
Financial industry; Work at banks

Front office ⇔ Back office

Pricing and selling products ⇔ Validation of prices, research into
alternative models

Pricing approach:

1. Start with some financial product
2. Model asset prices involved (SDEs)
3. Calibrate the model to market data (numerics, optimization)
4. Model product price correspondingly (P(I)DE or integral)
5. Price the product of interest (numerics, MC)
6. Set up a hedge to remove the risk to the product (optimization)
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Risk Neutral valuation

We already know:
For a given market described by the equations:{

dB(t) = rB(t)dt
dS(t) = µS(t)dt + σS(t)dW (t)P,

and a contingent claim of the form

χ = V (T ,S(T )).

Then, the arbitrage free price is given, via Ito’s Lemma, by V (t,S(t)),
where function V (t,S(t)) satisfies the Black-Scholes equation:{

∂V
∂t + rS(t)∂V

∂S + 1
2S2(t)σ2 ∂2V

∂S2 − rV = 0
V (T ,S(T )) = χ.
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Pricing: Feynman-Kac Theorem

Given the system of stochastic differential equations:

dSt = rStdt + σStdW Q
t ,

and an option, V , such that

V (S , t) = e−r(T−t)EQ{V (S(T ),T )|S(t)}

with the sum of the first derivatives of the option square integrable.

Then the value, V (S(t), t), is the unique solution of the
final condition problem ∂V

∂t + 1
2σ2S2 ∂2V

∂S2 + rS ∂V
∂S − rV = 0,

V (S ,T ) = given
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A pricing approach

V (S(t0), t0) = e−r(T−t0)EQ{V (S(T ),T )|S(t0)}

Quadrature:

V (S(t0), t0) = e−r(T−t0)

∫
R

V (S(T ),T )f (S(T )|S(t0))dS

Trans. PDF, f (S(T )|S(t0)), typically not available, but the
characteristic function, φ, often is.
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Risk Neutral valuation

Feynman-Kac:
The Black-Scholes equation is of the form which can be solved using a
stochastic representation formula via Feynman-Kac.

Is there an exact solution?
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Analytical Solution of BS prices

In order to solve the Black-Scholes Equation, we apply Itô’s formula to
the function

gt = log S(t)

we then have:

dg = gsdS + gtdt +
1

2
gs,s(dS)2,

=
1

S(t)
dS − 1

2

1

S(t)2
(dS)2,

=
1

S(t)

(
rS(t)dt + σS(t)dW Q

t

)
+

1

2

1

S(t)2
σ2S(t)2dt,

=

(
r − 1

2
σ2

)
dt + σdW Q

t ,
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Analytical Solution of BS prices

Finally we have:∫ T

t

d log S(u) =

∫ T

t

(
r − 1

2
σ2

)
dt +

∫ T

t

σdW Q
t ,

log
S(T )

S(t)
=

(
r − 1

2
σ2

)
(T − t) + σ

(
W (T )Q −W (t)Q)

,

So, we find:

S(T ) = S0 exp

((
r − 1

2
σ2

)
(T − t) + σ

(
W (T )Q −W (t)Q))

.

Feynman-Kac theorem gives:

V (t,S(t)) = e−r(T−t)

∫ +∞

−∞
V (T ,S(T ))f (s)ds

= e−r(T−t)

∫ +∞

−∞
V (T ,S0e

Z )f (z)dz
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Analytical Solution of BS prices

where Z is a random variable with the distribution:

N

((
r − 1

2
σ2

)
(T − t) , σ

√
T − t

)
.

If we now take
V (T ,S(T )) = max(S(T )− K , 0)

we have:

EQ (
max(S0e

Z , 0)|Ft

)
= 0 ·Q

(
S0e

Z ≤ K
)

+

∫ ∞

log K
S0

(S0e
z − K ) f (z)dz .

After simple calculations we end up with the Black-Scholes pricing
theorem.
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Analytical Solution of BS prices

Theorem (Black-Scholes formula)

The price of a European call option with strike price K and maturity T is
given by the formula:

V (t,S(t)) = S0φ(d1(t,S0))− e−r(T−t)Kφ(d2(t,S0)), with

d1(t,S0) =
1

σ
√

T − t

(
log

S0

K
+

(
r +

1

2
σ2

)
(T − t)

)
,

d2(t,S0) = d1(t,St)− σ
√

T − t,

where φ is the cumulative distribution function for standard normal
distribution i.e., N(0,1).
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Deficiencies of the Black-Scholes Model

Implied Volatility

Suppose we solve the 1D Black-Scholes equation

∂V

∂t
+

1

2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0

for σ, since V is known from the market.

In practice, the implied volatility for different strikes K and
maturities T on the same asset is not constant.

This shape is commonly known as the volatility smile, or skew.
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Summary of BS model

In the Black-Scholes formula we have:

time to maturity: T (known)

strike : K (known)

risk free rate: r (known)

current underlying price: S0 (known)

What about σ ? The risk is a driving factor for options. Under normal
circumstances the option’s theoretical value is a monotonic increasing
function of the volatility. This means there is a one-to-one relation
between the option price and the volatility.

How can we test whether this is true in reality?

Computational Finance (Summerschool) Hitotsubashi University August 2009 11 / 100



Historical Volatility

Figure: S&P500 Spot level and 30-day realized volatility. Picture was adopted from work of Hans Buehler.
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Black-Scholes model (1973)

Some general information: http://en.wikipedia.org/wiki/Black-Scholes
Consequences:
(Ajay Shah) ”Black, Merton and Scholes: Their work and its
consequences”
http://www.mayin.org/ajayshah/PDFDOCS/Shah1997 bms.pdf

Figure: Market Crash on 19 October 1987, LEFT: Dow Jones, RIGHT: FTSE
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Market Implied volatility

Example:
Suppose we have given a standard call option C on 100 shares of
company Z. The strike K = $75 and expires in 55 days. The risk free
rate is 5%. The current stock price is $85, and from historical data we
have obtained σ = 0.25. So, the call price given by the BS model is:

BS(σ, r ,T ,K ,S0) = BS(25%, 5%,
55

365
, 75, 85) = 10.8667

But on the market the price of such a call option is ¿12.25.

What does it mean?
An Arbitrage?
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Market Implied volatility

Example continuation
Based on the standard BS pricing model, the volatility implied by the
market price C is 43.89% i.e.,

σCmarket = fσ(Cmarket) = 43.89%.

In order to check the calculation we put back σmarket in the pricing
model, i.e.,

V (St , t) = BS(σmarket , r ,T ,K ,S0)

= BS(43.89%, 5%,
55

365
, $75, $85) = $12.25

How to find this implied volatility?
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Market Implied volatility

Implied Volatility: ”The wrong number in the wrong formula to get the
right price”. [Rebonato 1999]

We have:
V (St , t) = BS(σ, r ,T ,K ,S0),

where BS is monotonically increasing in σ (higher volatility corresponds
to higher price). Now by assuming the existence of some inverse function

fσ(·) = BS−1(·)

so that
σCmarket = fσ(Cmarket , r ,T ,K ,S0)

we can compute the implied volatility for traded options with different
strikes and maturities, and test the Black-Scholes model.
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Solving the inverse pricing model function

How to find implied volatility?
The BS pricing function BS does not have a closed form solution for the
inverse fσ(·). Instead, a root finding technique is used to solve the
equation:

BS(σ, r ,T ,K ,S0)− Cmarket = 0.

There are many ways to solve this equation, one of the most popular
method are methods of ”Newton-Raphson” and ”Brent”1. Since the
option prices can move quickly, it is often important to use the most
efficient method when calculating implied volatilities.

1http://en.wikipedia.org/wiki/Brent%27s method
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Method of Newton-Raphson

The idea of the method is as follows: One starts with an initial guess
which is reasonably close to the true root, then the function is
approximated by its tangent line, and one computes the x-intercept of
this tangent line.
Suppose f : [a, b] → R is a differentiable function. From basic calculus
we have:

g ′(xn) =
g(xn)− 0

xn − xn+1
=

0− g(xn)

xn+1 − xn
(1)

which gives the iteration:

xn+1 = xn −
g(xn)

g ′(xn)
, (2)

with some arbitrary initial value x0. In the case of BS we have:

σi+1 = σi −
BS(σi , ·)− Cmarket

∂BS(σi ,·)
∂σi

.
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Method of Newton

Theorem
Suppose g has a continuous second derivative, and suppose xex ∈ R
satisfies g(xex) = 0 and g ′(xex) 6= 0. Then there exists a δ > 0 such that
for |x0 − xex | < δ the sequence given in (2) is defined for all n > 0,
limn→+∞ |xn − xex | = 0, and there exists a constant C such that:

|xn+1 − xex | ≤ C |xn − xex |2.

Newton’s method provides rapid convergence, however it requires the
first partial derivative of the option’s theoretical value with respect to
volatility, i.e. ∂C

∂σ which in many pricing models has to be found
numerically.
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Method of Newton
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Implied volatility and Black-Scholes

Why is the implied volatility so important?

Implied volatility: Model
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Figure: MODEL–LEFT: BS Call Prices, RIGHT: Implied Volatilities.
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Implied volatility and Black-Scholes

Why is the implied volatility so important?

Implied volatility: Market
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Figure: MARKET DATA– LEFT: Market Call Prices, RIGHT: Implied Volatilities.
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Implied volatility and Black-Scholes

Why is the implied volatility so important?

Implied volatility Surface
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Deficiencies of the Black-Scholes Model

⇒ The idea of implied volatility does not fit in the Black-Scholes model

Look for market consistent asset price models.

⇒ Use local volatility, Heston’s model, or a a process with jumps, to
better fit market data, and allow for smile effects
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Market and Jumps
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Market and Jumps

Brownian motion has continuous paths St , however real stock data
may contain jumps in the prices.

It is common to include jumps in the stock price model by means of
a Poisson process.

Including jumps may give more realistic asset price simulation, BUT
the risk of an option cannot be hedged away to zero !

Definition (Jumps and counting variable)

Let us denote the time instances for which a jump occurs by τj , with
τ1 < τ2 < τ3 . . . . We define the number of jumps be counted by the
counting variable Jt , with

τj = inf {t ≥ 0, Jt = j}.
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Bernoulli approach

Definition (Jumps via Bernoulli approach)

Let us define a subinterval of length δt = T
N and allow for only two

outcomes, a jump happened, or a jump didn’t happen with the
probabilities:

P(Jt − Jt−δt = 1) = λδt

P(Jt − Jt−δt = 0) = 1− λδt ,

for some λ such that 0 < λδt < 1. The parameter λ is referred to as the
intensity of the jump process. Then, the occurance of k jumps in
0 ≤ τ ≤ t has the probability:

P(Jt − J0 = k) =

(
n
k

)
(λδt)

k (1− λδt)
n−k

.

where the trials in each subinterval are considered independent.
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Bernoulli approach

Suppose now that: n →∞ then the Bernoulli process converges to

(λt)k

k!
e−λt ∼ Poisson(λ)

Definition (Poisson process)

The stochastic process {Jt , t ≥ 0} is called a Poisson process if the
following conditions hold:

1 J0 = 0,

2 Jt − Js are integer-valued for 0 ≤ s ≤ t ≤ ∞ and

P(Jt − Js = k) =
λk(t − s)k

k!
e−λ(t−s) for k = 0, 1, 2, . . .

3 The increments Jt2 − Jt1 and Jt4 − Jt3 are independent for all
0 ≤ t1 < t2 < t3 < t4.
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Bernoulli approach

Properties (Poisson Process)
1 Jt is right-continuous and nondecreasing,

2 The times between successive jumps are independent and
exponentially distributed with parameter λ. Thus,

P(τj+1 − τj > δτ ) = e−λδτ for each δτ .

3 Jt is a Markov process.

4 E(Jt) = λt, and Var(Jt) = λt.
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Jumps

Suppose we have given a stock variable St which jumps at time τj . We
denote τ+ the moment after one particular jump and τ− the moment
before.

The absolute size of the jump is:

δS = Sτ+ − Sτ− ,

which we model as a proportional jump,

Sτ+ = qSτ− with q > 0, so δS = qSτ− − Sτ− = (q − 1)Sτ− .

The jump sizes equal q − 1 times the current asset price.

Assuming that for given set of i.i.d. qτ1 , qτ2 , . . . r.v.the process

dSt = (qt − 1)StdJt ,

is called Compound Poisson Process.
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Simulating Jumps- Jump Diffusion Process

If we combine geometric Brownian motion and jump process we obtain:

dSt = µStdt + σStdWt + (qt − 1)StdJt .
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Figure: Geometric Brownian motion with jumps: δ = 0.01, µ = 0.04, σ = 0.2, λ = 0.5, LEFT: q = 1.4,RIGHT q = 0.6.
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Simulating Jumps- Jump Diffusion Process

An analytical solution of the equation

dSt = µStdt + σStdWt + (qt − 1)StdJt ,

can be calculated on each of the jump-free subintervals τj < t < τj+1

where the SDE is just a GBM.
When at time τ1 a jump of size:

(δS) = (qτ1 − 1)Sτ−1
,

occurs, and thereafter the solution is given by:

St = S0 exp

(
(µ− σ2

2
)t + σWt

)
+ (qτ1 − 1) Sτ−1

In general we obtain:

St = S0 exp

(
(µ− σ2

2
)t + σWt

)
+

Jt∑
j=1

Sτ−j

(
qτj − 1

)
.
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Market modeled by alternative processes

dSt = rStdt + σStdW Q
t

⇒ St = S0e
Xt , Xt = (r − σ2

2
)t + σW Q

t .

Compound Poisson (jump diffusion model)

Xt = (µ− σ2

2
)t + σWt +

Nt∑
i=1

Yi ,

where Nt is Poisson: P(Nt = n) = e−λt(λt)n/n!, with intensity λ,
Yi i.i.d. with law F , for example, normally distributed (mean µJ ,
variance σ2

J).
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Lévy Processes

Lévy process {Xt}t≥0: process with stationary, independent
increments.

Brownian motion and Poisson processes belong to this class

Combinations of these give Jump-Diffusion processes

Replace deterministic time by a random business time given by a
Gamma process: the Variance Gamma process [Carr, Madan, Chang
1998]. Infinite activity jumps:

small jumps describe the day-to-day ”noise” that causes minor
fluctuations in stock prices;
big jumps describe large stock price movements caused by major
market upsets
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SDE Simulation

Variance Gamma process with different gamma distributed times,
positive drift
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