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Abstract

This thesis applies the Fourier transform method to evaluate Bermudan and Amer-

ican options, based on Heston’s stochastic volatility model. Because accuracy relies

heavily on the step size of the grid where the Fourier transform method computes the

option prices, a finer grid seems necessary to give sastisfactory results. However, this

may be expensive since more grid points are involved. A new extrapolation scheme

is applied to facililate the approximation with the results obtained with the Fourier

transform method in the coarse grid. This extrapolation scheme is compared with

the Gaussian quadrature scheme in performance. It shows a significant gain in the

computational time and results in enough accuracy as well. Options with various

parameters and in the single and multi-asset case are evaluated with this extrapo-

lation scheme. Besides the Fourier transform method, the multigrid technique and

the Green function method are applied as alternative ways to evaluate options in

Heston’s model.
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Chapter 1

Introduction

1.1 Basic Concepts

An option is a financial instrument that gives one the right to make a specified

transaction at (or by) a specified date at a specified price. In this definition, people

who buy the options are called the buyers or holders of the options and those who

issue the options, the writers or sellers. The asset on which the transaction may take

place is known as the underlying. The prescribed date is called the maturity time

or expiry. And the price at which the buyers may purchase or sell the underlying is

called the exercise price or strike price.

The history of options dates back hundreds of years ago. Wim Schoutens [7] men-

tioned the stories of Thales in Greece who used the ancient type of options to secure

a low price for olives in advance of the harvest. In The Netherlands, trading in tulip

derivatives blossomed during the early 1600s. In 1973, the Chicago Board Options

Exchange (CBOE) started trading in call options on some stocks. Trading in put

options began later in 1977. Nowadays the option market has grown to be so huge,

as shown by John C. Hull [3], that the size of the OTC1 market has reached $220.1

trillion by June 2004.

1OTC: over-the-counter

1
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Usually options have two primary usages, speculation and hedging. Speculative in-

vestors trade the options to make profit according to their judgments on the trends

of the asset prices. For example, such an investor will choose to buy a call option

if he thinks the underlying price is going to increase in the following months. If his

forecast is correct, he makes money, otherwise he loses money. By contrast to buying

the stock share, options can be a cheap way for investment when the stock price is

much higher than the cost of the option. Hedging happens when investors want to

minimize the risk that they may be subjected to because of the unpredictable events

in the financial market, i.e. due to the random walk of the underlying price. In the

market, asset holders can choose to buy put options if they think that the asset

price is going to fall. If they are correct, the profit they make from the options will

reduce the loss due to holding the asset. Therefore this hedging strategy becomes

an insurance against the adverse movements in the underlying.

In the financial market, options are classified into different categories according to

the elementary concepts which make up those options. If the option gives the buyer

the right to buy the underlying, it is a call option. By contrast, it is a put option

if the buyer has the right to sell the underlying at (or by) the expiry. American

options enable the buyers to exercise them before the expiry, and European op-

tions can only be exercised at the expiry. Call and put options are known as the

plain vanilla options because they are basic. There are also some other complicated

types of options. Asian options’ strike prices are prescribed as some form of the

average of the underlying prices over a period. Lookback options depend on the

maximum or minimum price. Barrier options can either come into existence or be-

come worthless if the underlying asset reaches some prescribed value before expiry.

Such complicated options as Asian, lookback and barrier options are usually called

exotic options.

Because they offers their buyers some privileges, options have some value. An op-

tion’s value should be equal to its price when traded in the market, otherwise the
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arbitrage opportunity will appear. A correct mathematical valuation of the option

value is thus one of the targets in the research on options. Roughly speaking, an

option’s value is influenced by many factors. For example, a European call option

will have a positive value if the underlying asset’s price is higher than the strike

price, otherwise it may be profitless. Time to expiry plays also a role. An option

with an expiry of 6 months has more value than one which will expire tomorrow,

because the underlying price may have more potential to change over a longer pe-

riod. There are also many other factors, such as the option’s type, the bank interest

rate, dividends and so on, which may influence an option’s value. The relationship

between those factors and the option value is described differently in various models.

In the theory of option pricing, there are some assumptions for modelling. There

is no market friction, no default risk and no arbitrage. This means: no transaction

costs, no bid/ask spread, perfect liquid markets, no taxes, no margin requirements,

no restrictions on short2 sales, no transaction delays, market participants act as price

takers, market participants prefer more to less. The bank interest rate is assumed

to be fixed in short-term and does not change. The basic theory says, if the interest

rate is r and an amount of money B is deposited at time 0, its value will be Bert

at time t > 0. Equivalently, if we borrow Be−rt currency units, we will have to pay

back B currency units at time t later.

Many assets, such as equities, pay out dividends. The dividends can be seen as the

payments to the share holders out of the profits made by the company. The likely

dividend stream of a company in the future is reflected by its current share price.

When pricing options, we should count the effect of dividends.

This thesis is focused on 2 different problems in quantitative finance. The first one

is how to apply the extrapolation scheme when computing option prices with the

Fourier transform method based on Heston’s stochastic volatility model. The second

2Short position: selling assets that one does not own. Its opposite is a long position.
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problem is to explore the alternative numerical methods to compute option prices.

Chapter 2 introduces the mathematical models and methods frequently applied in

option pricing. In chapter 3, the Fourier transform method and the extrapolation

scheme are applied to evaluate options. In chapter 4, the implementation details

and the data results are presented.

1.2 Notations and Remarks

Before moving on to the following sections, we introduce the notation used in this

report. The option value is denoted by V . To make the distinction between call and

put options’ values, C and P are used. To show that the option value is a function

of the current value of the underlying asset price S and time, t, V is sometimes

denoted as V (S, t). The option value depends on the following parameters:

• σ, the volatility of the underlying asset;

• K, the exercise price;

• T , the expiry date;

• r, the interest rate;

• D, the dividend.



Chapter 2

Mathematical Models

2.1 Basics

2.1.1 Random Walk of Asset Prices

In the research on option pricing, the dynamics of the asset price is usually rep-

resented by its relative change, dS/S, called return. The most common model,

geometric Brownian motion model (GBM), says that the return of the asset price is

made up of two parts as [7]
dS

S
= µdt + σdX, (2.1)

where µ, known as the drift, marks the average rate of growth, and σ is called

volatility that keeps the information of the standard deviation of the return. The first

part µdt reflects a predictable, deterministic and anticipated return which is similar

to the return of the investment in banks. The second part σdX simulates the random

change in the asset price in response to external effects, such as uncertain events.

The quantity dX contains the information of the randomness of the asset price and

is known as Wiener process or Brownian motion. It is a random variable which

follows a normal distribution, with mean zero and variance dt. This means that dX

can be written as dX = φ
√

dt. Here φ is a random variable with a standardized

normal distribution. Its probability density function is given by

f(φ) =
1√
2π

e−
1
2
φ2

dφ,

5
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for −∞ < φ < ∞. With the definition of expectation operator E by

E [F (.)] =
1√
2π

∫ ∞

−∞
F (φ)e−

1
2
φ2

dφ,

for any function F , we have

E [φ] = 0, E [φ2] = 1.

2.1.2 Arbitrage and Martingales

In the theory of option pricing, one fundamental and essential concept is arbitrage.

Formally speaking, it states that there is never any opportunity to make an in-

stantaneous risk-free profit. More correctly, such opportunities cannot exit for a

significant length of time before prices move to eliminate them. Almost all financial

theories assume the existence of risk-free investments that give a guaranteed return

with no chance of default, e.g. a government bond or a deposit in a sound bank. The

greatest risk-free return that one can make on a portfolio of assets is the same as

the return if the equivalent amount of cash were placed in a bank. In the definition

of arbitrage, the key words are ”instantaneous” and ”risk-free”. This means, by

investing in equities, one can probably beat the bank, but this cannot be certain. If

one wants a greater return, one must accept a greater risk. This is explained clearly

in [6]. In the binomial model, if r is the spot rate and the stock price process can

be represented as






S0 = s,

S1 = s · Z,

where Z is a stochastic variable defined as






Z = u, with probability pu,

Z = d, with probability pd,

where u > d and pu + pd = 1, then ”free of arbitrage” results in

d ≤ (1 + r) ≤ u.

The arbitrage theory leads to the definition of the risk-neutral measure, or martin-

gale measure: a probability measure Q is called martingale if the following condition
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holds

S0 =
1

1 + r
EQ[S1].

The risk-neutral measure is the basis of the valuation in this thesis.

2.1.3 Payoff Function

The value of an option at its expiry is usually called the payoff function. For a

European call option with a strike price K, the payoff is [7]

C(ST , T ) =







ST − K if ST > K,

0 otherwise.

This can also be written more concisely as max(ST − K, 0), or (ST − K)+. In the

case of ST > K, the option is called ”in the money”. It is said to be ”out of the

money” if ST < K. If ST = K, it is ”at the money”. Similarly, the payoff function

is (K − ST )+ for a European put option. American options will be covered in the

following sections.

2.1.4 Itô’s lemma

In practice, stock prices are discrete values at discrete time points. Changes can

be observed only when the exchange is open. Nevertheless, the continuous-variable,

continuous-time processes prove to be useful models for many purposes. To value

an option, it is necessary to set up the mathematical models in the continuous time

limit dt → 0. And it is more efficient to solve the resulting differential equations,

rather than to simulate the random walk on a practical time scale. Therefore, it

is needed to handle the dX term in equation (2.1) as dt → 0. In [7], Itô’s lemma

provides such a kind of machinery as

df = σS
∂f

∂S
dX + (µS

∂f

∂S
+

1

2
σ2S2 ∂2f

∂S2
+

∂f

∂t
)dt. (2.2)

Detailed derivation refers to Appendix (A.1). Because logarithmic asset prices are

widely used, the differentiation of f(S) = log (S) gives

df

dS
=

1

S
and

d2f

dS2
= − 1

S2
,
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and it leads to

df = σdX + (µ − 1

2
σ2)dt. (2.3)

This is a constant coefficient stochastic differential equation, which says that the

difference df is normally distributed. Consider f itself: it is the sum of the jumps df

(in the limit, the sum becomes to be an integral). Since a sum of normal variables

is also normal, f − f0 has a normal distribution with mean (µ− 1
2
σ2)t and variance

σ2t, where t is the time elapsed between f and f0, and f0 = log (S0) is the initial

value of f . The probability density function of f(S) is known as

1

σ
√

2πt
e−(f−f0−(µ− 1

2
σ2)t)2/2σ2t (2.4)

for −∞ < f < ∞. Thereafter, it is not difficult to know that the probability density

function of S is
1

σS
√

2πt
e−(log (S/S0)−(µ− 1

2
σ2)t)2/2σ2t (2.5)

for 0 < S < ∞.

2.2 The Black-Scholes Model

The most famous model in option pricing is the Black-Scholes model. It is based on

the GBM (geometric Brownian motion) model of asset prices: dS/S = µdt + σdX

where µ and σ are fixed values during the lifetime of the option. According to Itô’s

lemma and the arbitrage theory, a partial differential equation can be obtained by

means of setting a portfolio and eliminating the random items by hedging. The

result of the derivation is the Black-Scholes equation:

∂V

∂t
+

1

2
σ2S2∂2V

∂S2
− rS

∂V

∂S
− rV = 0. (2.6)

If the logarithmic price is used as x(t) = logS and t = T − t∗, the equation will

change to be
∂V

∂t
+

1

2
σ2∂2V

∂x2
− (r − 1

2
σ2)

∂V

∂x
− rV = 0. (2.7)

Detailed derivation refers to Appendix (A.2). With its extensions and variants, it

plays a major role in option pricing problems. Usually the boundary conditions of
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the Black-Scholes equation are defined as

V (S, t) = Va(t) on S = a,

and

V (S, t) = Vb(t) on S = b.

Because the equation (2.7) is of the backward type, there is a final condition

V (S, t) = VT (S) on t = T

where VT is a known function, usually the payoff function.

Explicit solutions to the Black-Scholes equation are available for European call and

put options. For a European call option, the explicit solution is

C(S, t) = SN(d1) − Ke−r(T−t)N(d2), (2.8)

where N(·) is the cumulative distribution function for a standardized normal random

variable, given by

N(x) =
1√
2π

∫ x

−∞
e−

1
2
y2

dy,

and for d1 and d2, it says

d1 =
log ( S

K
) + (r + 1

2
σ2)(T − t)

σ
√

T − t
,

and

d2 =
log ( S

K
) + (r − 1

2
σ2)(T − t)

σ
√

T − t
.

For a put, the solution is

P (S, t) = Ke−r(T−t)N(−d2) − SN(−d1). (2.9)

Figures (2.1) and (2.2) shows the explicit solutions. Since N(d1) and N(d2) can

be interpreted as the ”adjusted” probabilities, these explicit solutions also prove

Feynman-Kač’s proposition mentioned in [6] and reveal the simple phenomenon

that the European option value at time t is just equal to the discounted expectation

of the option value at expiry T :

V (t) = e−r(T−t)E
Q
t [V (T )], (2.10)

where Q denotes the risk-neutral measure.



2.3. American Options 10

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

Figure 2.1: European Call and Payoff Diagram
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Figure 2.2: European Put and Payoff Diagram

2.3 American Options

American options differ from their European counterparts because of the possibility

of early exercise. This difference makes it more difficult to model and solve the

option pricing problems related to them.

Take an European put for example, if S lies in the range where S is much smaller

than the exercise price and P (S, t) < (K − S)+, there is an obvious arbitrage

opportunity in the American case: one can buy the asset in the market at price of

S and the put option of P , one can get the immediate riskless profit if one exercises

the option by selling for K, because here is K − P − S > 0. So the conclusion is,
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when the early exercise is permitted, the following constraint must be imposed

V (S, t) ≥ (K − S)+.

In the examples mentioned above, there exist some values of S for which it is opti-

mal from the holder’s point of view to exercise the American option. Typically at

each time t there is a particular value of S which marks the boundary between two

regions: to one side one should hold the option, and to the other side one should

exercise it. Therefore the option pricing problem in the American case is one kind of

free boundary problem, and the boundary value, which generally varies with time,

is referred to as optimal exercise price, denoted by Sf (t). In the free boundary

problem, it is unknown where is the free boundary or where to apply the boundary

conditions in advance.

The simple arbitrage argument used for the European option no longer leads to a

unique value for the return on the portfolio, only to an inequality. In summary,

an American put option is written as a free boundary problem [7] as follows. For

each time t, the S axis must be divided into two distinct regions. The first one is

0 ≤ S < Sf (t), where early exercise is optimal and

P = K − S,
∂P

∂t
+

1

2
σ2S2∂2P

∂S2
+ rS

∂P

∂S
− rP < 0. (2.11)

In the other region, Sf (t) < S < ∞, early exercise is not optimal and

P > K − S,
∂P

∂t
+

1

2
σ2S2∂2P

∂S2
+ rS

∂P

∂S
− rP = 0. (2.12)

The boundary conditions at S = Sf (t) are: P and its slope (delta) should be

continuous:

P (Sf (t), t) = (K − Sf (t), 0)+,
∂P

∂S
(Sf (t), t) = −1. (2.13)

The mathematical analysis of American options is more complicated than that of

European options. And it is impossible to find an exact solution to a given free

boundary problem to analytically decide the value of an American option. There-

fore the primary objective is to solve the problem with efficient and robust numerical
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methods or other powerful methods. This needs a theoretical framework where the

free boundary problem may be treated in fairly general terms. The linear com-

plementary problem is one of such frameworks with the advantage that the free

boundary need not to be treated explicitly. In this thesis, American options are

evaluated by a Fourier transform method.

2.4 Alternative Asset Price Models: Stochastic

Volatility and Jumps

Based on the Black-Scholes model, explicit analytical solutions are available in [7]

when we evaluate European call or put options. For American options, numerical

methods have been developed for decades to solve the equation. These solutions

actually match the real data very well. However, some important properties of

the market have been ignored by the Black-Scholes model. The first flaw is in the

assumption of the normal distribution adopted in the random walk of the underlying

price. In equation (2.1), the underlying price is supposed to follow mainly within the

6-sigma range centered by µdt according to the statistical theory about the normal

distribution. And it says that the underlying prices outside the 6-sigma range are

of very small probabilities, say, ”impossible”. However, the real data in the market

shows that this is not true. Stock prices, for example, are more widely dispersed than

expected. In statistical terms this is known as ”fat tails”. Secondly, the volatility

in equation (2.1) is set to be invariant with respect to time and asset space, but

observation shows that this is actually not the case at all. For equity and foreign

exchange, the implied volatilities display a strong dependence with respect to the

exercise price as well. Thirdly, the Black-Scholes model is built up on the basis of

a continuous theory. However, discontinuities in the financial market show up very

frequently, which means that the continuous model does not fit the market very

well. In a word, in GBM, whereas in the financial market, the asset price process

has fat tails, skewness, discontinuities and is typically non-symmetrical. Therefore

alternative models, such as stochastic volatility models and jump diffusion models,
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have been built up to import on the flaws mentioned above.

2.4.1 Heston’s Model

Heston’s model [9] allows the volatility to be stochastic. It is assumed that the

volatility also follows a stochastic process, which is described by a stochastic differ-

ential equation:

dx(t) = (µ − 1

2
v(t))dt +

√

v(t)dW1(t),

dv(t) = −λ(v(t) − v̄)dt + η
√

v(t)dW2(t). (2.14)

Here x(t) is the logarithm of the underlying price, v(t) is the volatility, λ is the speed

of mean reversion, v̄ is the mean level of variance and η is the volatility of volatility.

The Wiener processes W1(t) and W2(t) correlate with the correlation coefficient ρ.

The highlight of the Heston’s model is the variable volatility of the underlying price.

Therefore it is possible to simulate the real case more accurately.

Similar to the derivation that leads to the Black-Scholes equation, i.e. applying Itô’s

lemma and the arbitrage theory leads to the Heston’s equation,

∂V

∂τ
=

1

2
v
∂2V

∂x2
+ρηv

∂2V

∂x∂v
+

1

2
vη2∂2V

∂v2
+(r− 1

2
v)

∂V

∂x
−(λ(v−v̄)−θv)

∂V

∂v
−rV, (2.15)

where θ is known as the market price of risk. With respect to volatility and asset

space, Heston’s model is a two dimensional model.

2.4.2 Models with Jump Processes

Jump processes are included to model the discontinuities in the underlying dynamics.

When a jump term is added to the GBM dynamics of the logarithmic stock price,

we have

dx(t) = (µ(t, x(t)) − 1

2
σ2(t, x(t)))dt + σ(t, x(t))dW (t) + φN(t)dN(t),

x(t0) = x0,

where x(t) = log S(t), φN(t) = log JN(t), JN(t) is the jump size and N(t) is a Poisson

process. This leads to the pricing equation as

(
∂V

∂t
− (r + λ)V + (µ − 1

2
σ2)

∂V

∂x
) +

1

2
σ2∂2V

∂x2
+ λEφN(t)

[V (t, x(t) + φN(t))] = 0,
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which is the partial integro-differential equation for option price V.

In Merton’s model [14], the jump sizes are assumed to be independent of each other

and log-normally distributed. The probability density function of the jump size

reads

f(J) =
e
− log (J)2−µJ

2σ2
J

√
2πσJ

.

This results in the PIDE of the related option’s value:

∂V

∂t
+ (r − κλ)S

∂V

∂S
+

1

2
σ2S2∂2V

∂S2
− (r + λ)V + λ

∫ ∞

0

f(J)V (t, JS(t))dJ = 0,

where σ, λ, µJ and σJ can be fit to the market and κ = E[J − 1] If λ = 0, then the

Black-Scholes equation will be obtained.

Kou’s model [15] is similar to Merton’s model, but the difference is that the choice

for the distribution of the jump sizes is a non-symmetrically double exponentially

distribution. Thus the probability density function of the jump size reads

f(φ) = pα1e
α1φI{φ≥0} + qα2e

α2φI{φ<0}, α1 > 1, α2 > 0,

where p, q are positive real numbers and p + q = 1. α1 and α2 are parameters that

can be fitted to the market. This distribution can be seen as a weighted average

between an exponential distribution on the positive real line and a mirrored expo-

nential distribution on the negative part. The pricing equation is the same as that

in Merton’s model, except for the density function of the jump size density.

Another model for modeling asset prices is the so-called Bates model [10]. It takes

jumps into account and uses a Poisson process to model the jumps,

dx(t) = (µ − 1

2
v(t))dt +

√

v(t)dW1(t) + jN(t)dN(t),

dv(t) = −λ(v(t) − v̄)dt + η
√

v(t)dW2(t),

where N(t) is a Poisson process with intensity ξ, and jN(t) is the jump size with the

normal distribution, jN(t) ∼ N(µj, σ
2
j ). The Poisson process N(t) is independent of
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the Brownian motions and the jump distribution. With the jump consideration, the

underlying price can be simulated better.



Chapter 3

The Numerical Valuation Methods

European call and put options under GBM have the explicit known solutions from

the Black-Scholes equation. But for other options, we usually have to solve the

pricing equations differently. When we have the pricing equations which are partial

integro-differential equations, numerical methods are available to approximate the

solutions. The directions time, stock price and even volatility can be discretized on

a grid. Differentials in the pricing equations will be substituted by finite differences.

Integrals can be replaced by their numerical approximations. By doing this, the

relationship between the approximation values at grids will be built up in the form

of a linear system of equations (LSE). Efficient algorithms like iteration schemes and

the multigrid technique can solve the LSE quickly to get the numerical solutions.

The binomial method, on the other hand, assumes that the asset price changes only

at discrete times and its value is also discrete. The asset price at a next step takes

only the two neighbor values which are closest to the value at the current step, with

known probabilities into account. This method works in the risk-neutral world,

which means that the return from the underlying is the risk-free interest rate. It

firstly builds a tree of possible values of asset prices and their probabilities, given

an initial asset price, then uses this tree to determine the possible asset prices at

expiry and the probabilities of these asset prices being realized. The possible values

of the security at expiry can then be calculated, and by working back down the tree,

the option can be valued. One useful consequence is that we can quite easily deal

16
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with the possibility of early exercise such as in American options and options with

dividends.

Monte Carlo simulation is also applicable to option pricing problems. It simulates

many paths of the underlying’s random walk. Then a payoff can be obtained from

each simulation. The price of the option is the discounted average of the simulated

payoffs. Obviously this can be very time-consuming. However this method is appli-

cable to many derivative pricing problems, such as path-dependent and multi-asset

options, which is the main advantage of this method.

3.1 The Characteristic Function

Here we start with the description of a very efficient pricing technique which will re-

sult in the so-called CONV (convolution-based) method [8]. According to Feynman-

Kač’s proposition [6], the solution of the Black-Scholes equation (2.7) has a solution

of the form

V (t, S) = e−r(T−t)E
Q
t [V (T, S)], (3.1)

where T is the maturity time and Q is the risk-neutral measure. This equation can

be written as an integral:

V (x, T ) = e−r(T−t)

∫ ∞

−∞
g(xT )f(xT |x)dxT , (3.2)

where x is the logarithmic asset price, g(xT ) = (φ(exT −K))+, is the payoff function

(φ = 1 (call) or φ = −1 (put)) at maturity and f(xT |x) is the transition probability

density of reaching x(T ) from x(t).

The transition probability density function is usually difficult to be found analyt-

ically, whereas its Fourier transform, called the characteristic function, is compar-

atively easy to be obtained, by means of the moment generating function. The

characteristic function reads

f̂ =

∫ ∞

−∞
eiws · f(s)ds. (3.3)
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Therefore it is convenient to switch the computation to the frequency domain with

the help of the characteristic function to solve the option pricing problems.

The characteristic function of the logarithmic asset price in Black-Scholes model [7]

is

φ(w) = eiwµ̄− 1
2
σ̄2w2

, (3.4)

where µ̄ = (r − 1
2
σ2)△t and σ̄ = σ

√
△t.

Because the volatility is stochastic in Heston’s model, the option price is not only

conditional on the initial asset price, but also conditional on the initial volatility.

Therefore equation (3.2) should be changed:

V (x, v, T ) = e−r(T−t)

∫ ∞

−∞
g(xT )f(xT |x, v)dxT .

For Heston’s model (2.14), the characteristic function of the transition probability

density of the logarithmic asset price f(xT |x0, v0) [9] reads

φT (w) = e
iwrT+

v0
η2

(

1−e−DT

1−Ge−DT

)

(λ−ρηiw−D)+ λv̄

η2

(

T (λ−ρηiw−D)−2 log ( 1−Ge−DT

1−G
)
)

, (3.5)

where

D =
√

(λ − ρηiw)2 + (w2 + iw)η2,

G =
λ − ρηiw − D

λ − ρηiw + D
,

here v0 and vT are the volatility at initial time and maturity, respectively.

The characteristic function in Bates model [10] is

φT (w) = e
iw(r−κξ)T+

v0
η2

(

1−e−DT

1−Ge−DT

)

(λ−ρηiw−D)+ λv̄

η2

(

T (λ−ρηiw−D)−2 log ( 1−Ge−DT

1−G
)
)

× eξT
(

e
iwµj−

1
2 σ2

j w2
−1

)

, (3.6)

where κ = E[ejN(t) − 1].
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3.2 The Fourier Transform Method

Equation (3.2) shows a general form of a representation of option prices. Once we

know the characteristic function, we can transform the computation from the asset

price domain to the frequency domain. The reason why we do this way is that char-

acteristic functions are easier to be obtained than the density functions themselves.

Bermudan options allow the buyers to exercise the options at some prescribed times

before the expiry. The price of a Bermudan option can be computed as follows.

The transform method is applied between every two neighbor exercisable times,

backward from the expiry to the initial time. After the option price is obtained

at each exercisable time, it is compared with the payoff. The maximum values are

selected as the new final condition to start the transform in the next time interval

backward. Because an American option enables the buyers to exercise the option

any time during its lifetime, it is regarded as the limit of a Bermudan option when

the number of exercise dates goes to infinity. This is one way to approximate an

American option if we set the number of Bermudan option exercise times big enough.

Another way to compute American options is to apply the extrapolation technique.

3.2.1 Valuation Under The Black-Scholes Model

For the one dimensional exponential Levy model, we have f(xT |x) = f(z) with

z = xT − x. As a result, we have

V (x, T ) = e−r(T−t)

∫ ∞

−∞
g(T, xT )f(xT − x)dxT .

Taking z = xT − x leads to

V (x, T ) = e−r(T−t)

∫ ∞

−∞
g(T, z + x)f(z)dz.
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Then we apply Fourier transform on V (t, x), with the damping factor eαx to ensure

the existence of the Fourier transform,

e−r(T−t)F{eαxV (t, x)}

= e−r(T−t)

∫ ∞

−∞
eıωxeαxV (t, x)dx

=

∫ ∞

−∞
eıωx

[ ∫ ∞

−∞
eαxg(t, x + z)f(z)dz

]

dx

=

∫ ∞

−∞
eıωx+αx

∫ ∞

−∞
g(t, x + z)f(z)dzdx

=

∫ ∞

−∞

[ ∫ ∞

−∞
eı(ω−iα)xg(t, x + z)dx

]

f(z)dz

=

∫ ∞

−∞

[ ∫ ∞

−∞
eı(ω−iα)(y−z)g(t, y)dy

]

f(z)dz

=

∫ ∞

−∞
eı(ω−iα)yg(t, y)dy

∫ ∞

−∞
eı(−ω+iα)zf(z)dz

= ĝ(w − iα)f̂(−(w − iα)).

This gives

e−r(T−t)V̂ (w − iα) = ĝ(w − iα)f̂(−(w − iα)), (3.7)

where α is the damping factor, f̂(·) is the characteristic function, V̂ (·) is the Fourier

transform of V (xT ) and ĝ(·) is the Fourier transform of the payoff function. With

the transformation, we can compute the right hand side of equation (3.7) and then

get the option’s value by performing the inverse Fourier transform.

3.2.2 Valuation Under Heston’s Model

Heston’s model is a two dimensional model with the logarithmic asset price and the

volatility directions. Based on Heston’s model, the valuation of European options

can be calculated [17] by the following equation

V (x0, v0, t) = e−r(T−t)

∫ ∞

−∞
g(xT )f(xT |x0, vT |v0)dxT , (3.8)

where x0 and v0 represent the logarithmic asset price and the volatility at the start

time, and xT is the logarithmic asset price at maturity.
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For Bermudan options, the payoff function at each exercise time depends on the

volatility at that time [17]. That is, the expectation of the payoff function gives

Et0 [g(xT , vT )] =

∫ ∞

−∞

∫ ∞

−∞
g(xT , vT )p(x0 → xT , v0 → vT )dxT dvT , (3.9)

where p(x0 → xT , v0 → vT ) is the transition probability density from x0 and v0,

the logarithmic asset price and the volatility at the initial time, to xT and vT , their

counterparts at the maturity time.

In [17], it states that the transition probability density in equation (3.9) depends on

the logarithmic asset price and the volatility at maturity, given the initial volatility:

p(x0 → xT , v0 → vT ) = p(zx, vT |v0), (3.10)

where zx = xT − x0. Then the expectation of the payoff function g(xT , vT ) gives

Et0 [g(xT , vT )] =

∫ ∞

−∞

∫ ∞

−∞
g(xT , vT )p(zx, vT |v0)dzxdvT , (3.11)

which equals

Et0 [g(xT , vT )] =

∫ ∞

−∞

∫ ∞

−∞
g(xT , vT )p(zx|vT , v0)pv(vT |v0)dzxdvT . (3.12)

Here pv(vT |v0) is the transition density of the volatility, which has the analytical

form given by Feller (1951):

pv(vT |v0) = ce−b−x
(x

b

)
(a−1)

2 Ia−1

(

2
√

bx
)

, (3.13)

with c = 2λ/((1 − e−λT η2)), b = cv0e
−λT , x = cvT and a = 2λv̄/η2, and Ia(x) being

the modified Bessel function of the first kind in this formula.

By means of the Fourier transform in [17], we have

F̂ (w − iα, v0) =

∫ ∞

−∞
ĝ(w − iα, vT ) · p̂(−(w − iα)) · pv(vT |v0)dvT , (3.14)

where α is the damping factor, ĝ(·, ·) is the Fourier transform of the payoff function,

and p̂(w) is the characteristic function of the logarithmic asset price given v0 and

vT which is known analytically,

p̂(w) = eiw[r(T−t0)+ ρ
η
(vT−v0−λv̄(T−t0))]φ

(

w(
λρ

η
− 1

2
) +

1

2
iw2(1 − ρ2)

)

, (3.15)
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with φ(a) being the characteristic function of
∫ T

−t0
v(s)ds given v0 and vT . In Broadie

and Kaya (2004), it gives

φ(a) =
γ(a)e−

1
2
(γ(a)−λ)(T−t0)(1 − e−λ(T−t0))

λ(1 − e−γ(a)(T−t0))

× e

v0+vT
η2

[

λ(1+e−λ(T−t0))

1−e−λ(T−t0)
− γ(a)(1+e−γ(a)(T−t0))

1−eγ(a)(T−t0)

]

×
I 1

2
d−1

[

√
v0vT

4γ(a)e−
1
2 γ(a)(T−t0)

η2(1−e−γ(a)(T−t0))

]

I 1
2
d−1

[

√
v0vT

4λe−
1
2 λ(T−t0)

η2(1−e−λ(T−t0))

] , (3.16)

where γ(a) =
√

λ2 − 2η2ia, d = 4v̄/η2 and Iv(x) is the modified Bessel function of

the first kind.

3.3 Error Estimation

The numerical methods applied in the thesis result in computational errors, such as

the truncation error, the integral error, and other kinds of errors.

The truncation error shows up when we approximate the partial derivatives with

value at grid points. A well known example is that if we the central difference scheme

Vi−1−2Vi+Vi+1

h2 (h is the step size) to approximate ∂2V
∂S2 in the asset price axis, it gives

rise to the truncation error of O(h2) for sufficiently smooth functions. Moreover, the

axes of the asset price and the volatility are usually truncated to be finite domains.

This also leads to the computational error.

In this thesis, there are many integral computations, for example, performing the

Fourier transform. When numerical schemes are adopted to approximate the inte-

gral, they incur the integral error. We see that the Simpson’s rule results in (O)(h4)

error as
∫ b

a

f(x)dx =
h

3
(f(a) + 4f(

a + b

2
+ f(b))) − h5

90
f (4)(ξ),

where h = b−a
2

, and ξin(a, b).
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Figure 3.1: Gibbs phenomenon when using the Fourier transform method, dt=0.001

The computational error can be shown by the following example. When we treat

the binary option, due to the discontinuity in the payoff function at S = K, it is

expected that the Gibbs phenomenon will show up when Fourier transform is used

to compute the numerical solution. This is actually the case. A typical example is

shown in Figure 3.1, where the oscillations occur when the time step is chosen to be

extremely small, the grid size in the asset price axis is big, and the Fourier trans-

form is performed only one step backward (dt = 0.001, dy = 0.02353, y = log (S/K)).

3.4 The Extrapolation Scheme

As mentioned before, American options can be approximated by evaluating a Bermu-

dan options whose exercisable times are sufficiently many. However it is very time-

consuming when the computation is done based on Heston’s model and by means

of Fourier transform method. The reason is that the complexity in this case is
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O(N log (N)MJ2), where N , M and J are the numbers of grids in the directions of

asset price, time and volatility. Therefore we turn to the Richardson extrapolation

method to find a way which can approximate the accurate solution, in expectation

of paying a smaller price in computation.

Equation (3.14) can be regarded as a simple form,

F̂ (w − iα, v0) =

∫ ∞

−∞
k(vT )dvT , (3.17)

which shows that the right hand side of equation (3.17) is actually a function with

respect to the volatility. This means that the valuation of F̂ (w− iα, v0) depends on

the numerical computation of the integral on the right hand side of equation (3.17),

where the Richardson extrapolation technique can be applied.

If h is the mesh size in the volatility direction, a function K(h) which will be the

option price in our case, can be written as

N(h) = M + K1h + K2h
2 + K3h

3 + · · · + anh
n + O(hn+1), (3.18)

where Ki (i = 1, 2, 3, · · · ) are unknown coefficients, N is the approximation value

and M is the theoretical value. In terms of the extrapolation algorithm, K(h) can

be approximated by

Ai,0 = K(hi)

Ai,m = Ai+1,m1 +
Ai+1,m−1 − Ai,m−1

hi/hi+m − 1

This is described by the following process:

hi Ai,0 Ai,1 Ai,2 Ai,3 · · ·
h1 A1,0 A1,1 A1,2 A1,3

h2 A2,0 A2,1 A2,2

h3 A3,0 A3,1

h4 A4,0

· · ·
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With this algorithm, the extrapolation technique can be applied to the valuation

based on equation (3.14).

The extrapolation scheme discussed above is known as Richardson extrapolation.

When applied to price American options based on the Black-Scholes model, it proves

to be efficient and cheap. However, when we turn to compute one Bermudan option’s

price under Heston’s model, we are faced with the problem of how to apply it in the

directions of volatility, stock and time. Generally these directions are discretized on

grids and the numerical approximation of the related Bermudan option prices can

be computed by means of the Fourier transform method. But some computational

results are rather inaccurate. For example, when the time direction has 32 points

(a Bermudan option with 32 exercisable dates), a considerable computational error

will show up if the numbers of points in stock and volatility are small (for exam-

ple smaller than 24). This means that we will fail to get an accurate result from

Richardson extrapolation. One can see this clearly with the computational results

which are obtained by discretizing the volatility direction with 2, 4, 8 and 16 points.

This will completely make the results with Richardson extrapolation inaccurate. On

the other hand, if we start from 32, 64, 128 and 256 grids, we will see only a small

gain in the computational time in contrast with the reference value, which may be

computed from 512 points.

One reason why Richardson extrapolation fails is because the computational results

from few points have big errors. To avoid this, we focus firstly on the principal idea

which leads to Richardson extrapolation, equation (3.18), to figure out new schemes.

Theoretically speaking, when we use a number of grids to compute one Bermudan

option’s price, the result we get is an approximation to the accurate value. Suppose

that we compute 4 times with different numbers of points (or different mesh sizes),
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Figure 3.2: Option price converges when the grid size in volatility and stock goes to 0

we will have 4 results of the approximated value, as the equations below show:

N1 = M + K1(a1h) + K2(a1h)2 + K3(a1h)3 + · · · ,

N2 = M + K1(a2h) + K2(a2h)2 + K3(a2h)3 + · · · ,

N3 = M + K1(a3h) + K2(a3h)2 + K3(a3h)3 + · · · ,

N4 = M + K1(a4h) + K2(a4h)2 + K3(a4h)3 + · · · ,

where M is the theoretical value, Ni (i = 1, 2, 3, 4) are the computation results (ap-

proximation to the theoretical value), aih (i = 1, 2, 3, 4) are the step sizes used in

each computation and Kj (j = 1, 2, 3, · · · ) are the coefficients in the Taylor expan-

sion (3.18). In Richardson extrapolation, we have aj+1 = aj/2 which does not give

satisfactory results when applied in the volatility direction under Heston’s model.

An alternative technique of how to apply the extrapolation scheme is following: (1)

to ensure the accuracy, we choose to start from quite a few points, (2) to save com-

putation time, we choose small differences in the numbers of points. For example,
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Figure 3.3: Estimate the theoretical value and apply interpolation to check this.

we compute the value with 20, 52, 84, 116 grids, say N1, N2, N3 and N4. All the

computational results include the information of the theoretical value. If we check

equations (3.19), we see that Ni (the computational results) and aih (the grid size

like L/20, L/52, L/84 and L/116) are known, L is the range in volatility or stock

price and the unknowns are M and Kj (j = 1, 2, 3). We can eliminate Kj to get the

value of M .

Another technique is based on the assumption that all the computational results fit

a smooth curve as Figure (3.2) shows that converges to the theoretical value when

the grid size goes to 0. According to Weierstrass approximation theorem1, the curve

1Weierstrass Approximation Theorem: Suppose that f is defined and continuous on [a, b]. For

each ǫ > 0, there exists a polynomial P (x), with the property that |f(x) − P (x)| < ǫ, for all x in

[a, b]
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is approximated by the Lagrange polynomial in our new method,

P (x) = f(x0)Ln,0(x) + f(x1)Ln,1(x) + · · · + f(xn)Ln,n(x)

=
n

∑

k=0

f(xk)Ln,k(x),

where

Ln,k(x) =
(x − x0)(x − x1) · · · (x − xk−1)(x − xk+1) · · · (x − xn)

(xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)

=
n

∏

i=0,i6=k

(x − xi)

xk − xi

.

This means that the computational results (N1, N2, N3, N4) that we obtain with

20, 52, 84, 116 points (grid sizes: L/20, L/52, L/84, L/116, where L is the length

of the interval in volatility) and the theoretical value can be fitted to the curve of

a Lagrange polynomial. With a next computation result, i.e. N5 from 148 points,

it should also lie on this curve. If we estimate a value for the asymptotic value and

apply the interpolation scheme to compute the value N ′
5 at L/148, we should know

how accurate the initial estimate was. If the difference |N5 −N ′
5| is zero, we assume

that the estimate is a good approximation to the theoretical value. The procedure

to find the solution is a root-finding subroutine in our program.

The extrapolation can save the computational time greatly. However, the compu-

tational error converges in an unusual way as Figure (3.4) shows. The reason why

the error shows an irregular behavior comes from the fact that we use a Lagrange

polynomial to approximate Bermudan option prices with respect to the grid size in

volatility and stock. According to the error estimation formula given in [1], when we

use the function value at x0, x1, · · · , xn, to interpolate the value at x and suppose

f is the unknown function, it says that a number ξ(x) exists with

f(x) = P (x) +
fn+1(ξ(x))

(n + 1)!
(x − x0)(x − x1) · · · (x − xn), (3.19)

where P (x) is the interpolating polynomial. One example is shown in Figure (3.5).

In this example, 5 points are used to interpolate the function y =
√

x. The difference
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Figure 3.4: Computational error of extrapolation where Lagrange polynomial is used

between P (x) and
√

x can be seen in the figure. In our extrapolation, when we use

the computational results with grid sizes L/20, L/52, L/84, L/116 and estimate a

price at L/1000 to interpolate the price at L/148, the computational error depends

partially on the difference of the grid sizes which are the term (x−x0)(x−x1) · · · (x−
xn) in the previous estimation formula. When we think that our initial guess is

correct, it includes actually the error which responds to the interpolation error.

Here the error of the extrapolation method employed is explored. Suppose we have

the computational results f1(x = x1), f2(x = x2), f3(x = x3), f4(x = x4) and the

value to extrapolate is v0(x = x0). If the guess is v0 + e where e is the error and we
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Figure 3.5: Error of the interpolated results based on 10-point Lagrange Polynomial

start to interpolate the value at x = x5 with its function value f5, we have

f5 = (v0 + e)
(x5 − x1)(x5 − x2)(x5 − x3)(x5 − x4)

(x0 − x1)(x0 − x2)(x0 − x3)(x0 − x4)

+ f1
(x5 − x0)(x5 − x2)(x5 − x3)(x5 − x4)

(x1 − x0)(x1 − x2)(x1 − x3)(x1 − x4)
+ f2

(x5 − x0)(x5 − x1)(x5 − x3)(x5 − x4)

(x2 − x0)(x2 − x1)(x2 − x3)(x2 − x4)

+ f3
(x5 − x0)(x5 − x1)(x5 − x2)(x5 − x4)

(x3 − x0)(x3 − x1)(x3 − x2)(x3 − x4)
+ f4

(x5 − x0)(x5 − x1)(x5 − x2)(x5 − x3)

(x4 − x0)(x4 − x1)(x4 − x2)(x4 − x3)

+
f 6(ξ(x))

6!
(x5 − x0)(x5 − x1)(x5 − x2)(x5 − x3)(x5 − x4).

Because xi and fi (i = 1, 2, 3, 4, 5) are known, all terms except the first one on the

right hand side are known once we have the computational results. If the points we

use to discretize in volatility and stock are g0, g0 + d, g0 + 2d, g0 + 3d and g0 + 3d,

we have x1 = L/g0, x2 = L/(g0 + d), x3 = L/(g0 + 2d), x4 = L/(g0 + 3d) and

x5 = L/(g0 + 4d), where L represents the range of volatility and stock price, g0 is

the starting grid and d is the step size. Substitution xi into equation (3.20), it says

that the error of the new extrapolation depends on the starting grid g0, the grid
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difference d and the unknown value of the option v0,

e = e(v0, g0, d). (3.20)

This interprets why the computational error decreases if the start grid g0 is a big

number and the step size d is large.

3.5 Multi-Asset Option Pricing

3.5.1 Asset Prices’ Random Walk and Pricing Equation

In the case of two-asset options, if the dynamics of the underlying is modeled by

GBM, we have

dS1/S1 = µ1dt + σ1dW1,

dS2/S2 = µ2dt + σ2dW2,

where µi(i = 1, 2) are drift parameters, σi(i = 1, 2) are volatility parameters and

Wi(i = 1, 2) are Brownian motions. We have

E[dWi] = 0, var[dWi] = dt, (i = 1, 2)

and dW1 and dW2 are correlated as

E[dW1dW2] = ρdt.

If V (S1, S2, t) denotes the option value, the differential of V can be obtained accord-

ing to the 2-dimensional Itô’s lemma:

dV = (
∂V

∂t
+

1

2
σ2

1S
2
1

∂2V

∂S2
1

+ ρσ2
1S

2
1σ

2
2S

2
2

∂2V

∂S2
1

+
1

2
σ2

1S
2
1

∂2V

∂S2
1

)dt +
∂V

∂S1

dS1 +
∂V

∂S2

dS2.

We construct a portfolio including one long option position and two short positions in

some quantities of underlying assets. Then we compute these quantities to eliminate

risk as before. Finally we arrive at obtaining the pricing equation

∂V

∂t
+

1

2
σ2

1S
2
1

∂2V

∂S2
1

+ ρσ2
1S

2
1σ

2
2S

2
2

∂2V

∂S2
1

+
1

2
σ2

1S
2
1

∂2V

∂S2
1

+ rS1
∂V

∂S1

+ rS2
∂V

∂S2

− rV = 0.
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If continuous dividends are paid, it changes to be

∂V

∂t
+

1

2
σ2

1S
2
1

∂2V

∂S2
1

+ρσ2
1S

2
1σ

2
2S

2
2

∂2V

∂S2
1

+
1

2
σ2

1S
2
1

∂2V

∂S2
1

+(r−q1)S1
∂V

∂S1

+(r−q2)S2
∂V

∂S2

−rV = 0,

where qi(i = 1, 2) are the dividend yields. The final condition for the pricing equation

is

V (S1, S2, T ) = f(S1, S2),

where f(S1, S2) is the payoff function. Some well-known payoffs are

• ”Maximum call”: f(S1, S2) = (max(S1, S2) − K)+.

• ”Maximum put”: f(S1, S2) = (K − max(S1, S2))
+.

• ”Minimum call”: f(S1, S2) = (min(S1, S2) − K)+.

• ”Minimum put”: f(S1, S2) = (K − min(S1, S2))
+.

• ”Spread option”: (S1 − S2 − K)+.

For more general case of n assets, it gives

dSi = µiSidt + σiSidWi. (3.21)

where µi, σi and Wi(i = 1, 2, · · · , n) have the meaning as mentioned before. dWi

and dWj are correlated:

E[dWidWj] = ρijdt, (i, j = 1, 2, · · · , n, i 6= j).

Here ρij is the correlation coefficient. The correlation matrix is made up of these

correlation coefficients and it is symmetric and positive definite. By means of the

multi-dimensional Itô’s lemma, the differential of function V (S1, S2, · · · , Sn, t) reads

dV = (
∂V

∂t
+

1

2

n
∑

i=1

n
∑

j=1

σiσjρijSiSj
∂2V

∂Si∂Sj

)dt +
n

∑

i=1

∂V

∂Si

dSi.

This leads to the pricing equation for basket options.

∂V

∂t
+

1

2

n
∑

i=1

n
∑

j=1

σiσjρijSiSj
∂2V

∂Si∂Sj

+
n

∑

i=1

(r − qi)Si
∂V

∂Si

− rV = 0. (3.22)

The final condition is

V (S1, S2, · · · , Sn, T ) = f(S1, S2, · · · , Sn).
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3.5.2 Multi-dimensional Fourier Transform and CONV Method

The multi-dimensional Fourier transform is defined as

Fm{F (~x)} =

∫

Rm

ei ~w·~xF (~x)d~x = F̂ (~w),

where ”·” denotes the inner product of vectors and m, the number of dimensions.

The inverse Fourier transform in m-dimensions reads

F−m{F (~w)} =
1

(2π)m

∫

Rm

e−i~x·~wF̂ (~w)d~w.

In [6], Björk points out that the solution to the multi-dimensional Black-Scholes

PDE (3.22) has the risk-neutral valuation form:

V (~S, t) = e−r(T−t)E
Q

t,~S
[V (~S, T )].

Here Q means the martingale measure and V (~S, T ) is the payoff function. In order

to use the CONV method to compute option prices in the multi-dimensional case,

we make the assumption that the multi-variate conditional probability density func-

tion, f(y1, y2, · · · , yn|x1, x2, · · · , xn), of the vector of state variables {y1, y2, · · · , yn}
conditioned on {x1, x2, · · · , xn} is equal to the transition probability density f(y1 −
x1, y2 − x2, · · · , yn − xn):

f(y1, y2, · · · , yn|x1, x2, · · · , xn) = f(y1 − x1, y2 − x2, · · · , yn − xn). (3.23)

Then from the risk-neutral expression, we obtain

V (~x, t) = e−r(T−t)

∫

Rm

V (~y, T ) · f(~y|~x)d~y,

where ~y and ~x denote vectors of state variables at time T and t(t < T ), respectively.

With the assumption (3.23), it gives

er(T−t)V (~x, t) =

∫

Rm

V (~y, T ) · f(~y − ~x)d~y =

∫

Rm

V (~x + ~z, T ) · f(~z)d~z (3.24)

by changing variables with ~z = ~y−~x. Damping V (~x, t) with e
~β·~x then taking Fourier
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transform on both sides of equation (3.24) leads to

er(T−t)Fm{e~β·~xV (~x, t)} =

∫

Rm

ei ~w·~xe
~β·~xV (~x, t)}d~x

=

∫

Rm

ei ~w·~x[
∫

Rm

e
~β·~xV (~x + ~z, T )f(~z)d~z

]

d~x

=

∫

Rm

∫

Rm

ei ~w·~x+~β·~xV (~x + ~z, T )f(~z)d~zd~x

=

∫

Rm

[

∫

Rm

ei(~w−i~β)·~xV (~x + ~z, T )d~x
]

f(~z)d~z

=

∫

Rm

[

∫

Rm

ei(~w−i~β)·(~y−~z)V (~y, T )d~y
]

f(~z)d~z

=

∫

Rm

ei(~w−i~β)·~yV (~y, T )d~y

∫

Rm

ei(−~w+i~β)·~zf(~z)d~z

= V̂ (~w − i~β)φ(−~w + i~β),

where

φ(~w) =

∫

Rm

ei ~w·~xf(~x)d~x

is the characteristic function of the multi-variate probability density function f(~x).

The option price can be recovered by the inverse Fourier transform and un-damping

as

er(T−t)V (~x, t) = e−
~β·~xF−m{V̂ (~w − i~β)φ(−~w + i~β)}.

3.5.3 Multi-Variate Characteristic Function

When the underlying assets ~S follows the random walks as (3.21), ~S is normally

distributed. As [2] (page 17) shows, the joint characteristic function of multi-variate

normal variables reads

φ(~w) = E[ei ~w·~S]

= exp
[

i

m
∑

i=1

wiµi −
1

2

m
∑

i=1

m
∑

j=1

wiwjCov(dWi, dWj)
]

.

For two-asset options, the characteristic function is

φ(w1, w2) = exp
[

i(w1µ1 + w2µ2) −
1

2
(w2

1σ
2
1 + 2ρw1w2σ1σ2 + w2

1σ
2
1)

]

.

Therefore we can calculate the option prices with multi-asset once the characteristic

function is available.



Chapter 4

Implementation and Results

When using the Fourier transform method to evaluate option prices, the continuous

functions in the pricing equations should be replaced by their discrete versions. In

order to do this, discretization is performed in the axis of time, the logarithmic asset

price and the volatility. Similarly some other problems like computing the integrals

over an infinite domain must be considered as well.

In this chapter, the implementation of the option pricing methods is covered. The

results of applying the extrapolation scheme with the Fourier transform in Heston’s

model are also presented. The results of applying extrapolation scheme in the multi-

asset case are included as well. Two sections after this shows the results obtained

with the multigrid method and the Green function method.

4.1 Implementation Details

In this section, we give some details about the implementation of the extrapolation

scheme and the Fourier transform to calculate option prices. First of all, the axes of

time, the logarithmic asset price and the volatility are discretized and the numbers

of points are denoted by N , M and J , respectively.

The domains of the integrals are truncated to be finite intervals as follows. The

range in the logarithmic asset price is chosen to be 2L times the volatility (standard

deviation) of the logarithmic asset price, which proves to be enough to ensure the

35
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accuracy with L = 10. On the volatility axis, the integral range is chosen as [0, 2].

After the discretization and the truncation, integrals over discrete grid points within

finite intervals are approximated by the Trapezoidal rule.

The characteristic function in Heston’s model takes both the initial volatility and the

final volatility as input arguments. The complexity of the method O(N log (N)MJ2)

has the square of J inside.

The damping factor α is introduced to ensure that the Fourier transform exists. Ex-

periments show that the impact of the damping factor is not significant. Therefore

we usually choose α = 0.

The reference data is taken from the literature if available. Otherwise we use a com-

putation on finer grids, for example, with N = 512,M = 10, J = 512 in Heston’s

model for a 10-time exercisable Bermudan option.

The grid sizes in the logarithmic asset price and in the frequency domain follow the

reciprocity relation dx ∗ dw = 1/N . Therefore the grid size in the frequency domain

is determined after we discretized the axis of the logarithmic asset price. The grid

points in the logarithmic asset price direction are centered at log (S0/K) and the

grid points in the frequency domain are centered at w = 0.

The extrapolation scheme usually is based on 5 numerical results calculated by the

Fourier transform method. The number of the points with which the numerical

results have been generated are usually chosen G0 + k ∗ Gs(k = 0, 1, 2, 3, 4) to be

used in the extrapolation scheme, together with the option prices evaluated by the

CONV method. To explain the extrapolation results easily, G0 is the ”start point”

and Gs, the ”step size”.
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4.2 Performance of The Extrapolation Scheme

The price of a Bermudan option is calculated to explore the characteristics of the

extrapolation scheme. The reference data is obtained in a very fine grid N =

512,M = 4, J = 512. The numbers of points in the logarithmic asset price and the

volatility direction are set to be equal N = J when the CONV method is applied

to compute the pre-extrapolation results. The parameters in Heston’s model which

describes the dynamics of the option’s underlying are listed in Table (4.14):

Table 4.1: Parameters with the option and Heston’s Model

S0 = 10 K = 10 T = 0.25 r = 0.1 λ = 5.0

η = 0.9 v̄ = 0.16 v0 = 0.25 ρ = 0.1

The experimental results show that the accuracy of the extrapolation scheme is in-

fluenced by the choice of the start point and the step size, as shown in the Tables

(4.2)(4.3) and Figures (4.1)(4.2).
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Figure 4.1: The accuracy of the extrapolation scheme is influenced by the number of start points.
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Table 4.2: The accuracy of the extrapolation scheme is influenced by the start point. The step

size is fixed at 30.

Start Number of Points Absolute Error

12 2.3814e-04

16 3.1331e-05

20 7.5692e-05

24 1.0209e-04

28 2.2178e-06

32 2.5172e-04

36 2.7581e-04

40 8.3468e-05

44 8.9020e-05

48 1.0838e-04

52 3.7273e-05

56 1.0016e-04

60 7.7828e-05

64 2.5583e-04

68 1.4077e-04

72 3.7797e-05

76 7.2500e-06

80 4.9491e-05
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Table 4.3: The accuracy of the extrapolation scheme is influenced by the grid step. The first

grid in the extrapolation scheme contains 30 points.

Step Size Absolute Error

2 6.8824e-01

4 2.0565e-03

6 2.7766e-02

8 1.2986e-02

10 1.3289e-02

12 6.7349e-03

14 6.6606e-03

16 1.3032e-03

18 1.5178e-03

20 2.5625e-03

22 1.5409e-03

24 2.6357e-04

26 7.3880e-05

28 8.0015e-05

30 7.3625e-05

32 1.6907e-04

34 1.5113e-05

36 5.9652e-05

38 3.6078e-05

40 2.1193e-05

42 2.2665e-05
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Figure 4.2: The accuracy of the extrapolation scheme is influenced by the step size.

4.3 Comparison with Gaussian Quadrature

Gaussian quadrature is a powerful scheme to approximate integrals. In the method

where the extrapolation scheme is adopted, Gaussian quadrature is not applied.

The results generated by these 2 schemes are compared to see the difference in their

performance. The experiment used to do the comparison is the same Bermudan

option as in the previous section with the same reference data.

Two sets of grid points are used in the experiments with the extrapolation scheme.

The first calculates the result with grid points 20, 30, 40, 50 and 60. The second

uses 20, 36, 52, 68 and 84 points.

The pre-extrapolation data is generated in two ways. In the first test, the number

of points in the logarithmic asset price N and the volatility J are not equal. N is

set to be fixed at N = 512 and J is varying. In the second test, we let both of them

be varying and satisfy N = J . With the Gaussian quadrature, N is always equal to

J .

The comparison between the results given by Gaussian quadrature and those eval-



4.3. Comparison with Gaussian Quadrature 41

uated by the CONV-extrapolation method with four choices the various setting of

N , J and the choices of step size is listed in Tables (4.4), (4.5), (4.6) and (4.7).

Table 4.4: Computational error with 20, 30, 40, 50, 60 points; N fixed, J variable

Number of Points Gaussian Quadrature Extrapolation

100 2.0066e-03 2.6453e-03

120 1.3502e-03 1.3846e-03

140 9.5873e-04 4.4404e-04

160 7.0540e-04 2.9668e-04

180 5.3412e-04 9.0006e-04

200 4.0932e-04 1.4032e-03

Table 4.5: Computational error with 20, 36, 52, 68, 84 points; N fixed, J variable

Number of Points Gaussian Quadrature Extrapolation

100 2.0066e-03 2.6889e-03

120 1.3502e-03 1.4974e-03

140 9.5873e-04 6.4609e-04

160 7.0540e-04 5.5993e-07

180 5.3412e-04 5.1212e-04

200 4.0932e-04 9.2875e-04

From the comparison, we recognize that when the pre-extrapolation results are cal-

culated numerically with N = J and the extrapolation scheme chooses the number

of start points and step size carefully, we can get the same accuracy as the Gaussian

quadrature in Table (4.6). Table (4.8) shows the main benefit of the extrapolation

scheme, which is the less computational time.
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Table 4.6: Computational error with 20, 30, 40, 50, 60 points; N = J , both variable

Number of Points Gaussian Quadrature Extrapolation

100 2.0066e-03 8.7841e-04

120 1.3502e-03 6.2254e-04

140 9.5873e-04 4.6682e-04

160 7.0540e-04 3.6525e-04

180 5.3412e-04 2.9546e-04

200 4.0932e-04 2.4551e-04

Table 4.7: Computational error with 20, 36, 52, 68, 84 points; N = J , both variable

Number of Points Gaussian Quadrature Extrapolation

100 2.0066e-03 1.1640e-03

120 1.3502e-03 1.1377e-03

140 9.5873e-04 1.2047e-03

160 7.0540e-04 1.3076e-03

180 5.3412e-04 1.4213e-03

200 4.0932e-04 1.5349e-03

Table 4.8: Comparison between Gaussian quadrature and the extrapolation scheme.

Method Option Price Absolute Error Computational Time (sec)

Gaussian Quadrature 7.882735e-01 5.871015e-05 4297.3

Extrapolation 7.882526e-01 7.957564e-05 303.3

In the next experiment, Gaussian quadrature is used with N = 512, M = 4, J = 512.

Extrapolation is compared with N = J = 20, 52, 84, 116, 148, and M = 4. The

reference data is obtained with N = J = 1000 and M = 4. We can see a significant

benefit of the extrapolation scheme.
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4.4 Extrapolation for Various Options

In this section the extrapolation technique is evaluated for various options. The

parameters used in this section are listed in Table (4.9), where CP denotes the type

of option. With CP = 1, it is a call option, otherwise it is a put option.

Table 4.9: Parameters for different options to test the extrapolation scheme.

Bermudan I Bermudan II Bermudan III American

S0 10 10 100 10

CP 1 -1 1 -1

K 10 10 100 10

T 0.25 1.25 1 0.25

q 0 0 0 0

r 0.1 0.1 0.06 0.1

v̄ 0.144 0.144 0.232 0.16

v0 0.029 0.029 0.083 0.25

λ 0.136 2.232 1.136 5

η 0.190 0.690 0.690 0.9

ρ -0.834 -0.334 0.375 0.1

M 4 4 10 ∞

The experimental results give the table are presented in the tables (4.10)(4.11)(4.12)(4.13)

below. The computational time is in seconds.

Table 4.10: Bermudan option I (Reference: 2.5698e − 01).

Gaussian Quadrature Extrapolation

Comp. Result 2.5686e-01 2.5606e-01

Absolute Error 1.1468e-04 9.2056e-04

Comp. Time (sec) 3781.5 598.8
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Table 4.11: Bermudan option II (Reference: 9.0940e − 01).

Gaussian Quadrature Extrapolation

Comp. Result 9.0937e-01 9.0941e-01

Absolute Error 2.6032e-05 1.4219e-05

Comp. Time 3562.6 996.7

Table 4.12: Bermudan option III (Reference: 1.69516e + 01).

Gaussian Quadrature Extrapolation

Comp. Result 1.69511e+01 1.69525e+01

Absolute Error 5.0089e-04 9.2232e-04

Comp. Time 8810.7 2065.8

Table 4.13: American option (Reference: 7.9659e − 01).

Extrapolation

Comp. Result 7.9616e-01

Absolute Error 1.9071e-04

The results presented in the extrapolation scheme under different cases of options

show the applicability of the method.
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4.5 Extrapolation in The Multi-Asset Option

The price of a 4-asset Bermudan put option is calculated with the multi-dimensional

CONV method. The parameters used in the case is listed in Table (4.14).

Table 4.14: Parameters with Multi-Asset Option

S0 = 40 K = 40 T = 1 r = 0.06

σ = [0.2 0.2 0.2 0.2]

D = [0.04 0.04 0.04 0.04]

ρ =

















1 0.25 0.25 0.25

0.25 1 0.25 0.25

0.25 0.25 1 0.25

0.25 0.25 0.25 1

















.

The extrapolation scheme takes the pre-extrapolation results calculated with 30, 38,

46, 54 and 60 points and gives the approximation in table (4.15).

Table 4.15: Extrapolation in the multi-asset case.

Extrapolation Reference

Value 1.653567 1.653787

Time (sec) 82.46 198.380

Error 2.179e − 04

The result shows the gain in the computational time with the multi-dimensional

CONV method.



Chapter 5

Conclusions

In the thesis, we propose a extrapolation scheme to facilitate the Fourier transform

method in option pricing. It integrates the interpolation method and the root-

finding method together to estimate, adjust and obtain the extrapolated value. It is

compared with the Gaussian quadrature method in performance when approximat-

ing an American option price with the Fourier transform method in Heston’s model.

The comparison shows that the extrapolation scheme results in a significant gain

in the computational time and with enough accuracy as well. Some other options

with various parameter and the multi-asset option are also evaluated, which leads

to both accurate and fast result.

More research can be performed in the future. For example, error estimation of this

scheme is worth to do. It may be also interesting to evaluate multi-asset options

in Heston’s model, where the characteristic function in the multi-asset case is not

available yet. The Green function method, as an alternative way, may be used to

evaluate Bermudan or American options.

46



Bibliography

[1] R. L. Burden and J. Douglas Faires, ”Numerical Analysis”, seventh edition,

2001, Thomson Learning Inc.

[2] S. M. Ross, ”Stochastic Processes”, second edition, 1996, John Wiley & Sons

Inc.

[3] J. C. Hull, ”Options, Futures, and Derivatives”, sixth edition, 2005, Prentice-

Hall of India.

[4] R. Cont and P. Tankov, ”Financial Modeling with Jump Processes”, 1st edn,

2004, Chapman & Hall/CRC.

[5] R. Korn and L. C. G. Rogers, ”Stocks Paying Discrete Dividends: Modelling

and Option Pricing”, 2004.

[6] T. Björk, ”Arbitrage Theory in Continuous Time”, 1998, Oxford University

Press.

[7] P. Wilmott, ”The Mathematics of Financial Derivatives, A Student Introduc-

tion”, 1998, Cambridge University Press.

[8] R. Lord, F. Fang, F. Bervoets, C. W. Oosterlee, ”A Fast And Accurate FFT-

Based Method for Pricing Early-Exercise Options under Levy Processes”, Feb

27, 2007, Available at SSRN.

[9] S. L. Heston, ”A Closed-Form Solution for Options with Stochastic Volatility

with applications to Bond and Currency Options”, The Riew of Financial

Studies, 1993, Vol. 6, No. 2, pp. 327-343.

47



Bibliography 48

[10] D. S. Bates, ”Jumps and Stochastic Volatility: Exchange Rate Processes Im-

plicit in Deusche Mark Options”, The Review of Financial Studies, 1996, Vol.

9, No. 1, pp. 69-107.

[11] A. Almendral and C. W. Oosterlee, ”On American Options under The Vari-

ance Gamma Process”, Applied Mathematical Finance, 2006.

[12] D. B. Madan, ”The Variance Gamma (V.G.) Model for Share Market Re-

turns”, Journal of Business, 1990, Vol. 63, pp. 511-524.

[13] B. Dupire, ”Pricing with A Smile”, Risk Magazine, 1994, Vol. 7, pp. 18-20.

[14] R. Merton, ”Option Pricing When Underlying Stock Returns Are Discontin-

uous”, Journal of Financial Economics, 1976, Vol. 3, pp. 125-144.

[15] S. G. Kou, ”A Jump-Diffusion Model for Option Pricing”, Management Sci-

ence, Vol. 48, No. 8, August 2002, pp. 1086-1101.

[16] L. Andersen and J. Andreasen, ”Jump-Diffusion Processes: Volatility Smile

Fitting And Numerical Methods for Option Pricing”, Review of Derivatives

Research, 2000, 4, pp. 231-262.

[17] F. Bervoets, ”Model Risk for Exotic Equity Options”, Master Thesis, 2006,

Delft University of Technology, Netherlands.

[18] D. B. Madan, Peter Carr, Eric C. Chang, ”The Variance Gamma Process and

Option Pricing”, 1998.

[19] W. L. Briggs, ”A MultiGrid Tutorial”, SIAM, 2000.

[20] O. Faulhaber, ”Analytic Methods for Pricing Double Barrier Options in The

Presence of Stochastic Volatility”, Master Thesis, 2002, University of Kaiser-

slautern, Germany.



Appendix A

Appendix

A.1 Derivation of Itô’s Lemma

Before we describe Itô’s lemma, one result is needed. With probability 1, it says

dX2 → dt as dt → 0. (A.1.1)

It means if dt goes to 0, dX2 tends to dt.

Suppose that f(S) is a smooth function of S. If S varies by a small amount dS, it is

clear that f will vary also by a small amount provided it is not close to singularities

of f . According to Taylor’s expansion, it gives

df =
df

dS
dS +

1

2

d2f

dS2
dS2 + · · · , (A.1.2)

where the remainder terms are replaced by dots here.

With equation (2.1), it can be derived that

dS2 = (σSdX + µSdt)2

= σ2S2dX2 + 2σµS2dtdX + µ2S2dt2. (A.1.3)

In terms of (A.1.1), dX = O(
√

dt), which leads to

dS2 = σ2S2dX2 + · · · ,
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and

dS2 → σ2S2dt.

After substitution into (A.1.2), the small variation in f gets to be

df =
df

dS
(σµSdX + µSdt) +

1

2
σ2S2 d2f

dS2
dt

= σS
df

dS
dX + (µS

df

dS
+

1

2
σ2S2 d2f

dS2
)dt.

(A.1.4)

If f is considered to be the function of both the variables S and time, f(S, t), the

expansion of f(S + dS, t + dt) will be

df = σS
∂f

∂S
dX + (µS

∂f

∂S
+

1

2
σ2S2 ∂2f

∂S2
+

∂f

∂t
)dt. (A.1.5)



A.2 Derivation of Solution to Black-Scholes Equa-

tion

Here the derivation of the exact solution to the Black-Scholes equation is given.

First of all, it is easy to show that one of the solutions to the heat equation

∂u

∂τ
=

∂2u

∂x2

in

u(x, τ) =
1

2
√

πτ
e−

x2

4τ .

When τ ∼ 0, this function goes to its limit: the delta function δ(τ). Therefore the

function

uδ(x, τ) =
1

2
√

πτ
e−

(x−s)2

4τ .

is also a solution if we use either x or s as the spatial independent variable. Mean-

while, it is easy to see

uδ(x − s, τ) = uδ(s − x, τ).

If x is regarded as the spatial variable, then

u0(s)uδ(s − x, τ)

satisfies the heat equation. Based on the linearity of the heat equation and the law

of superposition, the function

u(x, τ) =
1

2
√

πτ

∫ ∞

−∞
u0(s)e

− (x−s)2

4τ ds

is also a solution to the heat equation, and in particular u(x, 0) =
∫ ∞
−∞ u0(s)δ(s −

x)ds = u0(x). This results in a general solution to a parabolic equation with the

initial condition u0(x).

Secondly, the Black-Scholes equation with respect to a call option

∂V

∂t
+

1

2
σ2S2∂2V

∂S2
− rS

∂V

∂S
− rV = 0,
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with

V (0, t) = 0, V (S, t) ∼ S as S → ∞,

and

V (S, T ) = (S − K, 0)+

can be transformed to a standard parabolic partial differential equation. To do this,

it is first made dimensionless by

S = Kex, t = T − τ
1
2
σ2

, V = Kz(x, τ).

This leads to the equation

∂z

∂t
=

∂2z

∂x2
− (k − 1)

∂z

∂x
− kz = 0,

where k = r
1
2
σ2 . Now the initial condition becomes

z(x, 0) = (ex − 1, 0)+.

By introducing

z = eαx+βτu(x, τ),

where

α = −1

2
(k − 1), β = −1

4
(k + 1)2,

the transformation gives the standardized parabolic equation

∂u

∂τ
=

∂2u

∂x2
.

The initial condition is

U0(x) = u(x, 0) = (e
1
2
(k+1) − e

1
2
(k−1), 0)+.

Then the solution to the Black-Scholes equation can be formed as

u(x, τ) =
1

2
√

πτ

∫ ∞

−∞
u0(s)e

− (x−s)2

4τ ds.
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If the variable is changed by using y = (s − x)/
√

2τ , the formula above will give

u(x, τ) =
1

2
√

πτ

∫ ∞

−∞
u0(y

√
2τ + x)e−

1
2
y2

dy

=
1

2
√

πτ

∫ ∞

−∞
e

1
2
(k+1)(x+y

√
2τ)e

1
2
y2

dy

− 1

2
√

πτ

∫ ∞

−∞
e

1
2
(k−1)(x+y

√
2τ)e

1
2
y2

dy

= I1 − I2. (A.2.6)

I1 can be evaluated by

I1 =
1

2
√

πτ

∫ ∞

−∞
u0(y

√
2τ + x)e−

1
2
y2

dy

=
e

1
2
(k+1)x

2
√

πτ

∫ ∞

−x/
√

2τ

e
1
2
(k+1)2τe−

1
2
(y− 1

2
(k+1)

√
2τ)2dy

=
e

1
2
(k+1)x+ 1

4
(k+1)2τ

2
√

πτ

∫ ∞

−x/
√

2τ− 1
2
(k+1)

√
2τ

e−
1
2
ρ2

dρ

=
e

1
2
(k+1)x+ 1

4
(k+1)2τ

2
√

πτ
N(d1), (A.2.7)

where

d1 = x/
√

2τ +
1

2
(k + 1)

√
2τ

and

N(d1) =
1

2
√

πτ

∫ d1

−∞
e−

1
2
s2

ds.

Finally, with back transformations, we find

z(x, τ) = e−
1
2
(k+1)x− 1

4
(k+1)2τu(x, τ)

and x = log (S/K), τ = 1
2
σ2(T − t) and V = Kz(x, τ), which results in

V (S, t) = SN(d1) − Ke−r(T−t)N(d2), (A.2.8)

where

d1 =
log ( S

K
) + (r + 1

2
σ2)(T − t)

σ
√

T − t

d2 =
log ( S

K
) + (r − 1

2
σ2)(T − t)

σ
√

T − t
.

This is the explicit expression for the value of an European call option.


