
Dividends

� The owner of a stock theoretically owns a piece of the company. This ownership can
only be turned into cash, if he owns so many of the stocks that he can take over the
company and keep all profits for himself, which is unrealistically (for most of us).� To the average investor the value in holding the stock comes from the dividends and
any growth in the stock’s value. Dividends are the lump payments, paid out every
quarter or every six months, to the holder of the stock.� The amount of dividend varies from year to year depending on the profitability of the
company. Companies like to try to keep the level of dividends about the same.� The amount of dividend is decided by the board of directors of the company and is
usually set a month or so before the dividend is actually paid.� When the stock is bought it either comes with its entitlement to the next dividend
(cum) or not (ex). There is a date at around the time of dividend payment when the
stock goes from cum to ex. The original holder of a stock gets the dividend but the
person who buys it obviously does not.
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Options on dividend-paying equities

� A stock that is cum dividend is better than one that is ex dividend. Thus at the time
that the dividend is paid there will be a drop in the value of the stock. (The jump in
asset price is more complex in practice.)� The price of an option on an dividend-paying asset is affected by these payments.
Therefore we must modify the Black-Scholes analysis.� Different structures are possible for the dividend payment

– payments may be deterministic or stochastic

– payments may be made continuously or at discrete times� Here, we only consider deterministic dividends, whose amount and timing are known.� Let’s consider that in a time dt the underlying asset pays out a dividend DSdt with
D constant. The payment is independent of time except through the S-dependence.
It represents a continuous and constant dividend yield.� This structure is a good model for index options.
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� Arbitrage considerations show that the asset price must fall by the amount of dividend
payment. This is modeled as: dS = σSdw + (µ − D)Sdt .� The dividend payment also has its effect on the hedged portfolio: Since we receive
DSdt for every asset held and we hold −∆ of the underlying, the portfolio changes by
an amount −DS∆dt. Therefore, we add to our dΠ from before this amount:

dΠ = dV − ∆dS − DS∆dt.

We find after similar reasoning as for European options that dividend is included in the
following formulation:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − D)S

∂V

∂S
− rV = 0� This model is also applicable to options on foreign currencies, though only for short

dated options. Since holding an amount of foreign currency yields interest at the foreign
rate rf , in this case D = rf� A nonzero dividend yield also has an effect on the boundary and final conditions.
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Options on dividend-paying equities

� At the time that a dividend is paid there will be a drop in the value of the stock.� The price of an option on an dividend-paying asset is affected by these payments.� Different structures are possible for the dividend payment (deterministic or stochastic
with payments continuously or at discrete times)� We can also consider discrete deterministic dividends, whose amount and timing are
known.� Arbitrage arguments require:

V (S, t−d ) = V (S − D, t+d )
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Discretization

Change direction by τ = T − t (∂/∂τ = −∂/∂t). Look for a solution of the PDE

∂V

∂τ
−

1

2
σ2S2∂

2V

∂S2
− (r − D)S

∂V

∂S
+ rV = 0

with boundary and initial conditions. An interval [0, Smax] is divided into N parts [xi, xi+1]
The points Si and the mesh width

δSi = h =
SN − S0

N
=

1

N

determine the 1D S-grid, on which we approximate solution Vi (i = 1, N)
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Equivalence

Transformation to Diffusion Equation� It can sometimes be useful to transform the basic Black-Scholes equation by a change
of variables� Writing V (S, t) = eαx+βτy(x, τ ), with

S = ex, t = T − 2τ/σ2, α = −
1

2
(
2r

σ2
− 1), β = −

1

4
(
2r

σ2
+ 1)2� Then y(x, τ ) satisfies the basic diffusion equation

∂y

∂τ
=

∂2y

∂x2� With terms Sj∂jV /∂Sj, we deal with an Eulerian differential equation: The
convection-diffusion-reaction type equation can be transformed into a heat equation.
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Stability of time discretization

� If the order of consistency of implicit and explicit time discretizations is identical, one
typically favors an explicit discretization, because it costs less arithmetic operations
per time step compared to an implicit discretization. Consistency is a statement for
k → 0, whereas in practice one computes with a finite k > 0. This give rise to another
view at time discretizations. A quality criterion of a method with k > 0 is the stability
of a discretization.� The diffusion equation reads

∂y

∂t
−

∂2y

∂x2
= 0 in (0, 1) × (0,∞)

y(x, t) = 0 for x ∈ {0, 1}, t > 0

y(x, 0) = y0(x) for x ∈ (0, 1)
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An Example

� We take N ∈ IN∗ grid points and approximate
∂2y

∂x2
at the grid:

xi := i∆x, 1 ≤ i ≤ N, ∆x :=
1

N + 1� Approximate by second order difference quotients

∂2y(xi, t)

∂x2
=

1

(∆x)2
[y(xi−1, t) − 2y(xi, t) + y(xi+1, t)] + O((∆x)2) .� With the notation

y(t) := (y(x1, t), . . . , y(xN , t))T , y0 := (y0(x1, t), . . . , y0(xN , t))T

A :=
1

(∆x)2
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∈ IRN×N
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An Example

� The PDE changes into a discrete initial value problem

dy

dt
= Ay, y(0) = y0 (∗) .� Define the vectors z(k) ∈ IRN and the numbers λk ∈ IR, 1 ≤ k ≤ N , by

z
(k)
i := sin kπxi 1 ≤ i ≤ N, 1 ≤ k ≤ N,

λk :=
2

(∆x)2
(1 − cos kπ∆x) , 1 ≤ k ≤ N.

With the help of the additions theorems one easily calculates that the vectors z(k)

represent the Eigenvectors of A w.r.t. the eigenvalues −λk.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 9



An Example

� Therefore the exact solution of (∗) reads

y(t) =
N∑

k=1

αke
−λktz(k)

with
N∑

k=1

αkz
(k) = y0 .� Apply the explicit Euler method with constant step size ∆t to (∗), one obtains the

approximation

ỹ(i∆t; ∆t) =
N∑

k=1

αk(1 − λk∆t)iz(k) .� This equation should, for fixed ∆t and i → ∞ show the same asymptotic behavior as
the exact solution y(t) for t → ∞. Therefore,

|1 − λk∆t| < 1 ∀ 1 ≤ k ≤ N .
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� A simple calculation reveals

0 < λ1 ≤ λ2 ≤ . . . ≤ λN ,

λ1 =
4

(∆x)2
sin2 π∆x

2
= π2 + O((∆x)2),

λN =
2

(∆x)2
(1 + cos π∆x) = O((∆x)−2).� So,

∆t < 2λ−1
N = O((∆x)2).� This is a serious restriction on the time step, which is determined by the least interesting

solution component.
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� Would we apply the implicit Euler method with constant step size ∆t to (∗), we obtain
the approximation

ỹ(i∆t; ∆t) =
N∑

k=1

αk(1 + λk∆t)−iz(k) .� Due to λk > 0, 1 ≤ k ≤ N , this equation show for every time step ∆t > 0 the
same asymptotic behavior as the exact solution. Even for large step sizes we find a
qualitatively correct solution.� The IVP (∗) is an example of a stiff problem: The different components of the solution
decay in a very different way, and the components that decay fastest (and are therefore
least interesting), restrict the step size of the discretization.� The example above shows, that implicit schemes despite extra costs for the solution for
the solution of (possibly non-)linear systems of equations advantageous as compared
to explicit methods.
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Time Discretization

∂V (S, σ, t)

∂t
+ AhVh(S, σ, t) = 0.� Second order (O(∆t2)) accuracy: Crank-Nicolson, Backward difference formulae

(BDF), combinations of implicit and explicit schemes (IMEX)� Crank-Nicolson: θ = 1/2

V
(m+1)
h − V

(m)
h

∆t
+ θAhV

(m+1)
h + (1 − θ)AhV

(m)
h = 0� BDF 2:

3/2V
(m+1)
h − 2V

(m)
h + 1/2V

(m−1)
h

∆t
+ AhV

(m+1)
h = 0
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