We have a sequence of prices S_{0}, S_{1}, \ldots, separated by a given time interval Δt, with the following characteristics:

1. Only two possible outcomes are allowed. If now the price is S_{i}, after some Δt (say one day) it will be either $S_{i+1}=S_{i} u$ or $S_{i+1}=S_{i} d$, u for up, d for down, $0<d<u$.
2. Which one of them is going to happen is decided by a probability p :

$$
\begin{aligned}
P\left(S_{i+1}=S_{i} u\right) & =p \\
P\left(S_{i+1}=S_{i} d\right) & =1-p
\end{aligned}
$$

3. The asset price S_{i} is "expected to grow" according to the interest rate

$$
E\left(S_{i+1}\right)=S_{i} e^{r \Delta t}
$$

Since the expectation is w.r.t the 'risk-neutral' probability P (defined by p), then from (1)-(3)

$$
\begin{equation*}
p u+(1-p) d=e^{r \Delta t} \tag{1}
\end{equation*}
$$

On the other hand, from the continuous model

$$
\begin{equation*}
E\left(S_{i+1}^{2}\right)=S_{i}^{2} e^{2 r+\sigma^{2} \Delta t} \tag{2}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\operatorname{Var}\left(S_{i+1}\right)=S_{i}^{2} e^{2 r \Delta t}\left(e^{\sigma^{2} \Delta t}-1\right) \tag{3}
\end{equation*}
$$

and from the discrete:

$$
\begin{equation*}
\operatorname{Var}\left(S_{i+1}\right)=p\left(S_{i} u\right)^{2}+(1-p)\left(S_{i} d\right)^{2}-S_{i}^{2}(p u+(1-p) d)^{2} . \tag{4}
\end{equation*}
$$

Equating (3) and (4):

$$
\begin{equation*}
e^{2 r \Delta t+\sigma^{2} \Delta t}=p u^{2}+(1-p) d^{2} . \tag{5}
\end{equation*}
$$

Finally imposing the symmetry condition

$$
\begin{equation*}
u d=1 \tag{6}
\end{equation*}
$$

one has 3 equations (1),(5) and (6) with 3 unknowns u, d and p. This gives the equation:

$$
u^{2}-2 \beta u+1=0, \quad \beta:=\frac{1}{2}\left(e^{-r t}+e^{\left(r+\sigma^{2}\right) \Delta t}\right)
$$

the solution is

$$
\begin{aligned}
u & =\beta+\sqrt{\beta^{2}-1} \\
d & =\beta-\sqrt{\beta^{2}-1} \\
p & =\frac{e^{r \Delta t}-d}{u-d} .
\end{aligned}
$$

a good approximation to u is the number $e^{\sigma \Delta t}$:

$$
u=e^{\sigma \Delta t}+O\left((\Delta t)^{3 / 2}\right)
$$

(Ex. 1.6)

Fix a time horizon T. Divide the interval $[0, T]$ into M subintervals, and let

$$
t_{0}=0, t_{1}=\Delta t, \text { etc, with } \Delta t=T / M .
$$

The tree is now constructed (forward) in the following way:

$$
\begin{aligned}
& \text { For } \mathrm{i}=1 \text { until M } \\
& S_{j i}:=S_{0} u^{j} d^{i-j}, \quad j=0,1, \ldots, i
\end{aligned}
$$

EndFor
setting $S_{0}=S_{00}$.
The European option price is computed (backwards) as:

$$
V_{i}=e^{-r \Delta t} E\left[V_{i+1}\right]
$$

This gives in the (ij) notation:

$$
\begin{equation*}
V_{j, i}=e^{-r \Delta t}\left(p V_{j+1, i+1}+(1-p) V_{j, i+1}\right) \tag{7}
\end{equation*}
$$

We have the following pseudo-code for a European call (put is similar):

- Input: r, σ, S_{0}, T, K and M
- Define the quantities: $\Delta t, u, d, p$ and $S_{00}:=S_{0}$
- Find the asset values $S_{j, M}$ at the end of the period, i.e.,

$$
S_{j, M}=S_{00} u^{j} d^{M-j} \text { for } j=0,1, \ldots, M
$$

- Compute the payoff $V_{j, M}=\left(S_{j, M}-K\right)^{+}$, for $j=0,1, \ldots, M$
- Iterate (7) backwards for $i=M-1, \ldots, 0$, and for all $j=0,1, \ldots, i$
- return the price V_{00}

Define the iteration:

$$
\begin{equation*}
V_{j, i}=\max \left\{\left(S_{j, i}-K\right)^{+}, e^{-r \Delta t}\left(p V_{j+1, i+1}+(1-p) V_{j, i+1}\right)\right\} \tag{8}
\end{equation*}
$$

We have the following pseudo-code for an American call:

- Input: r, σ, S_{0}, T, K and M
- Define the quantities: $\Delta t, u, d, p$ and $S_{00}:=S_{0}$
- Find the tree $S_{j, i}$ for ALL times, i.e., $S_{j, i}=S_{00} u^{j} d^{i-j}$ for $i=1, \ldots, M$ and $j=0,1, \ldots, i$
- Compute the payoff $V_{j, M}=\left(S_{j, M}-K\right)^{+}$, for $j=0,1, \ldots, M$
- Iterate (8) backwards for $i=M-1, \ldots, 0$, and for all $j=0,1, \ldots, i$
- return the price V_{00}
- The European and the American algorithms give the same value for a call, provided no dividends are paid (which is the case now). The European and the American put values are always different.
- The European algorithm generates prices V_{00}^{M} that converge towards the price of the continuous model for $M \rightarrow \infty$ (Exercise 1.8)
- The American algorithm also converges to the price of the continuous model (more difficult to prove)
- The algorithms may be extended to the case of discrete dividend, the tree might not be 'recombining'.
- It is possible to extend the tree such that 3 outcomes are allowed, thus 3 probabilities $p 1, p 2, p 3$ should be found. The trinomial method is more accurate.

Now we derive the European price from a different principle. The principle is called replication: we construct a portfolio that 'replicates' the option price at maturity. We construct a so-called 'Hedging' portfolio.
Assume a one-period model, i.e., only one time step. Let us drop the assumption $E\left(S_{1}\right)=e^{r t} S_{0}$ and that we now the probabilities of up and down movements.
Say that I bought one option, from a bank, and I paid V_{0}. What can I do to eliminate the risk? Make a portfolio such that the return is the same as the return from a bank account.
The portfolio consists of the asset S and the option V, I long Δ units of the asset, and I am short V.
Today the balance is:

$$
\Pi_{0}=S_{0} \Delta-V_{0}
$$

Two possibilities arise: S_{0} becomes $S_{1}=S_{0} u$ or $S_{1}=S_{0} d$. Therefore, two possibilities arise for Π :

$$
\Pi^{u}=S_{0} u \Delta-V^{u}, \quad \text { or } \quad \Pi^{d}=S_{0} d \Delta-V^{d}
$$

The risk is eliminated if this quantities are equal $\Pi_{T}=\Pi^{u}=\Pi^{d}$, that gives the strategy:

$$
\begin{equation*}
\Delta=\frac{V^{u}-V^{d}}{S_{0}(u-d)} \tag{10}
\end{equation*}
$$

On the other hand, the 'no-arbitrage' assumption yields

$$
\begin{equation*}
\Pi_{T}=\Pi_{0} e^{r T} \tag{11}
\end{equation*}
$$

(I cannot make more or less money from my portfolio than by investing on a bank account)

We have

$$
S_{0} \Delta-V_{0}=\Pi_{0}=e^{-r T} \Pi_{T}=e^{-r T}\left(S_{0} u \Delta-V^{u}\right),
$$

and after substituting (10) here:

$$
V_{0}=e^{-r T}\left\{q V^{u}+(1-q) V^{d}\right\}, \quad \text { where } \quad q:=\frac{e^{r T}-d}{u-d} .
$$

If q is to be interpreted as a probability, then $0<q<1$, which is equivalent to $d<e^{r T}<u$. Violating this bound leads to arbitrage.
The value of the option is obtained by 'discounting' and 'averaging' with respect to the prob. measure Q defined by q :

$$
V_{0}=e^{-r T} E_{Q}\left[V_{T}\right]
$$

Q is sometimes called risk-neutral measure, or equivalent martingale

One also finds

$$
E_{Q}\left(S_{T}\right)=S_{0} e^{r T}
$$

which is the so-called martingale property for discounted prices.

Summarizing:

- We have obtained the same expression for p and q, so replication and risk-neutral valuation give the same price.
- The real-world is NOT risk-neutral. Moreover, pricing with the real-world probability DOES NOT give the right answer. Pricing with the risk-neutral probability is a tool that gives the right answer, in the sense that it can be perfectly hedged.
- The principles here are also valid for multi-periods and the continuous model.
- In the limit Δ becomes $\Delta=\frac{\partial V(t, S)}{\partial S}$, which appears in continuous models

