
Previously

We have already seen the market:{
dBt = rBtdt,
dSt = µStdt + σStdW P

t .

Whereas under Q measure µ = r , i.e.:

dSt = rStdt + σStdW Q
t .

In an alternative process we aim to generalize the assumptions about
constant parameters r and σ.
We can choose:

1 Constant: r , σ.

2 Deterministic- Piecewise constant: ri , σi , on [Ti−1,Ti ].

3 Stochastic- time dependent: rt = f (t,W r
t ), σt = g(t,W σ

t ).
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Stochastic Volatility: Model of Heston

Let us start with a stochastic volatility:

For the state vector Xt = [St , σt ]
T let us fix a probability space (Ω,F ,P)

and a filtration Fn = {Ft : t ≥ 0} which satisfies the usual conditions,
and Xt is assumed to be Markov relative to (Ft). The model that we are
consider next is the so-called Heston Stochastic Volatility model: dSt = rStdt +

√
σtStdW S

t Heston Equity process
dσt = −κ(σt − σ)dt + γ

√
σtdW σ

t CIR process
dBt = rBtdt bank account

And:
dW S

t dW σ
t = ρdt
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Stochastic Volatility: Model of Heston

Parameters interpretation.

r is the rate of the return,

σ is the long vol, or long run average price volatility
(limt→∞ Eσt = σ)

κ is the rate at which σt reverts to σ,

γ is the vol- vol, or volatility of the volatility; as the name suggests,
this determines the variance of σt .
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Stochastic Volatility: Model of Heston

Let us set: T = 2; v0 = 0.1; r = 0.05; S0 = 1; κ = 0.2; σ = 0.3;
γ = 0.1; ρ = −0.8;
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Stochastic Volatility: Model of Heston

Sample paths of a geometric Brownian motion and the spot process in
the Heston’s model obtained with the same set of random numbers.
Despite the fact that the volatility in the GBM is constant, whereas in
Heston’s model it is driven by a mean reverting process the sample paths
are indistinguishable by mere eye.
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Stochastic Volatility: Model of Heston

A closer inspection of Heston’s model does, however, reveal some
important differences with respect to GBM.

1 the probability density functions of (log-)returns have heavier tails -
exponential compared to Gaussian

2 they are similar to hyperbolic distributions (Weron; 2004), i.e. in the
log-linear scale they resemble hyperbolas (rather than parabolas)
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Stochastic Volatility: Model of Heston
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Financial mathematics aspects

Knowledge: What product are we dealing with?

Contract specification (contract function),
Early-Exercise product, or not,
Product’s lifetime,

⇒ Determines the model for underlying asset (stochastic interest
rate, or not. . . )

Financial sub-problem: Product pricing or parameter calibration,
⇒ All this determines the choice of numerical method.
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Semi-Exact Solutions for option pricing

It is generally difficult to find an analytic solution for
multi-dimensional correlated stochastic differential equations;

Monte-Carlo methods are straightforward but:

Depends on the sampling seed;
Involves sampling error;
Requires powerful computing machines;

Alternative methods need to be used!

Although for complicated models, the distribution is unknown
analytically, the corresponding characteristic function can be often
derived analytically/semi-analytically;

Alternatives to Monte-Carlo methods for pricing derivatives are
Fourier based algorithms, which are based on determining
characteristic function.
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A pricing approach

V (S(t0), t0) = e−r(T−t0)EQ{V (S(T ),T )|S(t0)}

Quadrature:

V (S(t0), t0) = e−r(T−t0)

∫
R

V (S(T ),T )f (S(T )|S(t0))dS

Trans. PDF, f (S(T )|S(t0)), typically not available, but the
characteristic function, φ, often is.
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Motivation Fourier Methods

Derive pricing methods that

are computationally fast
are not restricted to Gaussian-based models
should work as long as we have a characteristic function,

φ(u) =

Z ∞

−∞
e iux f (x)dx ;

(available for Lévy processes and also for Heston’s model).
In probability theory a characteristic function of a continuous random
variable X , equals the Fourier transform of the density of X .
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Fourier Transformation

The continuous Fourier transform is one of the most important
transforms in the signal analysis.

It transforms one function into another, which is called the
frequency domain representation of the original function (where the
original function is often a function in the time-domain).

In this specific case, both domains are continuous and unbounded.

There are several common conventions for defining the Fourier
transform of a complex-valued Lebesgue integrable functions.

In communications and signal processing,
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Fourier Transformation

Suppose we have given a function f : R → R which is in L1, i.e.,∫ +∞

−∞
|f (x)| dx <∞,

and if f (x) is continuous, then the Fourier transform of f (x) is defined as:

φ(u) = E
(
e iuX

)
=

∫ +∞

−∞
e iux f (x)dx =

∫ +∞

−∞
e iuxdF (x),

where x ∈ R.
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Class of AJD processes

Suppose we have given a following system of SDEs:

dXt = µ(Xt)dt + σ(Xt)dWt + dZt ,

Moreover, for processes in the affine jump diffusion (AJD) class it is
assumed that drift, volatility, jump intensities and interest rate
components are of the affine form, i.e.

µ(Xt) = a0 + a1Xt for (a0, a1) ∈ Rn × Rn×n,

λ(Xt) = b0 + bT
1 Xt , for (b0, b1) ∈ R× Rn,

σ(Xt)σ(Xt)
T = (c0)ij + (c1)

T
ij Xt , (c0, c1) ∈ Rn×n × Rn×n×n,

r(Xt) = r0 + rT
1 Xt , for (r0, r1) ∈ R× Rn.
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Characteristic function for AJD

Duffie, Pan and Singleton (2000) have shown that for affine jump
diffusion processes the discounted characteristic function defined as:

φ(Xt, t,T,u) ≡ EQ
(
e−

R T
t

r(Xs)dse iuXT |Ft

)
for u ∈ Cn,

with boundary condition:

φ(XT,T,T,u) = e iuT XT ,

has a solution of a following form:

φ(Xt, t,T,u) = eA(u,t,T )+B(u,t,T )T Xt ,

How to find the coefficients A(u, t,T ) and B(u, t,T)T ?
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Characteristic function for AJD

The coefficients A(u, t,T ) and B(u, t,T)T have to satisfy the following
system of Riccati-type ODEs1:

d

dτ
A(u, τ) = −r0 + BTa0 +

1

2
BT c0B

d

dτ
B(u, τ) = −r1 + aT

1 B +
1

2
BT c1B.

1Note that we do not consider jumps any more.
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An example: Black-Scholes

For a given stock-process

dSt = rStdt + σStdW Q
t ,

with the money savings account Bt :

dBt = rBtdt,

the pricing PDE is given by:

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2 ∂

2V

∂S2
− rV = 0. (1)

We know that the stock process St is not affine, therefore we define a
transform:

xt = log St .
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Black Scholes Model

For GBM we have the following SDE:

dSt = rStdt + σStdW Q
t ,

The process is not affine because of

σ(St)σ(St) = σ2S2
t ,

To consider the process into the affine class we define:

xt = log St ,

which gives following SDE

d log St =

(
r − 1

2
σ2

)
dt + σdW Q

t
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Black Scholes Model

The model is in the AJD class of processes, moreover we have:

µ(xt) = r − 1

2
σ2︸ ︷︷ ︸

a0

+ 0︸︷︷︸
a1

xt ,

σ(xt)σ(xt) = σ2︸︷︷︸
c0

+ 0︸︷︷︸
c1

xt ,

and
r(xt) = 0︸︷︷︸

r0

+ 0︸︷︷︸
r1

xt
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Black Scholes Model

In order to find the characteristic function:

φ(τ) = eA(τ)+Bx (τ)x0

we set up the system of ODEs
dBx(τ)

dτ
= −r1 + a1Bx(τ) + 1

2Bx(τ)c1Bx(τ)

dA(τ)

dτ
= −r0 + a0Bx(τ) + 1

2Bx(τ)c0Bx(τ)

which reads:
dBx(τ)

dτ
= 0

dA(τ)

dτ
=

(
r − 1

2σ
2
)
Bx(τ) + 1

2σ
2Bx(τ)Bx(τ)
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Black Scholes Model

By taking the boundary conditions:

Bx(0, u) = iu,

and
A(0, u) = 0,

we finally obtain:
Bx(τ, u) = iu,

A(τ, u) =
[
iu
(
r − 1

2σ
2
)
− 1

2u2σ2
]
τ.

The characteristic function for GBM is now given by:

φ(τ) = e iu log S0+iu(r− 1
2σ

2)τ− 1
2 u2σ2τ
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An example: Black-Scholes Case

With this substitution we have:

Vu(xt , t) = V (St , t).

So: 

∂V

∂t
=

∂Vu

∂t
,

∂V

∂S
=

∂Vu

∂x

∂x

∂S
=

1

S

∂Vu

∂x
,

∂2V

∂S2
= − 1

S2

∂Vu

∂x
+

1

S2

∂2Vu

∂x2

The pricing PDE now reads:

∂Vu

∂t
+ rS

1

S

∂Vu

∂x
+

1

2
σ2S2

(
− 1

S2

∂Vu

∂x
+

1

S2

∂2Vu

∂x2

)
− rVu = 0,

which simply becomes:

∂Vu

∂t
+ r

∂Vu

∂x
+

1

2
σ2

(
−∂Vu

∂x
+
∂2Vu

∂x2

)
− rVu = 0.
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An example: Black-Scholes Case

By setting
τ = T − t,

we have:

−∂Vu

∂τ
+ r

∂Vu

∂x
+

1

2
σ2

(
−∂Vu

∂x
+
∂2Vu

∂x2

)
− rVu = 0.

By the results of Duffie-Pan-Singelton, we know that the discounted
characteristic function has the following form:

φ(u, τ) = eA(u,τ)+B(u,τ)x ,

with boundary condition: φ(u, 0) = e iux . By partial differentiation we
have: 

∂φ

∂τ
= φ

(
∂A

∂τ
+ x

∂B

∂τ

)
,

∂φ

∂x
= φB,

∂2φ

∂x2
= φB2.

(2)
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An example: Black-Scholes Case

Now, by substituting these quantities in the pricing PDE we have:

−φ
(
∂A

∂τ
+
∂B

∂τ

)
+

(
r − 1

2
σ2

)
φB +

1

2
σ2φB2 − rφ = 0,

or

−
(
∂A

∂τ
+
∂B

∂τ

)
+

(
r − 1

2
σ2

)
B +

1

2
σ2B2 − r = 0.

From above we obtain the set of ODEs in the following way:
∂B

∂τ
= 0,

∂A

∂τ
=

(
r − 1

2
σ2

)
B +

1

2
σ2B2 − r .

(3)
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An example: Black-Scholes Case

By using the boundary conditions we find
B(u, τ) = iu,

A(u, τ) =

(
r − 1

2
σ2

)
iuτ − 1

2
σ2u2τ − rτ.

(4)

So the discounted characteristic function is given by

φ(u, τ) = e(r− 1
2σ

2)iuτ− 1
2σ

2u2τ−rτ+iux .
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Heston Model

From definition of Heston we have:{
dSt = rtStdt +

√
σtStdW 1

t

dσt = −κ (σt − σ) dt + γ
√
σtdW 2

t

Is it affine?

σ(Xt)σ(Xt)
T =

[
σtS

2
t Stσtγρx,σ

Stσtγρx,σ γ2σt

]
IT IS NOT AFFINE!
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Heston Model

Let us define the log transform:

xt = log St ,{
dxt =

(
rt − 1

2σt

)
dt +

√
σtdW 1

t ,
dσt = −κ (σt − σ) dt + γ

√
σtdW 2

t .

Is it affine?? Let us have a look at the instantaneous covariance matrix:

σ(Xt)σ(Xt)
T =

[
σt σtγρx,σ

σtγρx,σ γ2σt

]
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Fourier Transformation

Suppose we have given a function f : R → R which is in L1, i.e.,∫ +∞

−∞
|f (x)| dx <∞,

and if f (x) is continuous, then the Fourier transform of f (x) is defined as:

φ(u) = E
(
e iuX

)
=

∫ +∞

−∞
e iux f (x)dx =

∫ +∞

−∞
e iuxdF (x),

where x ∈ R.
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Fourier Transformation

Assuming that φ(u) is in L1, the original function can be recovered from
its Fourier transform by inversion:

f (x) =
1

2π

∫ +∞

−∞
e−iuxφ(u)du.

Now, suppose that we discretize the domain for x , and u into N grid
points, then we consider the vectors f, φ ∈ CN :

f =


f1
f2
...

fN−1

fN

 , φ =


φ1

φ2

...
φN−1

φN

 . (5)
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Fourier Transformation

If we let
ωN = e−

2πi
N ,

the discretized -Fourier Transform- matrix M ∈ CN×N is then defined as:

M =


1 1 1 . . . 1

1 ω1
N ω2

N . . . ωN−1
N

1 ω2
N ω4

N . . . ω
2(N−1)
N

...
...

...
...

...

1 ωN−1
N ω

N(N−1)
N . . . ω

(N−1)(N−1)
N

 , (6)

that is,
Mnk = ω

(n−1)(k−1)
N .
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Fourier Transformation

Now, the discrete Fourier transform f of φ is given by the matrix
multiplication:

f = Mφ,

or equivalently:

fk =
N∑

n=1

φne
− 2πi

N (n−1)(k−1) =
N∑

n=1

φnω
(n−1)(k−1)
N .
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Fourier Transformation

Lemma (Inversion Lemma)

Let φ(u) be a characteristic function and f (x) be a probability density
function of some continuous variable X . Then we have:

f (x) =
1

π
<
(∫ ∞

0

e−iuxφ(u)du

)
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Proof

From Fourier inverse we have:

f (x) =
1

2π

∫ +∞

−∞
e−iuxφ(u)du =

1

2π

(∫ 0

−∞
e−iuxφ(u)du

+

∫ +∞

0

e−iuxφ(u)du

)
.

where the first integral on the RHS can be written as:∫ 0

−∞
e−iuxφ(u)du =

∫ ∞
0

e ivxφ(−v)dv

=

∫ ∞
0

e−iuxφ(u)du

=

∫ +∞

0

e−iuxφ(u)du
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Proof

f (x) =
1

2π

(∫ 0

−∞
e−iuxφ(u)du +

∫ +∞

0

e−iuxφ(u)du

)
=

1

2π

(∫ +∞

0

e−iuxφ(u)du +

∫ +∞

0

e−iuxφ(u)du

)
,

=
1

π
<
(∫ ∞

0

e−iuxφ(u)du

)
.

The lemma above shows that we need to find the integral∫ ∞
0

e−iuxφ(u)du =

∫ ∞
0

γ(u)du.
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Fourier Transform Derivations

Now, we define a trapezoidal integration over domain [0, τ ], for which we
have: ∫ τ

0

γ(u)du ≈ ∆u

2

[
γ(u1) + 2

N−1∑
n=2

γ(un) + γ(uN)

]

= ∆u

[
N−1∑
n=2

γ(un) +
1

2
(γ(u1) + γ(uN))

]
.

If we set
τ = N∆u,

un = (n − 1)∆u

xk = −b + ∆x(k − 1),

where: k = 1, . . . ,N to be the grid in the x-domain.
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Fourier Transform Derivations

The constant b is a tuning parameter which can be freely chosen, but
here we take:

b =
N∆x

2
.

So now, we have:∫ τ

0

γ(u)du ≈ ∆u

[
N∑

n=1

e−i [(n−1)∆u ][−b+∆x (k−1)]φ(u)

−1

2

[
e−ixu1φ(u1) + e ixuNφ(uN)

]]

∫ τ

0

γ(u)du ≈ ∆u

[
N∑

n=1

e−i∆x∆u(n−1)(k−1)e i(n−1)b∆uφ(u)

− 1

2

[
e−ixu1φ(u1) + e ixuNφ(uN)

]]
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Fourier Transform Derivations

If we set

∆x∆u =
2π

N
,

we obtain∫ τ

0

γ(u)du ≈ ∆u

[
N∑

n=1

e−i 2π
N (n−1)(k−1)e i(n−1)b∆uφ(u)

− 1

2

[
e−ixu1φ(u1) + e ixuNφ(uN)

]]
.
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FFT Implementation

So finally we obtain:

f (x) =
1

π
<
(∫ ∞

0

e−iuxφ(u)du

)
=

1

π
<

{
∆u

[
N∑

n=1

e−i 2π
N (n−1)(k−1)e i(n−1)b∆uφ(u)− 1

2
(γ1 + γ2)

]}
.

where
γ1 = e−ixu1φ(u1),

and
γ2 = e ixuNφ(uN).

Why this kind of representation?
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FFT Implementation

This is a matrix multiplication, which requires about N2 (complex)
multiplications and N2 (complex) additions. The number of
arithmetic operations is of order N2, i.e., O(N2).

In 1965 Cooley and Tukey showed that it is possible to have the
DFT evaluated in O(N log2 N) operations.

The algorithm was called the Fast Fourier Transform, FFT. Standard
routines are available in many computer languages.
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FFT Implementation

Let us have a look at the FFT algorithm in Matlab!

Let us make an experiment!
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FFT Implementation

We take the characteristic function of the normal distribution:

φ(t) = exp

(
µit − 1

2
σ2t2

)
and we take µ = 1, σ = 1. Now, we compare the original pdf and the
FFT approximation, with Simpson’s rule,

N 24 26 28 210 212

time [ms] 0.98 1.1 1.4 2.9 10.0
SSE 5.6 4.3 7.8E-4 5.7E-7 5.7E-7
F (∞) 6.6 4.3 9.9922 1.000 1.000
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Pricing

How to get price of a Call Option if the CHF of the asset is known?

Gil-Palaez Inverse theorem,

⇒ Carr-Madan Pricing,

→ CONV method for early-exercise Bermudan options

⇒ COS Method
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Carr-Madan Pricing Technique

Let us assume that the discounted characteristic function is found. To
price plain vanilla options, we define: ST denote the price at maturity of
the underlying asset of a European call with strike K , moreover
S ≡ log(ST ) with associated risk neutral density given by fT (s) under
measure Q. Then the Fourier transform of fT (s), or equivalently the
characteristic function of S , can be written as

φT (u) =

∫ +∞

−∞
e ius fT (s)ds

If we take k ≡ log K , risk neutral valuation then yields:

Π(t,T ,K ) =

∫ +∞

−∞
e−

R T
t

rsds
(
eS − ek

)+
fT (s)ds.
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Carr-Madan Pricing Technique

Since
lim

K→0
Π(t,T ,K ) = lim

k→−∞
Π(t,T , ek) = S0,

Π(t,T , ek) is not in L1, as Π(t,T , ek) does not tend to zero for
k → −∞.
Let us therefore consider the modified call price

π(t,T , k) ≡ eαkΠ(t,T , ek)

for α > 0 assuming existence of Fourier transform of π(t,T , k) we have:

ψT (v) ≡ ̂π(t,T , k) =

∫ +∞

−∞
e ivkπ(t,T , k)dk.

Inverting gives:

π(t,T , k) =
1

2π

∫ +∞

−∞
e−ivkψT (v)dv .
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Carr-Madan Pricing Technique

We see that the last expression is equivalent with

Π(t,T ,K ) =
e−α log K

2π

∫ +∞

−∞
e−iv log KψT (v)dv

=
e−α log K

π
<
(∫ +∞

0

e−iv log KψT (v)dv

)
,

where

ψT (v) =
1

α+ α2 − v2 + iv(2α+ 1)
EQ
(
e−

R T
t

rsdseST (1+α+iv)
)
.
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Carr-Madan Pricing Technique

To simplify computations we follow Duffie, Pan and Singleton and derive
a discounted characteristic function of equity under the risk neutral
measure:

φ(u,ST , t,T ) = EQ
(
e−

R T
t

rsdse iuST

)
so:

φ ((v − i(1 + α)) ,ST , t,T ) = EQ
(
e−

R T
t

rsdse(1+α+iv)ST

)
.
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Carr-Madan Pricing Technique

So finally the call price is:

Π(t,T ,K ) =
e−α log K

π
<
(∫ +∞

0

e−iv log KψT (v)dv

)
,

where:

ψT (v) =
φ ((v − i(1 + α)),ST , t,T )

α+ α2 − v2 + iv(2α+ 1)
.

We know that this can be approximated by the trapezoidal or the
Simpson rule
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Carr-Madan Pricing Technique

The approximation is given by:

Π(t,T , ku) ≈ e−αku

π
<

(
∆v

(
N∑

n=1

ω
(n−1)(k−1)
N e ivnbψT (vn).

)
.

)

= −1

2
(g(v1) + g(vN))

))
,

with the condition:

∆v∆k =
2π

N

and where:

g(v) ≡ e−ivkψT (v), ku = −b + ∆k(u − 1).
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Example: Black-Scholes model

Example The characteristic function for the Black-Scholes asset price is
given by:

φ(u) = exp

(
i(log(S0) + (r − 1

2
σ2)T )u − 1

2
σ2Tu2

)
,
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Figure: Characteristic Function for lognormal distribution
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Example- Black, Scholes model

We set: σ = 0.3, T = 1, r = 0.06 and S0 = 1. We have generated 10000
paths with step 1000, Time needed for calculation:

Monte Carlo: 5[s],

Car Madan- FFT: 0.1[s],

Exact Solution: 0.06[s].

Table: Comparison of the results.

Strike K 0.01 0.3 0.5 1 1.5 2
Error MC -7E-4 -7E-4 -7E-4 -0.03 -7E-4 -2E-3
Error FFT 9E-6 8E-6 2E-6 1E-5 -4E-5 3E-5

How the results ar influenced by the Maturity T?
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Example: Black-Scholes model
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Example: Black-Scholes model
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Black-Scholes-Hull-White Model

Generalization to stochastic interest rates

We have already derived the discounted characteristic function for
the Black-Scholes model and can make a next step, defining a
simple hybrid model.

The hybrid consists of two parts: An equity part, modeled by
Black-Scholes Geometric Brownian Motion and a second part: The
stochastic interest rate part will be done via a Hull-White process.

For the state vector Xt = [St , rt ]
T let us fix a probability space

(Ω,F ,P) and a filtration Fn = {Ft : t ≥ 0} which satisfies the
usual conditions, and Xt is assumed to be Markov relative to (Ft).
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Black-Scholes-Hull-White Model

dSt = rtStdt + σStdW S
t

drt = λ (θt − rt) dt + ηdW r
t

The interest rate part can be decomposed into two parts: stochastic and
deterministic, i.e.: rt = r̃t + ψt where

dr̃t = −λr̃tdt + ηdW r
t

r̃0 = 0

and

ψ(t) = e−λtr0 + λ

∫ t

0

e−λ(t−s)θsds.
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Black-Scholes-Hull-White Model

Let us define xt = log(St), then by the Ito formula we have

dxt =

(
rt −

1

2
σ2

)
dt + σdW S

t

so the system of SDE’s becomes:

dxt =

(
r̃t + ψt −

1

2
σ2

)
dt + σdWt

dr̃t = −λr̃tdt + ηdW r
t

In order to simplify the calculations we introduce a new variable
xt = x̃t + Φt where Φt =

∫ t

0
ψsds with

dx̃t =

(
r̃t −

1

2
σ2

)
dt + σdWt
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Black-Scholes-Hull-White Model

Finally we obtain simplify the system of SDEs:

dx̃t =

(
r̃t −

1

2
σ2

)
dt + σdWt

dr̃t = −λr̃tdt + ηdW r
t

Following Duffie, Pan and Singleton we have the following form for the
discounted characteristic function

φ(u,X (t), t,T ) = e−
R T

t
ψsds+iuT [ΦT ,ψT ]T eA(u,τ)+Bx (u,τ)ext+Br (u,τ)ert

where X ∗ = [x̃t , r̃t ]
T , where τ = T − t.
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Black-Scholes-Hull-White Model

If we look at the chf at time T we got obvious boundary condition (price
at time T is already known so no randomness is involved):

φ(u,X ∗(T ),T ,T ) = EQ
T

(
e iuT X∗(T )

)
= e iuT X∗(T ) = e iuexT

as a vector u we have taken u = [1, 0]T - we are only interested in one
dimensional characteristic function for equity. The boundary conditions
that we have to consider are following

τ = 0, (t = T ) ⇒ Bx(u, 0) = iu,A(u, 0) = 0,Br (u, 0) = 0

We need to obtain the solution of:

dA

dτ
= −r0 + BTa0 +

1

2
BT c0B

dB

dτ
= −r1 + aT

1 B +
1

2
BT c1B
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Black-Scholes-Hull-White Model

After some calculations we get:

dBx

dτ
= 0 ⇒ Bx = iu

dBr

dτ
= −1 + Bx − λBr ⇒

dBr

dτ
= −1 + iu − λBr

dA

dτ
= −1

2
σ2iu + B2

xσ
2 + 2BrBxσηρx,r + B2

r η
2

Simple calculations give following result:

Bx = iu

Br = (iu − 1)λ−1(1− e−λτ )

A = −1

2
σ2iuτ − u2σ2τ + 2iuσηρx,r (1 + iu)λ−1

(
τ +

e−τλ − 1

λ

)
−

(1 + iu)2
(
3 + e−2λτ − 4e−λτ − 2λτ

)
2λ3
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Black-Scholes-Hull-White Model

If one is assuming that θt is just a constant, then we have:

dBx

dτ
= 0 ⇒ Bx = iu

dBr

dτ
= −1 + Bx − λBr ⇒

dBr

dτ
= −1 + iu − λBr

dA

dτ
= α− βBr + θB2

r

where: α = − 1
2σ

2iu − 1
2u2σ2,β = −λθ − iuρησ, γ = 1

2η
2 resulting:

Bx = iu (7)

Br = (iu − 1)λ−1(1− e−λτ ) (8)

A =
β − D

2γ

(
1− e−τD

1− e−τD( a
b )

)
(9)

where: a = β+D
2γ , b = β−D

2γ , D =
√
β2 − 4αγ.
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Black-Scholes-Hull-White Model
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Figure: Call prices for a strip of strikes: Results for λ = 1, T = 0.5, θ = 0.1,
ρ = −0.6, η = 0.1, σ = 0.3, r0 = 0.2, S0 = 1 for 1000 paths with 100 steps.
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Black-Scholes-Hull-White Model
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Figure: Difference between approaches (FFT-MC): Results for λ = 1, T = 0.5,
θ = 0.1, ρ = −0.6, η = 0.1, σ = 0.3, r0 = 0.2, S0 = 1 for 1000 paths with 100
steps.
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Black-Scholes-Hull-White Model

Computational Finance (Summerschool) Hitotsubashi University August 2009 62 / 65



Black-Scholes-Hull-White Model
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