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Abstract

We consider a Heston type inflation model in combination with a Hull-White model for
nominal and real interest rates, in which all the correlations can be non-zero. Due to
the presence of the Heston dynamics our derived inflation model is able to capture
the implied volatility skew/smile, which is present in the inflation option market data.
We derive an efficient approximate semi-closed pricing formula for two types of infla-
tion dependent options: index and year-on-year inflation options. The derived pricing
formulas allow for an efficient calibration of the inflation model. We also illustrate our
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is used to determine the value of conditional future indexations.
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1 Introduction

Inflation-dependent derivatives are increasingly important in financial engineering. As a consequence, infla-
tion1 markets are becoming more active, liquid and transparent. Broker volumes increased substantially from
late-2002, driven by a rise in the need to hedge, for example, retail products. Inflation derivatives have been
traded for over a decade starting in the UK in the early 1990s. Since 2000, the market for inflation derivatives
has seen a rapid growth in volumes and in types of products across various markets and linked to various
domestic and regional inflation indices, such as, French CPI, Eurozone HICP, US CPI, etc (see Figure 1.1).

Figure 1.1: Historical overview of CPIs and inflation rates.
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(b) Inflation rates (yearly data (31/12/1971-31/12/2010))
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Many pension funds, (life) insurance companies2 and banks trade these inflation-dependent derivatives. Pen-
sion funds are, for example, interested in the conditional future indexation of pension rights, which can be
viewed as an exotic derivative depending on the CPI.

Modeling derivative products in finance often starts with the specification of a system of stochastic differential
equations (SDEs). Such a SDE system consists of economic state variables like stock prices, inflation, nomi-
nal and real interest rates and volatility. By imposing a correlation structure (between the Brownian motions)
on this system of SDEs one can define so-called hybrid models, and use them for pricing exotic derivatives,
see, for example, Grzelak and Oosterlee (2009), Grzelak and Oosterlee (2010) or
van Haastrecht and Pelsser (2009).

The well-known Fisher (1930) equation defines a relation between the nominal and real interest rates on the
market and the break-even inflation rate3. Therefore, the use of stochastic nominal and real interest rates is
crucial for an accurate inflation pricing model. Furthermore, as it turns out, according to Kruse (2007), there is
a significant skew/smile present in the inflation option market data in the sense that the implied Black-Scholes
(BS) volatilities are not constant for different strike levels and maturities (like in the stock or currency option
markets). In Figure 1.2 the market implied volatility smile is clearly visible.

Because of this smile/skew effect in the inflation option market data, the Heston (1993) model is often used in

1Inflation is defined as a rise in the general level of prices of goods and services in an economy over a certain period of time (usually
one year). The price level is usually measured by a so-called Consumer Price Index (CPI), which reflects the actual price level of a basket
of typical consumer goods. The inflation rate is then defined as the percentage change of the CPI.

2For (life) insurance companies it is important, due to (among others) regulation and new accounting standards, to value their liabilities,
which contain so-called (inflation dependent) ‘embedded options’, as market consistent as possible. Embedded options are rights in
insurance policies or pension contracts that can provide a profit to policy holders but never a loss (see for more information, for example,
van Bragt and Steehouwer (2007)).

3The break-even inflation rate is the yield spread between nominal and inflation-linked bonds and is a fundamental indicator of inflation
expectations.
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Figure 1.2: Market implied volatilities of (Euro) inflation indexed options as of September 30, 2010.
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practice, as this model is capable of capturing this effect4. The variance process of the CPI is then modeled
by a so-called Cox-Ingersoll-Ross (CIR) process (see Cox, Ingersoll, and Ross (1985)). Recently, much at-
tention has also been devoted in the literature to stochastic volatility driven by a Schöbel-Zhu process (see for
example van Haastrecht and Pelsser (2009)) in combination with stochastic interest rates to model the CPI.
In van Haastrecht and Pelsser (2009) also a special case of the Heston model in combination with stochastic
interest rates was investigated, where some correlations were assumed to be zero. However, the case of a
full correlation structure is of particular interest in this article5.

In this article we model the CPI by the Heston model, coupled with stochastic nominal and real interest rate
processes that are driven by the one-factor Hull-White model6. Our focus is on the fast valuation of inflation
index cap/floor options and year-on-year (YoY) inflation cap/floor options7, because for these products the
speed of valuation is crucial for calibration. We derive an efficient pricing engine for these options, so that
calibration of our inflation model can be done relatively fast. The key to obtaining the pricing formulas is the
derivation of the discounted log-CPI characteristic function (ChF) under the T -forward measure. Since the
ChF to be derived contains expressions which have to be evaluated numerically, efficient numerical tech-
niques are developed as well.

This paper is organized as follows. In Section 2 we discuss the coupled inflation-interest rate model and de-
rive the model under the T -forward measure. In Section 3 we discuss the valuation of two inflation-dependent
options: inflation index caps/floors and YoY inflation caps/floors. In Section 4 we present numerical results,
which include calibration results. In Section 5 we illustrate our approach using a real-life pension fund exam-
ple, where the Heston Hull-White model is used to determine the value of conditional future indexations. We
conclude in Section 6.

4The Heston model is for example well established for pricing stock and currency derivatives, however, not yet for pricing inflation
derivatives.

5It turns out that these correlation parameters can be influential when pricing exotic derivatives.
6A Hull-White model is a special case of a (multi-factor) Gaussian model (see Brigo and Mercurio (2006, Chap. 3 and 4)).
7YoY cap/floor options are defined as a series of forward starting call/put options.
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2 Specification of the inflation model

We consider the Heston model in which interest rates are modeled by the one-factor Hull-White interest rate
model (see Brigo and Mercurio (2006, p. 71-80)) to model the CPI. We call this inflation model the Heston
Hull-White inflation (HHWi) model.

2.1 The Hull-White interest rate model

Term structure models, such as the Hull-White (HW) model, describe the evolution of the interest rate curve
through time. Modeling the stochastic behavior of the interest rate term structure is particularly important
when pricing interest rate-dependent derivatives. The HW model is an example of a ‘no-arbitrage’ model,
because it is designed to exactly fit today’s term structure by producing an interest rate behavior which is
consistent with this term structure at all times.

Although the HW model allows for the occurrence of negative rates, it has many attractive features as well.
For one, because of the underlying Gaussian distributions it is possible to derive explicit formulas for a number
of financial instruments, like interest rate derivatives and bond prices. The different model parameters also
provide flexibility and give insight into the dynamic behavior of the term structure.

The nominal and real interest rates, rn and rr, under the risk-neutral nominal and real economy measures Qn

and Qr, respectively, are modeled by one-factor HW models:

drl(t) = (θl(t) − alrl(t))dt + ηldWrl (t), rl(0) ≥ 0, (2.1)

where al is a mean-reversion parameter and ηl a volatility parameter with l ∈ {n, r}. The time-dependent
function θl(t) is determined by the nominal/real initial term structure as observed in the market via:

θl(t) =
∂ fl(0, t)
∂t

+ al fl(0, t) +
η2

l

2al

(
1− e−2alt

)
, l ∈ {n, r} . (2.2)

The time-dependent function fl(t,T ) (0 ≤ t ≤ T ) denotes the instantaneous forward curve at time t for maturity
T . See Brigo and Mercurio (2006, p. 73) for details.

Nowadays, the quadratic Gaussian and Libor Market Models (among others) are becoming increasingly im-
portant to model interest rates (see for example Bloch and Assefa (2009), Bloch (2009),
Andersen and Andreasen (2002) and Grzelak and Oosterlee (2010)), because they can model an interest
rate smile. However, the application of these models is left for our future work.

2.2 The Heston Hull-White inflation model

We model the evolution of the CPI, denoted by I, and the coupled stochastic variance factor ν by the Heston
model under the nominal economy spot measure8, Qn (where the nominal and real interest rates follow a
Hull-White model, see Eq. (2.1)). The dynamics are given by:


dI(t) = (rn(t) − rr(t))I(t)dt+

√
ν(t)I(t)dW I(t), I(0) ≥ 0,

dν(t) = κ(ν̄ − ν(t))dt+ σν
√
ν(t)dWν(t), ν(0) ≥ 0,

(2.3)

where κ is a mean-reversion parameter, σν a volatility parameter and ν̄ denotes the long-term variance level.
The inflation rate is defined as the percentage change of the CPI, i.e. I(t)

I (̃t)
− 1 for 0 ≤ t̃ < t.

Remark.
8In the nominal economy this measure is generated by the nominal money-savings account, Mn(t), which evolves according to Eq.

(2.4).
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• An analogy exists between our inflation model and the modeling of currencies, which is also remarked
by Brigo and Mercurio (2006, p. 644-645). It turns out that the inflation model can be used to model
currencies by replacing the real interest rate by the foreign interest rate. The CPI then denotes the
exchange rate. See for example Grzelak and Oosterlee (2010) which employs a very similar model as
our inflation model to model the exchange rate.

• We note that the instantaneous inflation, (rn(t) − rr(t)) dt, in Eq. (2.3) is equal to the instantaneous
break-even inflation, which is an important feature in our model.

• Seasonality in inflation rates can become important when modeling quarterly or monthly inflation rates.
One way to model seasonality is to assume that we have already modeled the seasonally adjusted CPI,
I(t), using our inflation model. We can then add a seasonal component, say ξ(t), to obtain the CPI value
with seasonality, Ĩ(t). Different approaches can be used to estimate the ξ(t) function, but this is outside
the scope of the present article.

We now need to determine the process for the real interest rate in the nominal economy. Therefore, we apply a
change of measure (i.e. change of numéraire) from the risk-neutral real economy measure, Qr, to the nominal
economy measure, Qn. Brigo and Mercurio (2006, p. 46) show that this change of measure is equivalent to a
change of measure of the numéraire Mr(t) to Mn(t)/I(t), where Mn(t) and Mr(t) are money-savings accounts
in the nominal and real economy, respectively, which evolve according to:

dMl(t) = Ml(t)rl(t)dt, with l ∈ {n, r} . (2.4)

By applying the two-dimensional version of Itô’s lemma we derive the following SDE of the numéraire Mn(t)/I(t)
under Qn:

d

(
Mn(t)
I(t)

)
=

(
Mn(t
I(t)

)
rr(t)dt −

(
Mn(t)
I(t)

) √
ν(t)dW I(t), I(0) ≥ 0.

Using Brigo and Mercurio (2006, Prop. 2.3.1), we then obtain the following real interest rate dynamics under
Qn:

drr(t) = (θr(t) − ρI,rηr

√
ν(t) − arrr(t))dt + ηrdWrr (t), rr(0) ≥ 0.

The correlation structure between the Brownian motions dWt =
(
dW I

t , dWν
t , dWrn

t , dWrr
t

)T
is defined by the

following symmetric instantaneous correlation matrix:

dWt (dWt)
T
=



1 ρI,ν ρI,n ρI,r

. 1 ρν,n ρν,r

. . 1 ρn,r

. . . 1


dt. (2.5)

2.3 Inflation dynamics under the T -forward measure

To value inflation-dependent derivatives it is convenient to use the inflation model under the T -forward nominal
economy measure (instead of the spot measure), which we denote by QT

n (see for example
van Haastrecht et al. (2009)). This measure is generated by the nominal zero-coupon bond, Pn(t,T ). In other
words, under the T -forward measure the forward CPI, IT , is a martingale, i.e.

Pn(t,T )ET [IT (T ) | Ft] = Pn(t,T )IT (t) = Pr(t,T )I(t), (2.6)

where Pn(t,T ) and Pr(t,T ) are nominal and real zero-coupon bonds, respectively. The inflation model under
this T -forward measure is given in Proposition 2.1.

Proposition 2.1. The inflation model under the T -forward nominal economy measure
(
QT

n

)
, with a full matrix

of correlations, is given by:


dIT (t) =IT (t)
( √

ν(t)dW I
T (t) + ηnBn(t,T )dWn

T (t) − ηrBr(t,T )dWr
T (t)

)
,

dν(t) =
(
κ(ν̄ − ν(t)) − σνηnρν,nBn(t,T )

√
ν(t)

)
dt + σν

√
ν(t)dWν

T (t),
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where IT denotes the forward CPI under the T -forward measure. The interest rate processes are given by:


drn(t) =
(
θn(t) − η2

nBn(t,T ) − anrn(t)
)

dt+ ηndWrn
T (t),

drr(t) =
(
θr(t) − ρI,rηr

√
ν(t) − ηnηrρn,rBn(t,T ) − arrr(t)

)
dt+ ηrdWrr

T (t),

where the time-dependent function θl(t) is given by Eq. (2.2) and Bl(t,T ) = 1
al

(
1− e−al(T−t)

)
, for l ∈ {n, r}.

The dynamics of the forward CPI are simplified by changing to logarithmic transformed coordinates, where
we define xT (t) := log IT (t)9:

dxT (t) = −1
2

(
ν(t) + η2

nB2
n(t,T ) + η2

r B2
r (t,T ) + 2ρν,nηnBn(t,T )

√
ν(t)

− 2ρν,rηrBr(t,T )
√
ν(t) − 2ρn,rηnηrBn(t,T )Br(t,T )

)
dt

+

√
ν(t)dW I

T (t) + ηnBn(t,T )dWn
T (t) − ηrBr(t,T )dWr

T (t).

Proof. The general outline of the proof is as follows. From Eq. (2.6) it follows that

IT (t) = I(t)
Pr(t,T )
Pn(t,T )

, (2.7)

where the dynamics of I(t) are given in Section 2.1. The dynamics of IT (t) are obtained by applying Itô’s
lemma to Eq. (2.7) in combination with the dynamics of I(t) and the dynamics of the real and nominal zero-
coupon bonds, Pr(t,T ) and Pn(t,T ), under the nominal economy measure (Qn). Expressing the full model
in terms of independent Brownian motions simplifies the derivation of the Radon-Nikodým derivative (see
Brigo and Mercurio (2006, p. 45 and 911)). By computing the Itô derivative of this Radon-Nikodým derivative
the Girsanov kernel for the transition from Qn to QT

n is derived and finishes the proof. For the full proof we
refer to Grzelak and Oosterlee (2010, Appendix A). �

Remark. From Proposition 2.1 we note that under the T -forward nominal economy measure
(
QT

n

)
the forward

CPI does not depend10 directly on the real and nominal interest rate processes, rr(t) and rn(t), but only
depends on the Brownian motions dWrn (t) and dWrr (t).

9Note that this transformation is well defined since I(0) > 0 and, thus, IT (0) > 0.
10Note that actually the forward CPI depends on all the Brownian motions since the correlations can be non-zero. The key is the

independence of the state variables.
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3 Pricing formulas

In this section we discuss the pricing of two inflation dependent options. The pricing of inflation index options
is discussed in Section 3.1 and the pricing of YoY inflation options is discussed in Section 3.2. In Section 3.3
we show numerical results of the derived pricing formulas of forward starting options.

3.1 Inflation indexed options

In this section we briefly discuss the pricing of inflation indexed cap and floor options. The inflation model,
which we use for option pricing, is given in Section 2.1 under the measure Qn and by Proposition 2.1 under
the measure QT

n .

The price of an inflation indexed cap/floor option maturing at time T with strike level11 K := (1 + k̃)T (the
expression (1+ k̃)T means 1+ k̃ to the power T) written on the inflation index (the CPI) (with ω = 1 for a cap
option and ω = −1 for a floor option) is given by

Π(t,T, k̃, ω) := Mn(t)EQn

[
max(ω (I(T ) − K) ,0)

Mn(T )
| Ft

]
, (3.1)

where Mn(t) indicates the nominal money-savings account, which evolves according to Eq. (2.4). Since the
stochastic expressions Mn(T ) and max(ω (I(T ) − K) ,0) are not independent, the computation of the expec-
tation under the Qn measure is rather involved.

It turns out that the complexity of the problem is greatly reduced under the T -forward measure. We then get
the following pay-off structure:

Π(t,T, k̃, ω) = Pn (t,T )EQ
T
n [max(ω (IT (T ) − K) ,0) | Ft] . (3.2)

From the two pay-off structures in Eqs. (3.1) and (3.2) we note that the pay-off structure under the T -forward
measure has a simpler form since the price of the pure discount bond at time t = 0 is directly observable in
the market.

Π(t,T, k̃, ω) in Eq. (3.2) can also be formulated in integral form:

Π(t,T, k̃, ω) = Pn (t,T )
∫

R

max(ωK (ey − 1) ,0) f̃ (y|x)dy, (3.3)

where f̃ (y|x) denotes the probability density function of y := log
(

IT (T )
K

)
given

x := log
(

IT (t)
K

)
.

Fourier-based methods12 can be used to compute these integrals in the case that the density function is
not known in advance. These methods rely on the existence of the ChF. The derivation of the ChF for this
particular option is discussed in Grzelak and Oosterlee (2010). We denote the corresponding approximation
of the full-scale HHWi model by HHWi-i. For this model we can employ Fourier-based methods for efficient
pricing of inflation index options.

3.2 Year-on-year inflation options

In this section we discuss the pricing of YoY inflation cap/floor options by describing the general pricing
methodology13. In general, a cap/floor option, Π̃, is defined by a series of so-called caplet/floorlet options, Π̂,
i.e:

Π̃(ω, t, τ,T, k̄) =
n∑

k=1

Π̂(ω, t,Tk−1,Tk, k̄),

11The strike level k̃ is (market data) input. More information can be found in Oman (2005, p. 5).
12See for example Carr and Madan (1999) and Fang and Oosterlee (2008).
13More information can be found in Oman (2005, p. 5).
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where ω = 1 for a cap/caplet option and ω = −1 for a floor/floorlet option. Furthermore, τ := Tk − Tk−1 defines
the tenor parameter with T0 = 0 and Tn = T . The integer n denotes the number of caplets/floorlets in the
cap/floor option. This integer is dependent on the tenor parameter, which is in practice often a fixed interval.
The strike level is given by k̄. So, the pricing of a YoY inflation cap/floor option reduces to the pricing of a
series of YoY inflation caplet/floorlet options.

The price of a YoY inflation caplet/floorlet option starting at time Tk−1 (0 ≤ t ≤ Tk−1) and maturing at time Tk

(Tk−1 ≤ Tk), written on the inflation index, is given by

Π̂(ω, t,Tk−1,Tk, k̄) = Mn(t)EQn


max

(
ω

(
I(Tk)

I(Tk−1) − (k̄ + 1)
)
,0

)

Mn(Tk)
| Ft

 ,

where Mn(t) indicates the nominal money-savings account, which evolves according to Eq. (2.4).

By changing the measure from Qn to the Tk-forward measure, QTk
n , with k = 1, . . . , n, and by using K∗ := 1+ k̄,

we arrive at the following pricing problem:

Π̂(ω, t,Tk−1,Tk, k̄) = Pn(t,Tk)E
Tk

[
max

(
ω

(
I(Tk)

I(Tk−1)
− K∗

)
,0

) ∣∣∣Ft

]
.

Since the Tk-forward CPI, ITk (t) =
Pr(t,Tk)
Pn(t,Tk) I(t), under the Tk-forward measure is a martingale with numéraire

Pn(t,Tk) and ITk (Tk) = I(Tk), we can simply write:

Π̂(ω, t,Tk−1,Tk, k̄) = Pn(t,Tk)E
Tk

[
max

(
ω

(
Pr(Tk−1,Tk)
Pn(Tk−1,Tk)

ITk (Tk)

ITk (Tk−1)
− K∗

)
,0

) ∣∣∣Ft

]
.

The dynamics for ITk (t) under the Tk-forward measure are given by Proposition 2.1.

Remark. For numerical experiments we make use of the put-call parity to price options of call type, so in this
case caplet options. In other words, when for example a floorlet option, Π̂(−1, t,T1,T2, k̄), with strike k̄ and
times 0 ≤ t ≤ T1 < T2, is computed, the price of the corresponding caplet option Π̂(1, t,T1,T2, k̄) is computed
by:

Π̂(1, t,T1,T2, k̄) = Π̂(−1, t,T1,T2, k̄) + Pn(t,T1)Pr(T1,T2) − Pn(t,T2)
(
1+ k̄

)
,

where Pn and Pr are nominal and real zero-coupon bonds, respectively.

As already mentioned, to apply Fourier-based pricing methods we have to derive the (forward) ChF belonging
to this option, which is the topic of the next subsection.

Derivation of the (forward) characteristic function

By setting

X(Tk−1,Tk) =
Pr(Tk−1,Tk)
Pn(Tk−1,Tk)

IT (Tk)
IT (Tk−1)

, for k = 1, . . . ,n,

we perform the log-transformation:

x(Tk−1,Tk) := log X(Tk−1,Tk) = log

(
Pr(Tk−1,Tk)
Pn(Tk−1,Tk)

ITk (Tk)

ITk (Tk−1)

)
,

= log ITk (Tk) − log ITk (Tk−1) + log Pr(Tk−1,Tk) − log Pn(Tk−1,Tk).

We derive the forward ChF for the process x(Tk−1,Tk):

φYoY (u, t, x(Tk−1,,Tk)) := ETk
[
eiux(Tk−1,Tk)

∣∣∣Ft

]
. (3.4)

By substitution we have:

φYoY (u, t, x(Tk−1,Tk)) = E
Tk

[
eiu(log ITk (Tk)−log ITk (Tk−1)+log Pr(Tk−1,Tk)−log Pn(Tk−1,Tk))∣∣∣Ft

]
.
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Now, by iterated expectations we find:

φYoY (u, t, x(Tk−1,Tk)) =

ETk
[
ETk

[
eiu(log ITk (Tk)−log ITk (Tk−1)+log Pr(Tk−1,Tk)−log Pn(Tk−1,Tk))∣∣∣Fk−1

] ∣∣∣Ft

]
.

Since IT (Tk−1), Pn(Tk−1,Tk) and Pr(Tk−1,Tk) are ITk−1 measurable14, we can write:

φYoY (u, t, x(Tk−1,Tk)) = ETk
[
e−iu(log ITk (Tk−1)−log Pr(Tk−1,Tk)+log Pn(Tk−1,Tk))×

ETk
[
eiu log ITk (Tk)

∣∣∣Fk−1

] ∣∣∣Ft

]
.

The last expectation equals the characteristic function for log ITk (Tk), i.e.

φi(u, log IT (Tk),Tk−1,Tk) := ETk
[
eiu log ITk (Tk)

∣∣∣Fk−1

]
.

In Grzelak and Oosterlee (2010) an affine approximation is found for this ChF, i.e.:

φi,1 := eA(u,Tk−Tk−1)+iu log ITk (Tk−1)+C(u,Tk−Tk−1)v(Tk−1), (3.5)

with functions A(u, τ) and C(u, τ) given by Eqs. (3.6) and (3.7). By subscripts (like the ,1 in Eq. (3.5)) we
indicate subsequent approximations.

Remark. In Grzelak and Oosterlee (2010, Chap. 2.3) it is noted that the Kolmogorov backward partial dif-
ferential equation, for which φ in Eq. (3.4) is the solution, contains non-affine

√
ν-terms, so that finding the

solution is nontrivial. Approximation of these
√
ν-terms by a linearization technique leads to an approximating

closed-form solution of the ChF.

The functions A(u, τ) and C(u, τ) in Eq. (3.5) are given by:

A(u, τ) :=
∫ τ

0

(
κν̄ − ρν,nσνηnϕ(s)Bn(s)(1− iu) − ρν,rσνηrϕ(s)Br(s)

)
C(s)ds

+(u2
+ iu)

∫ τ

0
Ψ(s, ϕ(s))ds, (3.6)

C(u, τ) :=
1− e−dτ

σ2
ν(1− ge−dτ)

(
κ − ρI,νσνiu − d

)
, (3.7)

where ϕ(t) := E
[√
ν(t)

]
15, d :=

√
(κ − ρI,νσνiu)2 − σ2

νiu(iu − 1) and g := κ−ρI,νσνiu−d
κ−ρI,νσνiu+d . Furthermore,

Ψ(t, ϕ(t)) := (ρI,rηrBr(t,T ) − ρI,nηnBn(t,T ))ϕ(t) + ρn,rηnηrBn(t,T )Br(t,T )

−1
2

(
η2

nB2
n(t,T ) + η2

r B2
r (t,T )

)
.

The ChF, φ, is then approximated by:

φYoY,1 = E
Tk

[
e−iu log ITk (Tk−1)+iu log Pr(Tk−1,Tk)−iu log Pn(Tk−1,Tk)φi,1

∣∣∣Ft

]
.

Due to Eq. (3.5) we have:

φYoY,1 = ETk
[
eA(u,Tk−Tk−1)+C(u,Tk−Tk−1)v(Tk−1)e−iu log Pn(Tk−1,Tk)×

eiu log Pr(Tk−1,Tk)
∣∣∣Ft

]
. (3.8)

As the underlying nominal interest-rate model is the Hull-White model, the zero-coupon bond (ZCB) Pn(Tk−1,Tk)
is given by, see (Brigo and Mercurio 2006, p. 75-78):

Pn(Tk−1,Tk) = eAn(Tk−1,Tk)−Bn(Tk−1,Tk)rn(Tk−1), (3.9)

14See Brigo and Mercurio (2006, Appendix C).
15In Grzelak and Oosterlee (2009) approximations are proposed for E

[√
ν(t)

]
, which are also used in this article for the numerical

experiments.
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with analytically known functions An(Tk−1,Tk) and Bn(Tk−1,Tk). However, since we work under the nominal
economy measure Qn, the dynamics of the real interest rate are not affine and, as a consequence, the dy-
namics of Pr are not affine. Hence, the derivation of the dynamics of Pr is nontrivial.

By approximating the variance process under Qn (see Section 2.1) by its expectation, the process of the
real interest rate, conditional on Fs, is affine and normally distributed. Following the approach as outlined in
(Brigo and Mercurio 2006, Chap. 3.3) we derive:

Ar(Tk−1,Tk) = log
Pr(0,Tk)

Pr(0,Tk−1)
(Br(Tk−1,Tk) fr(0,Tk−1) + Λ(Tk−1,Tk)

− η
2
r

4ar
(1− e−2arTk−1)Br(Tk−1,Tk)

2),

Br(Tk−1,Tk) =
1
ar

(
1− e−ar(Tk−Tk−1)

)
,

where

Λ(Tk−1,Tk) = E
[ √

ν(Tk)
] ρI,rηr

ar
(Tk − Tk−1 − Br(Tk−1,Tk) − Bn(Tk−1,Tk)

+
1

an + ar
(1− e−(an+ar)(Tk−Tk−1))).

By substituting the nominal and real ZCB expressions into the expression in Eq. (3.8) the approximating ChF
in Eq. (3.8) is now given by:

φYoY,1 = eiu(Ar(Tk−1,Tk)−An(Tk−1,Tk))eA(u,Tk−Tk−1) ×
ETk

[
eC(u,Tk−Tk−1)v(Tk−1)eiu(Bn(Tk−1,Tk)rn(Tk−1)−Br(Tk−1,Tk)rr(Tk−1))

∣∣∣Ft

]
. (3.10)

The Laplace transform in Eq. (3.10) is of a very complicated form. In order to find a closed-form solution for
Eq. (3.10), additional assumptions of independence between processes are required.

A basic approximation to Eq. (3.10) is given by:

φYoY,2 = eiu(Ar(Tk−1,Tk)−An(Tk−1,Tk))+A(u,Tk−Tk−1) · ETk
[
eC(u,Tk−Tk−1)v(Tk−1)

∣∣∣Ft

]
×

ETk
[
eiu(Bn(Tk−1,Tk)rn(Tk−1)−Br(Tk−1,Tk)rr(Tk−1))

∣∣∣Ft

]
. (3.11)

The approximation above consists of two expectations under the Tk-forward measure. Since the nominal and
real interest rates, rn(Tk−1) and rr(Tk−1), are normally distributed, the sum of these two normally distributed
random variables is also normally distributed and the ChF of this sum can be found analytically. Furthermore,
since v(Tk−1) is noncentral chi-square distributed the corresponding ChF can also be found analytically. Result
3.1 and Lemma 3.1 provide these solutions.

Result 3.1. For given times 0 ≤ s ≤ t ≤ T , nominal and real interest rate processes rn and rr, as defined in
Proposition 2.1, and Y(t,T ) := Bn(t,T )rn(t) − Br(t,T )rr(t), the following holds:

ET
[
eiuY(t,T )|Fs

]
≈ exp

(
iuET [Y(t,T )|Fs] −

1
2

u2VarT (Y(t,T )|Fs)

)
,

where rn evolves under QT
n according to Proposition 2.1. To ensure that the real interest rate process is

normally distributed under QT
n , we assume that it evolves according to

drr(t) =
(
θr(t) − ρI,rηrE

[ √
ν(t)

]
− ηnηrρn,rBn(t,T ) − arrr(t)

)
dt + ηrdWrr

T (t).

The random variable Y(t,T ) is then normally distributed with expectation and variance given by:

ET [Y(t,T )|Fs] = Bn(t,T )ET [rn(t)|Fs] − Br(t,T )ET [rr(t)|Fs] ,

VarT [Y(t,T )|Fs] = B2
n(t,T )VarT [rn(t)|Fs] + B2

r (t,T )VarT [rr(t)|Fs]

−2Bn(t,T )Br(t,T )CovT [rn(t), rr(t)|Fs] ,

with
CovT [rn(t), rr(t)|Fs] = ρn,r

√
VarT [rn(t)|Ft] VarT [rr(t)|Fs].
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Proof. By approximating the variance process under Qn (see Section 2.1) by its expectation the process of
the real interest rate, conditional on Fs, is normally distributed.

Next, since the random variable Y(t,T ) is defined as a (weighted) sum of normally distributed random vari-
ables16, Y(t,T ) is also normally distributed. The characteristic function for any normally distributed random
variable X, X ∼ N(µ, σ) with expectation µ and variance σ2 is given by

φX(u) = E[exp(iuX] = exp

(
iuµ − 1

2
σ2u2

)
.

The proof is finished by the appropriate substitutions. �

Lemma 3.1. For 0 ≤ s ≤ t ≤ T the Laplace transform of ET
[
eC(u,T−t)v(t)

∣∣∣Fs

]
is given by:

ET
[
eC(u,T−t)v(t)|Fs

]
= ψ(u, s, t,T )

2κv̄
γ2 ·

exp
(
ψ(u, s, t,T )e−κ(t−s)C(u,T − t)v(t)

)
, (3.12)

provided that

ψ(u, s, t,T ) :=
1

1− 2γ2

4κ

(
1− e−κ(t−s)

)
C(u,T − t)

≥ 0.

The function C(u,T − t) is given in Eq. (3.7).

Proof. Since the variance process ν(t), conditional on Fs, is distributed as a constant c :=
σ2
ν(1−e−κ(t−s))

4κ times
a noncentral chi-square distribution with d := 4κν̄

σ2
ν

degrees of freedom and non-centrality parameter λ :=
4κe−κ(t−s)

σ2
ν(1−e−κ(t−s)) , the proof is straightforward, see Cox, Ingersoll, and Ross (1985). �

We denote the approximation in Eq. (3.11) of the full-scale HHWi model by HHWi-YoY. For this model we can
employ Fourier-based methods for efficient pricing of YoY inflation options.

3.3 Numerical experiment

To analyze the performance of the approximations introduced for the YoY inflation options we compute the
initial (t = 0) implied Black-Scholes volatilities for different strike levels using the full-scale HHWi model and
the HHWi-YoY model. This is done by inverting the characteristic function using Fourier-based methods. We
consider two test cases:

• Case I: the forward starting option starts at T1 = 4 and matures at T2 = 5.

• Case II: the forward starting option starts at T1 = 29 and matures at T2 = 30.

For the generation of risk-neutral (RN) scenarios we make use of an advanced simulation scheme including
exact simulation (also called unbiased simulation) for the interest rate and variance processes (see, for ex-
ample, Andersen (2007) and Broadie and Kaya (2006)). To reduce the variance of the MC estimator we use
100.000 scenarios in combination with two variance reduction techniques (i) antithetic sampling and (ii) Em-
pirical Martingale Simulation (EMS) (see respectively Glasserman (2004) and Duan and Simonato (1995)).

As the base parameter setting we use the parameters as specified in Eq. (3.13):

κ = 0.3, ν(0) = 0.04, ν̄ = 0.04, σν = 0.6, ρI,ν = −0.7, (3.13)

with interest rate volatilities ηn = 0.0089, ηr = 0.0084and correlations ρI,n = ρI,r = ρν,n = ρν,r = 0 and ρn,r = 0
(unless stated otherwise). To test the pricing accuracy we use an extreme test case, i.e. the Feller condition,
2κν̄ > σ2

ν, is not satisfied, so that inflation volatilities can attain zero. These parameters are not calibrated to

16rn(t) and rr(t), conditional on Ft, are normally distributed Brigo and Mercurio (2006, Chap. 3.3.1).
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market data; this topic will be discussed in Section 4.

First we investigate the sensitivity of the pricing of YoY inflation options to the correlation parameters by
performing a MC simulation. We therefore vary the correlations ρI,n and ρn,r. The results for cases I and II are
presented in Figures 3.1a and 3.1b, respectively.

Figure 3.1: Sensitivity to correlations using a Monte Carlo simulation to the full-scale HHWi model.
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Observing Figures 3.1a and 3.1b we conclude that for this parameter setting the correlation parameters ρI,n

and ρn,r are influential regarding the change in implied volatility.

Next, we perform the same experiment using the HHW-YoY model. The results for cases I and II are presented
in Figures 3.2a and 3.2b, respectively.

Figure 3.2: Sensitivity to correlations using the HHWi-YoY model.
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Figures 3.3a and 3.3b show the difference in implied volatility between the full-scale HHWi and HHWi-YoY
model.
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Figure 3.3: Difference between the HHWi and HHWi-YoY model.
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From Figures 3.3a and 3.3b we can conclude that the maximum error for cases I and II is equal to 0.6%
point and 0.4% point in terms of implied volatilities, respectively. In both cases we considered τ = 1, which is
common when YoY forward starting options are considered.
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4 Calibration results

Calibration is an optimization procedure to estimate the model parameters in such a way that (relevant) market
prices are replicated by the model as good as possible. Hence, a calibration procedure consists of the
computation of minΩ

{
‖C − Ĉ‖

}
, where C denotes the market price, Ĉ the model price, Ω the set of parameters

(including constraints) and ‖ · ‖ some norm. In our case market data are available for pairs
(
T ,K

)
, with T

denoting the option maturity and K the strike level. For the norm we take the Euclidean one, so that calibration
in our case consists of computing:

min
Ω

{
‖C − Ĉ‖p

}
= min

Ω




m∑

j=1

n∑

k=1

∣∣∣∣C(T j,Kk) − Ĉ(T j,Kk)
∣∣∣∣
p


1
p

, (4.1)

where we use p = 2. We note that also the p-norm of the difference of market and model implied volatilities
could be minimized. However, since then in every iteration step of the optimization procedure an extra numer-
ical inversion has to be performed, which may lead to numerical difficulties, this is not the method of choice.
Market prices of plain vanilla options are often used for calibration, because this data is available.

Remark. In the calibration procedure it is possible to incorporate both types of inflation options in the cali-
bration procedure. This is easily done when we specify the market option price C (and, thus, also the corre-
sponding model value Ĉ) as an inflation indexed cap/floor or a YoY inflation caplet/floorlet with corresponding
strike level and maturity. It is also possible to assign different weights to different calibration points.

The minimization problem in Eq. (4.1) is solved iteratively using a numerical minimization algorithm. We first
sample random starting points and then we refine this solution using the well-known Levenberg-Marquardt
least-squares algorithm, which is a local minimization method. This procedure is repeated and the best solu-
tion is kept.

In this section we show calibration results for the full-scale HHWi model (see Section (2.1)). The calibration
procedure used is the following:

1. We calibrate the one-factor Hull-White interest rate model to interest rate options, like swaptions and/or
interest rate cap/floor options, see Brigo and Mercurio (2006, Chap. 2 and 3), to determine the interest
rate model parameters an, ar, ηn and ηr (see Section 2.1).

2. Conditional on the parameters of the interest rate model, we calibrate the inflation model to inflation
indexed cap/floor options and/or YoY inflation caplet/floorlet options with Fourier-based methods.

Remark. For the correlation parameters we perform the following calibration:

1. The correlation parameters between ‘observable’ variables, i.e. ρI,n = 0.36, ρI,r = −0.29 and ρn,r = 0.78
are determined using historical information17 in the sample period 1985− 2009.

2. The correlation parameter ρI,ν is determined in the calibration process. Appropriate bounds for this
parameter are used in the calibration process so that the correlation matrix remains positive definite.

3. The correlation parameters, ρr,ν and ρn,ν are derived from a conditional sampling method.

Because of the procedure mentioned above, we start the calibration with the following correlation matrix,
which is defined in Eq. (2.5):



1 ρI,ν ρI,n ρI,r

. 1 ρν,n ρν,r

. . 1 ρn,r

. . . 1


=



1 ρI,ν 0.36 −0.29
. 1 ρν,n ρν,r
. . 1 0.78
. . . 1


, (4.2)

where the correlation parameters ρI,ν, ρν,n and ρν,r are to be determined.

17This is industrial practice.
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The inflation option market data, as of September 30, 2010, which are used in this section for calibration
consists of two inflation option products, namely inflation index caps/floors and YoY inflation caps/floors. For
both options market data is available for a whole range of strikes and maturities and prices are quoted in
terms of base points (bp.). To compare calibration results option prices are expressed here in terms of implied
Black-Scholes volatilities.

Since YoY inflation caps/floors are essentially a series of YoY caplets/floorlets we perform a so-called stripping
method, which is explained in Brigo and Mercurio (2006, p. 682), to obtain the market data for YoY inflation
caplets/floorlets. Obviously, performing a calibration to YoY caplets/floorlets instead of to YoY caps/floors
reduces the computation time significantly.

4.1 Calibrating the interest rate model

For the calibration of the Euro nominal interest rate model we use the zero-coupon interest rate curve of
September 30, 2010. The zero-coupon real interest rate curve as of September 30, 2010 is constructed us-
ing available information about zero-coupon break-even inflation as derived from index-linked swaps18 (as of
September 30, 2010).

We then obtain an estimate of the initial real zero-coupon curve by applying the Fisher equation

rr(t) =
1+ rn(t)
1+ bei(t)

− 1, (4.3)

where bei denotes the break-even inflation, rr the real interest rate and rn the nominal interest rate. The
resulting interest rate curves are shown in Figure 4.1a.

We calibrate the one-factor Hull-White model using market prices as of September 30, 2010 of forward-at-
the-money options on Euro swap contracts (Euro swaptions). We calibrate the two parameters of the model,
the mean-reversion and the volatility parameter, using a large set of swaptions, with option maturities ranging
from 1 to 15 years and swap maturities ranging from 1 to 10 years. Swaptions with long maturities, > 15
years, and swap lengths, > 10 years, have deliberately been omitted from the calibration set. Liquidity for
such contracts is often limited, which may result in not very representative market quotes. The optimal mean-
reversion parameter is 0.0300; the optimal volatility parameter is 0.0089. A comparison between the model
and market prices is shown in Figure 4.1b, where prices are expressed in terms of implied Black volatilities.

18The maturities of these swaps range from 1 to 50years. We set the short break-even inflation equal to the 1-year break-even inflation.
Missing maturities are approximated by linear interpolation.
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Figure 4.1: Calibration results of interest rates.

(a) Overview of interest rate curves
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(b) Quality of fit of the calibrated Hull-White model
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Figure 4.1b shows that the difference between model and market prices is limited. The average absolute error
is 1.5%point. The fit is less good for short maturing options. This is due to the used objective function ‖C−Ĉ‖2
in our optimization procedure. Since the values of long maturing options are higher than the values of short
maturing options the long maturing options automatically have a ‘higher weight’ in the optimization procedure.
This can be overcome by introducing weights in the calibration procedure, however this refinement is outside
the scope of this article.

Option markets for real interest rates are still very limited. Therefore we set the mean-reversion parameter of
the real interest rate model equal to the mean-reversion parameter of the nominal interest rate model.

Remark. The choice of equal mean reversion parameters is justified when we estimate a Vasicek model (see
Brigo and Mercurio (2006, Chap. 3.2.1)) using a maximum likelihood estimation to historical nominal and real
interest rates in the sample period 1985− 2009. It turns out that the resulting mean reversion parameters are
of the same order. The results are, however, left outside the article.

The volatility parameter of the real interest rate model parameter is determined by a scaling factor based
on the volatility of historical nominal and real interest rates. The correlation parameter ρn,r is also based on
historical data (see Eq. (4.2)). The resulting parameters of the interest rate model are found to be:

an = 0.0300, ar = 0.0300, ηn = 0.0089, ηr = 0.0084 and ρn,r = 0.78.

4.2 Calibration to inflation market data

The calibration of the inflation model can be performed using inflation market data. The specific inflation op-
tions were already explained in Section 3. To derive a reliable set of parameters, we use relevant liquid market
data so that market conditions are captured well. We perform a calibration to YoY inflation caplets/floorlets. In
the calibration routine the approximate model HHWi-YoY is applied.

Remark. Note that a combined calibration to two different sets of inflation market data, namely to inflation
index caps/floors and YoY inflation caplets/floorlets, can also be performed. In such a calibration routine the
approximate models HHWi-i and HHWi-YoY would be applied. It depends, however, on the ‘problem at hand’,
which calibration is preferable19.

In Figures 4.2a and 4.2b the calibration results of the calibration to YoY inflation options are presented.

19For example, when one is interested in pricing an out-of-the-money (inflation dependent) option, one should calibrate the inflation
model to out-of-the-money options.
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Figure 4.2: Quality of fit of the calibrated inflation model to YoY inflation options.
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(b) HHWi implied volatilities (%)
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The calibration errors are very low; the average absolute error is 0.16%point and the maximum absolute error
is 0.4% point, which indicates that the inflation model can be well calibrated to YoY inflation options.

The calibration results in the following model parameters:

κ = 0.03271, ν(0) = 3.9665· 10−4, ν̄ = 7.5306· 10−4, σν = 0.0100,

ρI,ν = −0.1900, ρν,r = 0.0551 andρν,n = −0.0684.

Observing this parameter setting, we note that the Feller condition, 2κν̄ > σ2
ν, is not satisfied, hence,

P (ν(t) = 0 | t > 0) > 0.

This implies that the variance process has a fat tailed distribution.

To get an impression of the results, 1.000 scenarios for the inflation rate20 and the volatility process are
visualized in Figures 4.3a and 4.3b; the red line represents the average value over all scenarios and the blue
line represents a scenario. In Figure 4.3c the probability density function (PDF) is plotted of the inflation rate
and volatility scenarios to gain more insight in the results.

Figure 4.3: Graphical impression of the generated risk-neutral scenarios of the inflation rate and the volatility
process for a horizon of 30 years.

(a) Inflation rate process

0 5 10 15 20 25 30
−20

−10

0

10

20

30

Year

In
fla

tio
n

ra
te

(%
)

(b) Volatility process

0 5 10 15 20 25 30
0

2

4

6

8

10

Year

V
ol

at
ili

ty
(%

)

(c) Probability density function
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The average inflation rate is approximately equal to the difference between the (average) nominal and real
rates. The volatility of changes in the price inflation is high (approximately 2.8% per year). As a result, the

20As already mentioned, the inflation rate is defined as the percentage change of the CPI.
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probability of negative inflation (deflation) is high (up to 20%). The fat tailed distribution of the volatility process
is clearly visible in Figure 4.3c.
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5 Valuation of the indexation provision of a pension fund

Risk-neutral (RN) scenarios are mainly used for valuation purposes. Such special purpose scenarios can,
for example, be used for a market-consistent valuation of premiums, benefits, and indexations of a pen-
sion fund (PF), to support strategic decision-making and provisioning. This valuation of premiums, bene-
fits, and indexations is becoming increasingly important for risk management to assess the consequences
of policy changes to the different stakeholders of a PF21. Furthermore, the valuation of indexations is im-
portant for hedging strategies. See for similar experiments, for example, van Bragt and Steehouwer (2007),
Possen and van Bragt (2009) and van Bragt, Waalwijk, and Steehouwer (2010).

In this section we perform several MC simulations to obtain a value for the conditional indexations provision22

of a PF. For this numerical experiment we use a stylized PF. The liabilities of this PF can be viewed as a
general liability setting in the Netherlands. The initial funded ratio (FR) is equal to 110%. The PF makes use
of a conditional indexation policy. Indexation is linear when the FR is between 105%and 115%; when the
FR is below 105%pension rights are not indexed. We assume that the PF invests in three main investment
categories, 20%MSCI Europe stocks, 10%Euro direct real estate (RE) and 70%Euro government bonds.

Note that the inflation rate is the main driver of the initial indexation provision of a PF. We assume that
indexation follows the price inflation for the inactive members of the PF and the wage inflation for the active
members. In order to obtain the initial indexation provision we generate a consistent set of RN scenarios,
so that all future indexation cash flows can be discounted with the nominal risk-free interest rate. The option
price is then computed by:

1
N

N∑

k=1


T∑

t∗=t

Mk,n(t)
Mk,n(t∗)

C̃k(t
∗)

 ,

where t ≤ t∗ ≤ T , N denotes the number of scenarios, C̃k(t∗) denotes the indexation cash flow in year t∗ and
scenario k, and Mk,n denotes the nominal money-savings account (see Eq. (2.4)) in scenario k. We note that
for this experiment we assume yearly time steps, i.e. t∗, t,T ∈ N. In order to obtain an accurate option value,
the number of scenarios N should be chosen as high as possible.

Since liquid inflation option market data only recently became available we take as the benchmark the fact
that the price inflation model is calibrated to historical data. The historical volatility of the inflation rate is equal
to 0.81%, which results in the following Heston parameters: κ = 1, ν(0) = ν̄ = 0.46 and σν = 0, as benchmark
parameter setting. The full matrix of correlations is then also calibrated to historical data so that numerical
inconsistencies are avoided.

Wage inflation, which is used for the (conditional) indexation of pension rights of active members, is modeled
as price inflation plus 1% point. Furthermore, direct RE is modeled using a special purpose model, which
is based on the Heston Hull-White model, where we explicitly model auto-correlation in the returns (see for
more information van Bragt et al. (2009)). The investment category MSCI Europe stocks is also modeled by
a Heston Hull-White model and is, for simplicity, calibrated to the historical volatility. Furthermore, an appro-
priate underlying bond portfolio is used for the investment category government bonds.

We perform the following two numerical experiments:

Experiment I Since the indexation provision of the PF is based on the price and wage inflation we apply
several calibrations of our price inflation model23. Besides the inflation market data as of Q3 2010
we use a shifted set of market inflation option prices w.r.t. the market data of Q3 2010, using factors
±10%and 30%. The calibrated models are then used for a market consistent valuation of the indexation
provision. The results are shown in Figure 5.1a.

21Stakeholders of a PF are for example: pensioners, the sponsor and employees.
22The indexation provision of a PF can be viewed as an ‘embedded option’ on the balance sheet of the PF.
23In Section 4.2 we have shown that our inflation model can be well calibrated to inflation option market data, so that market conditions

are replicated well and, therefore, a realistic (market consistent) value of the indexation provision can be obtained.
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Experiment II To show the effect of different correlation parameters on the indexation provision, we perform
a valuation of the indexation provision using different correlation values for ρI,n ρI,r and ρn,r. As a starting
point we use the calibrated inflation model (see Section 4.2). The results are shown in Figure 5.1b.

For our numerical experiment we use N = 10.000scenarios24 so that sufficiently accurate results are obtained
(other specifics of the MC simulation can be found in Section 3.3). Since the horizon of the liabilities is long we
use as a simulation horizon T = 80 years so that all indexation cash flows are included in the MC simulation.

Figure 5.1: Overview of numerical results. Option values are expressed in terms of the pension fund provision
(ppv).
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Observing Figure 5.1a we can conclude that calibrating the inflation model to inflation option market data
results in different indexation provisions compared to the benchmark inflation models. The benchmark infla-
tion models are insensitive to a change of the inflation option market prices, which justifies the usefulness of
calibrating the inflation model to inflation option market data.

Observing Figure 5.1b we can conclude that changing the correlation parameters can have a significant effect
on the indexation provision; especially when ρn,r changes. When for example the correlation, ρn,r, changes
from 0.78 to −0.7 then the indexation provision changes from 22.4% to 26.3%. Therefore, we can conclude that
the indexation provision is influenced by the correlations, which confirms that all correlations should indeed
be incorporated in a valuation model.

24See Appendix A for validation experiments.
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6 Conclusion

We derived an approximate closed-form solution of inflation indexed cap/ floor options and year on year infla-
tion caplet/floorlet options, where the CPI follows a Heston model in which the nominal and real interest rates
are modeled by one-factor Hull-White models. Using Fourier-based methods calibration can be done highly
efficiently.

Using the developed models we have performed a calibration of the inflation model to year-on-year inflation
options. Our inflation model is able to model the market implied volatility skew accurately, so that market
conditions are replicated well.

Furthermore, using the calibrated inflation model we performed a market consistent valuation of the condi-
tional indexation provision of a stylized pension fund. It turns out that the results change significantly when
performing a calibration to market inflation option data instead to historical data, so it is recommendable to
use market data instead of historical data for valuation purposes. By changing the correlation parameters,
indexation provisions change significantly, which justifies the use of a full correlation matrix.
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Appendix A

Validation of the Monte Carlo simulation

To illustrate the fact that the MC simulation (using 10.000scenarios and a horizon of 100years) of the HHWi
model performed in Section 5 fulfils the martingale condition we perform two martingale tests. We first per-
form a (simple) MC experiment in which we price a series of zero-coupon bonds with different maturities. The
payoff of this experiment is obviously equal to the principal of each bond for all scenarios. This payoff is then
discounted back along the path of the short nominal interest rate for each scenario. The average discounted
value (over all scenarios) then yields the MC price of each bond. This price can be converted into an equiva-
lent interest rate for each maturity. If the generated scenario set is indeed arbitrage free, these interest rates
should coincide with the initial nominal interest rate curve. The results are shown in Figure 6.1a.

As a second test, we price a series of index-linked zero-coupon bonds with different maturities. The principal
of each bond is now indexed at the end of each year with the price inflation. The final payoff is then again
discounted back along the path of the short nominal interest rate for each scenario. The average discounted
value (over all scenarios) then yields the MC price of each index-linked bond. This price can subsequently be
converted into an real interest rate for each maturity. If the generated scenario set is indeed arbitrage free,
these interest rates should coincide with the initial real interest rate curve.

This comparison is made in Figure 6.1b. Note the perfect agreement between the real interest rates as
implied by the scenario set and the initial real interest rate curve. This is due to the application of the empirical
martingale simulation technique, which detects and corrects deviations from the desired martingale property.

Figure 6.1: Comparison between the nominal/real interest rates as determined by the scenario set and the
initial nominal/real interest rate curve.

(a) Nominal interest rate

0 20 40 60 80 100
1

1.5

2

2.5

3

3.5

 

 

Initial nominal interest rate curve

Interest rate zero bond (scenarios)

In
te

re
st

ra
te

(%
)

Maturity (year)

(b) Real interest rate
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Observing Figure 6.1a a good agreement between the nominal interest rates as implied by the scenario set
and the initial nominal curve is visible. This indicates that the interest rate scenarios are arbitrage free with
respect to the initial nominal interest rate curve. The remaining differences will further diminish when a larger
scenario set is used.
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