
Exotic Options

A Potpourri of options and equations !� Compound, chooser, binary� Path dependent: Barrier options, lookback, Asian� Equations and numerics for Asians
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Compound, chooser, binary

� Compound option: Call on a call: right to buy a ‘call with maturity T and strike K’
at time T0 for the price K0. Payoff:

CC(S, T0,K0, K, T ) = max [C(S,K, T ) − K0, 0]� Chooser option: Gives the holder the right to choose whether the underlying option at
time T0 is a Call or a Put with the same strike K and maturity T . The payoff of a
chooser option is

CH(S,K, T0, T ) = max [C(S,K, T ), P (S,K, T )]� Binary: Cash or Nothing: Pays out Q at expiry T if option is in the money S > K,
otherwise expires worthless. Payoff:

B(S,Q,K, T ) = Q1S≥K

variation: Asset or nothing, where Q is the asset itself.
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Binaries or Digitals

� Binary options have a discontinuous payoff at expiry.� An example for a binary call, is:
The contract pays 1 at T , if the asset price is then greater than the exercise price E.� The to the binary call belonging final condition is

V (S, T ) = H(S − E)

where H(·) is the Heaviside function.
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Path-dependency

� Options whose value depends on the asset history, but can still be written as V (S, t)
are said to be weakly path dependent.� American options, with early exercise, are considered to be weakly path dependent.
The next common reason for weak path dependence in a contract is a barrier.� Strongly path-dependent contracts are of particular interest. These have payoff that
depend on some property of the asset price path in addition to the value of the un-
derlying at the present time. So, V 6= V (S, t). The contract value is a function of at
least one more independent variable, such as a ‘running average’ of asset prices.� Weakly path-dependent contracts have the same number of dimensions as the non-
path-dependent versions� Strongly path dependent contracts are governed by an extra dimension. The new
independent variable is a measure of the path-dependent quantity.
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Path-dependent options

� Barrier options (US, 1967) are options that either come alive or die when predetermined
trigger points (barriers) are reached.
Down-and-out call: Option is knocked out if S hits a certain barrier H. Payoff:

CDO(S,K, T ) = max (S − K, 0) if S ≥ H ; else ceases to exist� Lookback options: Path dependent options whose payoffs depend on the max or min
of the asset during a certain period (lookback period [T0, T ]).
Payoff European fixed strike lookback call: (max[T0,T ](St) − K)+

Payoff European fixed strike lookback put: (K − min[T0,T ](St))
+
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Barrier options

� Barrier options come in two main varieties, the ‘in’ barrier option (or knock-in) and
the ‘out’ barrier option (knock-out). The former only have a payoff if the barrier level
is reached before expiry and the latter only have a payoff if the barrier is not reached.� Barrier options are popular for various reasons.� Usually, a purchaser has very precise views about the direction of the market. If he
wants the payoff from a call option but does not want to pay for all the upside potential,
believing that the upward movement of the underlying will be limited prior to expiry,
then he may choose to buy an up-and-out call. It will be cheaper than a similar vanilla
call, since the upside is severely limited.� Conversely, an ‘in’ option will be bought by someone who believes that the barrier level
will be realized. Again the option is cheaper then the equivalent vanilla option.
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Different types of barriers

� The out option only pays off if a level is not reached. If the barrier is reached the
option is said to have knocked out.� The in option pays off as long as a level is reached before expiry. If the barrier is
reached then the option is said to have knocked in.� If the barrier is above the initial asset value, we have an up option� If the barrier is below the initial value, we have a down option� The payoffs are the usual ones� Barrier can be time dependent
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PDE for Barrier options

� These options satisfy the Black-Scholes equation, on a special domain, with special
boundary conditions� The details of the barrier feature come in through the specification of the boundary
conditions� If the asset reaches the barrier Su in an ‘out’ barrier option then the contract becomes
worthless:

V (Su, t) = 0 for t < T� If we have a down-and-out option with a barrier at Sd we solve for Sd < S < ∞ with

V (Sd, t) = 0
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‘In’ Barriers

� An ‘in’ option only has a payoff if the barrier is triggered. If the barrier is not triggered
we have V (S, T ) = 0� The value in the option is in the potential to hit the barrier. If the option is an up-
and-in contract then on the upper barrier the contract must have the same value as a
vanilla contract:

V (Su, t) = value of vanilla contract, function of t

So,
V (Su, t) = Vvan(Su, t) for t < T
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Hedging barrier options

� Barrier options have discontinuous delta at the barrier

For a knock-out, the option value is continuous, decreasing approximately continuously
towards the barrier, then being zero beyond the barrier.� A discontinuity in the delta means that the gamma is instantaneously infinite at the
barrier. Delta hedging through the barrier is virtually impossible, and costly.� There have been a number of suggestions made for ways to statically hedge barrier
options. These methods try to mimic as closely as possible the value of a barrier option
with vanilla calls and puts or with binary options.
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Asian options

� Asian options: The payoff depends on the average of the underlying. Types of averages:� Arithmetic average:

A =
1

n

n
∑

i=1

Sti� Geometric average: A = (Πn
i=1Sti)

1/n� Continuous average

A =
1

t

∫ t

0

Sτdτ� All the above may be expressed as At =
∫ t

0 f(Sτ , τ )dτ
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Asian payoffs

� (A − K)+: fixed strike call� (K − A)+ : fixed strike put� (ST − A)+ : floating strike call� (A − ST )+ : floating strike put� The PDE reads:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
+ f(S, t)

∂V

∂A
− rV = 0
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Discrete Averaging

� A discrete averaging is most used in practice. Let sampling times t1, . . . , tN , and define
the averages by:

An =
1

n

n
∑

i=1

S(ti)� Notice that An = An−1 + S(tn)−An−1
n� Denoting t+ and t− the times before and after the date tn:

A(S, t+) = A(S, t−) +
S − A(S, t−)

n

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 13



Discrete Averaging (cont.)

� Simplifying notation: A+ = A− + S−A−

n� From no-arbitrage one has

V (S,A+, t+) = V (S,A−, t−)� However, for fixed (S,A) this defines a jump across tn� Away from the observation dates one solves the plain BS equation

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

and apply at jump times the jump condition. Summarizing:
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Algorithm for fixed strike Asian put

Take a time slice [tN , T ]:

– Divide [0, Amax] and [0, Smax] with grid Aj and Si

– Solve for each Aj the BS equation with final condition (K −A)+ (say J equations
simultaneously) and boundary conditions (K − Aj)

+, S → ∞

– The surface obtained at time tN (call it t+N) is then shifted by interpolation:

V (S,A, t−n ) = V (S,A +
S − A

N
, t+N)

– The new surface V (S,A, t−N) is used as new final condition for the new set of BS
equations on time slice [tN−1, tN ] and so on...
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Asian Options

Option depending on continuous average� Previously details on Asian options with discrete averaging.
Now, continuous averaging.� The exercise price or the asset price is replaced by an average of the asset price:� Final conditions for an arithmetic-average floating strike call:

u(S, T ) = max(S − 1
T

∫ T

0 S(τ )dτ, 0)� With a new variable: I(t) :=
∫ t

0 S(τ )dτ , one finds a similar Black-Scholes type equa-
tion for Asian options:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rs

∂V

∂S
+ S

∂V

∂I
− rV = 0� There is no diffusion term in the I-direction.
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Path dependency and the integral

� We start by assuming that the underlying asset follows the lognormal random walk:

dS = µSdt + σSdW

Imagine a contract that pays off at maturity T an amount that is a function of the
path taken by the asset between zero and maturity� Suppose that this path-dependent quantity can be represented by an integral of some
function of the asset over the period zero to T :

I(T ) =

∫ T

0

f(S, τ )dτ� Most path-dependent quantities in exotic derivative contracts can be written in this
form with a suitable choice of f(S, t).
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� Prior to maturity we have information about the possible final value of S (at time T )
in the present value of S at time t. For example, the higher S is today, the higher it
will probably end up at maturity.

Similarly we have information about the possible final value of I in the value of the
integral to date:

I(t) =

∫ t

0

f(S, τ )dτ

As we get closer to maturity, we become more confident about the final value of I .� The value of the option is therefore not only a function of S and t, but also a function
of I ; I will be our new independent variable, called a state variable
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� As we will use Itô’s lemma, we need to know the stochastic differential equation satisfied
by I . This is simply (incrementing t by dt we find that):

dI = f(S, t)dt� I is thus a smooth function, and the equation for dI does not contain stochastic terms
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Examples

� An Asian option has a payoff that depends on the average of asset price over some
period. If that period is from time zero to maturity and the average is arithmetic then:

I =

∫ t

0

Sdτ� The payoff may then be, (a floating strike put), for example,

max (
I

T
− S, 0)� Another example: Imagine a contract that pays off a function of the square of the

underlying asset, but only counts those times for which the asset is below Su. Then

I =

∫ t

0

S2H(Su − S)dτ

where H is the Heaviside function.
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Continuous sampling

The pricing equation� We derive the pricing PDE for a contract that pays some function of new variable I� The value of the contract is now a function of the three variables: V (S, I, t).� Set up a portfolio containing one of the path-dependent options and short a number
∆ of the underlying asset:

Π = V (S, I, t) − ∆S� The change in the value of this portfolio is given by

dΠ =

(

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)

dt +
∂V

∂I
dI +

(

∂V

∂S
− ∆

)

dS� Choosing ∆ = ∂V/∂S to hedge the risk, we find:

dΠ =

(

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ f(S, t)

∂V

∂I

)

dt
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� This change is risk free and thus earns the risk-free rate of interest r, leading to the
PDE:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ f(S, t)

∂V

∂I
+ rS

∂V

∂S
− rV = 0� This is to be solved subject to

V (S, I, t) = payoff� This completes the formulation of the valuation problem.
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Higher dimensions

� The methods outlined are not restricted to a single path-dependent quantity. Any finite
number of path-dependent variables can be accomodated, theoretically.� Imagine that a contract pays off the difference between a continuous geometric and a
continuous arithmetic average. To price this one would need to introduce Ig and Ia,
defined by

Ig =

∫ t

0

log (S)dτ, Ia =

∫ t

0

Sdτ� The solution would be a function of four variables V (S, Ig, Ia, t).� This growth in dimensionality may be difficult for solving a PDE with numerical tech-
niques !
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Similarity reductions

� Some options have a particular structure that permits a reduction in the dimensionality
of the problem by use of a similarity variable.� The dimensionality of the continuously-sampled artihmetic floating strike option can
be reduced from three to two.� The payoff for the call option is

max

(

S −
1

T

∫ T

0

S(τ )dτ, 0

)

� We can write the running payoff for the call option as

I max

(

R −
1

t
, 0

)

, where I =

∫ t

0

S(τ )dτ, and R =
S

∫ t

0 S(τ )dτ
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� The payoff at maturity may then be written as

I max

(

R −
1

T
, 0

)

� In view of the form of the payoff, it is plausible that the option value takes the form:

V (S,R, t) = IW (R, t). with R =
S

I� We find that W satisfies:

∂W

∂t
+

1

2
σ2R2∂

2W

∂R2
+ R(r − R)

∂W

∂R
− (r − R)W = 0� This reduction is not possible for American variants
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Put-Call Parity for European Floating Strike

� The payoff at maturity for a portfolio of one European floating strike call held long and
one put held short is

I max (R −
1

T
, 0) − I max (

1

T
− R, 0)� Whether R is greater or less than T at maturity, this payoff is simply:

S −
I

T� The value of this portfolio is identical to one consisting of one asset and a financial
product whose payoff is −I/T
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� In order to value this product find a solution of the floating strike equation of the form

W (R, t) = b(t) + a(t)R

and with a(T ) = 0 and b(T ) = −1/T ; such a solution would have the required payoff
of −I/T .� Substitution and satisfying the boundary conditions, we find that

a(t) =
−1

rT

(

1 − e−r(T−t)
)

, b(t) = −
1

T
e−r(T−t)� We conclude that

Vc − Vp = S −
S

rT
(1 − e−r(T−t)) −

1

T
e−r(T−t)

∫ t

0

S(τ )dτ

where Vc and Vp are the values of the European arithmetic floating strike call and put.
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� With a new variable: A(t) := (
∫ t

0 S(τ )dτ )/t, one obtains the following Black-Scholes
type equation for Asian options:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rs

∂V

∂S
+

(

S − A

t

)

∂V

∂A
− rV = 0� There is no diffusion term in the A-direction.

⇒ In CFD, this situation often occurs and appropriate discretizations for such terms have
been developed there.

⇒ Ultraparabolic equation.� Moreover, American-style Asian options exist (combination of convection dominance
and free boundary aspects)� We cannot transform the equation to a diffusion equation anymore. We need to
discretization and solve the original equation.
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Definition of the problem

Examples of multi-asset options� A basket option is an option whose payoff depends on the value of a portfolio (or
basket) of assets. Basket options are growing in popularity as a means of hedging the
risk of a portfolio and are highly interesting for banks nowadays.� They are attractive because an option on a basket is cheaper than buying options
on the individual assets. Furthermore, their payoff profile replicates the changes in a
portfolio’s value more closely than any combination of options on the underlying assets.� Basket options: u(S(T ), T ) =

(

∑d
i=1 wiSi − K

)+

� Call option on the minimum of the underlying assets u(S(T ), T ) = (mini Si − K)+� Put option on the maximum of the underlying assets u(S(T ), T ) = (K − maxi Si)
+� Exchange option (two-asset): u(S(T ), T ) = (S1 − S2)

+
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Multi-asset options

Problem definition� Multi-asset options are multi-dimensional. Using numerical techniques, the number of
grid points grows exponentially ⇒ Curse of dimensionality. Problems are not solvable
on nowadays machines unless advanced techniques are used.� Sparse grid methods reduces the number of grid points per dimension, so larger prob-
lems can be computed. In finance, the sparse grid method for solving PDE’s is used
for the first time by C. Reisinger [4].� Partitioning/Splitting and parallelization of the method reduces memory usage.
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PDE methods

Multi-d Black-Scholes equation

The PDE-method is based on the solution of the multi-dimensional Black-Scholes equation:

∂u

∂t
+

1

2

d
∑

i=1

d
∑

i=1

ρijσiσjSiSj
∂2u

∂Si∂Sj
+

d
∑

i=1

(r − δi) Si
∂u

∂Si
− ru = 0 (1)

With� Si, the value of underlying asset i� σi volatility of asset i� ρij correlation between asset i and j� r risk-free interest rate� δi continuous dividend yield
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Dividends

� The owner of a stock theoretically owns a piece of the company. This ownership can
only be turned into cash, if he owns so many of the stocks that he can take over the
company and keep all profits for himself, which is unrealistically (for most of us).� To the average investor the value in holding the stock comes from the dividends and
any growth in the stock’s value. Dividends are the lump payments, paid out every
quarter or every six months, to the holder of the stock.� The amount of dividend varies from year to year depending on the profitability of the
company. Companies like to try to keep the level of dividends about the same.� The amount of dividend is decided by the board of directors of the company and is
usually set a month or so before the dividend is actually paid.� When the stock is bought it either comes with its entitlement to the next dividend
(cum) or not (ex). There is a date at around the time of dividend payment when the
stock goes from cum to ex. The original holder of a stock gets the dividend but the
person who buys it obviously does not.
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Options on dividend-paying equities

� A stock that is cum dividend is better than one that is ex dividend. Thus at the time
that the dividend is paid there will be a drop in the value of the stock. (The jump in
asset price is more complex in practice.)� The price of an option on an dividend-paying asset is affected by these payments.
Therefore we must modify the Black-Scholes analysis.� Different structures are possible for the dividend payment

– payments may be deterministic or stochastic

– payments may be made continuously or at discrete times� Here, we only consider deterministic dividends, whose amount and timing are known.� Let’s consider that in a time dt the underlying asset pays out a dividend DSdt with
D constant. The payment is independent of time except through the S-dependence.
It represents a continuous and constant dividend yield.� This structure is a good model for index options.
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� Arbitrage considerations show that the asset price must fall by the amount of dividend
payment. This is modeled as: dS = σSdw + (µ − D)Sdt .� The dividend payment also has its effect on the hedged portfolio: Since we receive
DSdt for every asset held and we hold −∆ of the underlying, the portfolio changes by
an amount −DS∆dt. Therefore, we add to our dΠ from before this amount:

dΠ = dV − ∆dS − DS∆dt.

We find after similar reasoning as for European options that dividend is included in the
following formulation:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − D)S

∂V

∂S
− rV = 0� This model is also applicable to options on foreign currencies, though only for short

dated options. Since holding an amount of foreign currency yields interest at the foreign
rate rf , in this case D = rf� A nonzero dividend yield also has an effect on the boundary and final conditions.
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Options on dividend-paying equities

� At the time that a dividend is paid there will be a drop in the value of the stock.� The price of an option on an dividend-paying asset is affected by these payments.� Different structures are possible for the dividend payment (deterministic or stochastic
with payments continuously or at discrete times)� We consider discrete deterministic dividends, whose amount and timing are known.� Arbitrage arguments require:

V (S, t−d ) = V (S − D, t+d )
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Final/Boundary conditions

� European Call option: Right to buy assets at maturity t = T for exercise price K.� Final condition: V (S, T ) = max(S − K, 0)� Boundary conditions S = 0: V (0, t) = 0,

for S → ∞: V (Smax, t) = Smax − Ke−r(T−t) − De−r(td−t) or Vss = 0.� The strategy to solve the Black-Scholes equation numerically is as follows

– Start solving from t = T to t = td with the usual pay-off.

– Apply an interpolation to calculate the new asset and option price on the grid
discounted with D.

– Restart the numerical process with the PDE from the interpolated price as final
condition from td to t = 0.
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Example

� Multiple discrete dividends: analytic solution not available� Parameters: s0 = K = 100, r = 0.06, σc = 0.25, multiple dividends of 4 (ex-dividend
date is each half year), T = 1, 2, 3, 4, 5, 6. Grid: smax = RK(3 ≤ R ≤ 7), µ = 0.15

Grid T = 1 Grid T = 2 Grid T = 3
20 × 20 10.660 20 × 40 15.202 20 × 80 18.607
40 × 40 10.661 40 × 80 15.201 40 × 160 18.600

Lewis (Wilmott Mag. 2003) 10.661 15.199 18.598
Grid T = 4 Grid T = 5 Grid T = 6

20 × 80 21.370 20 × 100 23.697 20 × 120 25.710
40 × 160 21.362 40 × 200 23.691 40 × 240 25.698

Lewis 21.364 23.697 25.710
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