. In general, for such minimization problems, it may happen that one has to deal with
an extremely ill-conditioned matrix. However, in this setting m̃ can often be chosen small,
for example, 5 or less. Such small matrices are usually still satisfactorily conditioned, so that
the matrix can be solved directly. In the linear case, it is not important whether the accel-
erated unknowns are chosen for u (4.2) or the multigrid iterates. It merely implies different
weights αi in the recombination process. We always use the accelerated iterates. This saves
some storage and it is beneficial in the nonlinear case discussed below. The resulting iter-
ative method is outlined in Figure 4.1, where the current approximation um

h is replaced by

: recombination
: smoothing
: coarsest grid treatment

FIG. 4.1. Recombination of multigrid iterates

um
h,acc. With this approximation replacement, the next multigrid cycle is performed resulting

in a new iterate um+1
h . The recombination (4.2) is again carried out with the latest iterates

um+1−i
h , i = 0, · · · , m̃ and so on.

It is possible to generalize the idea of iterate recombination to nonlinear situations, where
a nonlinear multigrid method, such as FAS is used. In this case, the defect relation (4.3) does
not hold exactly, due to the nonlinearity. um

h is then only substituted by um
h,acc, if the defect

dm
h,acc of um

h,acc is not much larger than the defect dm
h (as described below).

Here, we generalize the defect minimization approach to linear complementarity prob-
lems. This is done very similarly to the generalization to nonlinear PDEs. PFAS will be used
as the underlying multigrid method, whose iterates are recombined. The defect minimiza-
tion for obtaining an improved solution is based on equation (1.3) in the system of linear
complementarity,

dm
h,acc = (um

h,acc − f2,h)(Lum
h,acc − f1,h).

We obtain solutions with an improved defect that satisfy constraint (1.2), as all recombined
iterates do. The points where u = f2 in the linear combination are the ’intersection’ of the
sets of these contact points amongst all the vectors participating in the linear combination
with nonzero coefficients. The linear combination cannot increase the number of contact
points. The convergence of the method to a solution that also satisfies (1.1) is still based on
the convergence of PSOR in [7]. If all the vectors participating in the linear combination
satisfy (1.1) at any particular point, then so does any linear combination (by the linearity of
L).

The resulting method can be interpreted as a projected Gauss-Seidel method, accelerated
in terms of the coarse grid correction by a projected FAS multigrid method and accelerated
further in terms of an outer iteration by a recombination technique.

Due to the nonlinearity, criteria for replacing the PFAS solution um
h by the accelerated

solution um
h,acc are needed. We use the following selection criteria:
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1. The norm of dm
h,acc is not larger than dm

h and the m̃ intermediate defects dm−i
h :

(4.4) ‖dm
h,acc‖2 < min

1≤i≤m̃
(‖dm−i

h ‖2, ‖dm
h ‖2)

2. um
h,acc is not too close to any of the intermediate solutions unless a considerable

decrease of the defect norm is achieved.
Criterion 2 is necessary to prevent stagnation in the convergence. The same criteria are used
for restarting the Krylov subspace, as is presented in [20]. Restarting takes place if the criteria
are not satisfied in two consecutive iterations.

5. Numerical Results. In this section, we present some numerical experiments. We
measure the size of the defect of equation (2.14) in the LCP system. In addition to this defect,
we also checked the difference between the previous and a current solution, as in [3]. Both
measures show a very similar convergence history. Indicated in the Tables 5.3 and 5.4 below
is the average number of cycles per time step to reduce the defect in (2.14) in the infinity
norm by five orders of magnitude,

(5.1)
|dm

h (s, y, t)|∞
|d0

h(s, y, t)|∞
≤ 10−5 .

This quantity is also presented if the recombination is applied (in that case, the defect after
the recombination is given by dm

h ).
As an appetizer, before we consider the option pricing problem, we briefly discuss an

LCP from [13] based on the Laplace operator. In [13], a very poor PFAS convergence was
presented. We will consider this problem with PFAS in more detail also including the recom-
bination technique and show a very satisfactory convergence.

5.1. Linear complementarity model problem based on Laplace operator. In [13],
the following optimization problem modelling elasto-plastic torsion of a cylindrical bar in a
model region Ω = (0, 1) × (0, 1) is considered,

(5.2)

uss + uyy ≤ 2C, x ∈ Ω,
u ≤ d(x, ∂Ω), x ∈ Ω,

(u − d(x, ∂Ω))(uss + uyy − 2C) = 0, x ∈ Ω,
with boundary cond. u = 0, x ∈ ∂Ω,

where the d(x, ∂Ω)-operator measures the distance from a grid point x = (s, y) to the domain
boundary ∂Ω.

With parameter C = 10, the problem (5.2) was considered to be very difficult in [13].
Figure 5.1 presents level curves of the solution (left-hand side figure) and the small region
of “inactive” points, where uss + uyy = 2C is valid (right-hand side picture). This region,
whose size depends on parameter C, represents the plastic region, whereas the active points,
where the second constraint with equality sign is valid, represents the elastic region (see [17]
for details). In [13] the V-cycle PFAS convergence with only one lexicographic projected
Gauss-Seidel smoothing iteration has been presented. This convergence is not satisfactory as
is confirmed by the upper curve at the top of Figure 5.2, where the same multigrid components
as in [13] are used. This result is, however, not a real surprise. Even for linear elliptic PDEs,
a multigrid V-cycle with one smoothing iteration, injection as the restriction operator and a
direct discretization of the PDE on coarse grids must be considered with caution [19]. An
injection-based coarse grid correction must be supplied with more smoothing iterations and
with more coarse grid processing as confirmed in the upper picture in Figure 5.2: An F(2,0)-
cycle with only slightly more work on coarser grids leads to very fast multigrid convergence.
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FIG. 5.1. Level curves and inactive set for C = 10.

These results are computed on a 2562 grid. By only looking at the V(1,0)-cycle convergence,
an incorrect impression of the quality of PFAS might easily lead to unnecessarily considering
other solution methods.

In the lower picture in Figure 5.2, we present the convergence of accelerated multigrid,
where 3 iterates are recombined after each multigrid cycle. A faster and more robust conver-
gence is obtained in this case. Table 5.1 finally presents average reduction factors for different
grid sizes and multigrid cycles. Especially the F-cycles show a very satisfactory convergence,
even without the recombination technique.

TABLE 5.1
Multigrid and accelerated multigrid convergence (m̃ = 3) for the 2D model LCP and various multigrid cycles.

Grid Cycles

V(2,0) V(2,0) + acc. F(2,0) F(2,0) + acc. F(1,1)
1282 0.76 0.27 0.31 0.20 0.33
2562 0.97 0.31 0.37 0.21 0.35
5122 0.99 0.33 0.41 0.25 0.38

5.2. An American-style option. With the components introduced in Section 3, we now
solve an LCP problem from American-style options with stochastic volatility. The PFAS
multigrid method is based on the F(2,2)-cycle with pointwise lexicographic Gauss-Seidel
smoothing.

The parameter set considered is again

(5.3) α = 5, β = 0.16, γ = 0.9, ρ = 0.1, λ = 0, r = 0.1

and exercise price E = 10. The expiration date is set to T = 0.25. For this set of parameters
reference solutions for the American put option prices are presented in [5] and [25]. First,
we discuss the accuracy of the discretization by comparing our numerical results on different
grid sizes with the reference results.

A truncated domain Ω = [0, smax] × [0, ymax] is used with smax = 20 and ymax = 1. The
grids consist of 256 cells in the s-direction; in the y-direction four sizes are considered with
32, 64, 128 and 256 cells. Table 5.2 compares the solution uh obtained at y = 0.0625 and
y = 0.25 respectively with the solutions in [5] and [25]. The results agree very well, espe-
cially with those in [25], in which the difference to the other reference result was discussed.
This difference might be due to the stretched grid considered in [5] or due to the interpola-
tion technique and the first order accurate discretization employed there in some parts of the
domain.
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FIG. 5.2. Multigrid convergence with different cycles (upper picture) and convergence of multigrid with accel-
eration (lower picture), 3 recombined iterates, 2562-grid.

Figure 5.3 presents the moving free boundary for this problem in pictures for the t values
0, 0.05, 0.1, 0.15, 0.2. On the left-hand side of this free boundary, the active points are found,
i.e., the constraint (2.13) with equality sign is valid.

Table 5.3 presents the average number of multigrid iterations necessary to reduce the ini-
tial defect each time step by 5 orders of magnitude on the different grid sizes. In the left-hand
side part of the table, the multigrid convergence without the recombination is presented. It
can be seen that for problem (2.7) with parameter set (5.3) fewer grid points in the y-direction
lead to worse multigrid convergence as discussed in the Fourier analysis section. The overre-
laxation parameter helps in this case (see the 256 × 32 results) to improve the convergence:
instead of 46.5 iterations per time step, 27.6 are needed with ω = 1.4. The right-hand side
part of Table 5.3 shows the results with the same multigrid algorithm accelerated by a recom-
bination of the 3 previous iterates. A much better convergence is obtained now, especially in
the case with only 32 grid points in the y-direction, whereas the convergence improvement
on the 256 × 256 grid is not impressive. This confirms the general impression that (almost)
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(t = 0.00)
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(all t )

FIG. 5.3. The moving free boundary for the American put option.

optimal multigrid methods are difficult to improve by Krylov subspace acceleration, whereas
in cases in which one of the multigrid components (here it is the smoother) is not optimal, the
acceleration by the recombination technique can give a more robust and faster convergence. It
is also shown that the combination of the best overrelaxation in the left-hand side of Table 5.3
with the recombination technique does not result in the best algorithm in the right-hand side.
This has also been observed in [22], where a multigrid method with pointwise relaxation used
as a preconditioner is analyzed by Fourier analysis for model anisotropic equations. The best
choice here seems to be an overrelaxation parameter of 1.1 combined with the recombination
technique.
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TABLE 5.2
American put option values with stochastic volatility for y = 0.0625 and y = 0.25 compared with reference

values on different grid sizes at t = 0, E = 10.

y = 0.0625 Asset price

Grid 8 9 10 11 12
256× 32 2.00 1.104 0.494 0.198 0.0769
256× 64 2.00 1.106 0.508 0.206 0.0793
256× 128 2.00 1.107 0.515 0.210 0.0804
256× 256 2.00 1.107 0.518 0.212 0.0809
256× 256 (smaller time step) 2.00 1.107 0.517 0.212 0.0815
ref [25] 2.00 1.108 0.520 0.214 0.0821
ref [5] 2.00 1.108 0.532 0.226 0.0907

y = 0.25 Asset price

Grid 8 9 10 11 12
256× 32 2.079 1.334 0.796 0.449 0.242
256× 64 2.079 1.335 0.797 0.449 0.243
256× 128 2.079 1.335 0.797 0.449 0.243
256× 256 2.079 1.335 0.797 0.449 0.243
256× 256 (smaller time step) 2.079 1.334 0.796 0.449 0.243
ref [25] 2.078 1.334 0.796 0.448 0.243
ref [5] 2.073 1.329 0.799 0.454 0.250

TABLE 5.3
Average number of cycles needed for 5 orders of defect reduction over 20 time steps on different stretched meshes.

Grid F(2,2)-cycle F(2,2)- with recombination

ω = 1 ω = 1.1 ω = 1.2 ω = 1.4 ω = 1 ω = 1.1 ω = 1.2 ω = 1.4
2562 5.3 5.1 6.0 8.0 5.0 5.0 5.6 7.5
256× 128 5.9 6.6 6.6 8.1 5.4 5.4 5.5 6.6
256× 64 16.7 15.5 14.5 11.9 7.6 7.8 7.7 8.3
256× 32 46.5 41.5 36.7 27.6 12.2 11.5 11.8 14.0
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Finally, Table 5.4 presents the accelerated multigrid convergence with m̃ = 3 for the
parameter set (5.3) with E = 100 and, therefore, with a 10 times larger domain, smax = 200.
As expected from the Fourier analysis, the convergence results are very similar to the results
in Table 5.3.

TABLE 5.4
Average number of cycles needed for 5 orders of defect reduction over 20 time steps on different stretched meshes.

Method Grid
2562 256× 128 256× 64 256× 32

F(2,2)- with recomb., m̃ = 3, ω = 1.1 5.3 5.9 9.4 15.1

Remark: The method described here also works well for the call option with dividend
payment. Although the free boundary is in a completely different part of the computational
domain then, for the call option the solution is simply zero in the problematic part. It is, of
course, still beneficial for the convergence to cut off the domain near s = 0 as it was shown
in Table 3.1.

6. Conclusions. In this paper we have presented a multigrid solution method for lin-
ear complementarity problems. The method is based on the projected full approximation
scheme. It is combined with a recombination of iterates convergence acceleration technique.
By providing much detail about the different parts of the solution method, we hope to give
insight into its expected convergence. The smoother and the other components in the multi-
grid method have been analyzed by means of Fourier analysis for the main discrete operator
appearing in the LCP. The Gauss-Seidel lexicographic point smoother was chosen here.

With the acceleration technique, fast convergence is obtained for an option pricing prob-
lem on grids with different grid sizes. The error of the discretization is determined by com-
parison with reference solutions.

The smoother proposed in [6] consisting of a point SOR method for the free boundary
detection followed by a modified line Gauss-Seidel smoother for stretched grids for first order
upwind and central discretizations of convective terms used. The Fourier analysis results in
Figure 3.3 showed, however, that only the multigrid method based on an alternating line
smoother was robust. With such a more involved smoother, a recombination technique is not
necessary for fast convergence.

Although we only considered one parameter set (3.6) in this paper, we used the Fourier
analysis (not shown here) to investigate the parameter range for which the conclusions remain
valid. The sensitivity with respect to variations of the (important) parameter r is, for example
in its relevant range, not at all significant. The same is true for the other parameters.

By retaining a point smoother for this 2D problem, we constructed a fast and cheap
solver, that can serve as a basis for treating other, higher dimensional, problems in the option
pricing context.
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