
Monte Carlo Integration

� Monte Carlo integration methods are sampling methods, based on probability theory.� They rely on trials to reveal information� From an intuitive point of view, they rest on the central limit theorem and the law of
large numbers� Monte Carlo methods are capable of handling quite complicated and large problems� The result of an experiment is a random number� By the probabilistic nature, the structure of the error made has a probabilistic distri-
bution

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 1

History

� Monte Carlo methods were originally practiced under more generic names such as
”statistical sampling”.� The name ”Monte Carlo” was popularized by physics researchers S. Ulam, E. Fermi,
J. von Neumann, and N. Metropolis.� The name is a reference to a famous casino in Monaco where Ulam’s uncle would
borrow money to gamble.� Perhaps the most famous early use was by Enrico Fermi in 1930, when he used a
random method to calculate the properties of the newly-discovered neutron.� Monte Carlo methods were central to the simulations required for the Manhattan
Project, though were severely limited by the computational tools at the time.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 2

Basic Idea Monte Carlo

Integration of a Function

� Draw random numbers in the x − y plane (dots in the graph)� Integral of function f is approximately given by the total area times the fraction of
points that fall under the curve f(x)� The greater the number of points the more accurate is the evaluation of this area.� Method is only competitive for complicated and/or multi-dimensional functions

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 3

� Suppose we are trying to evaluate

I =

∫ ∫ ∫

Ω

f(x, y, z)dxdydx� Choose a random point inside Ω. Value f̂ of f at that point is an unbiased estimator
of f inside Ω. An unbiased estimate of I is therefore I = f̂ × Ω.� Although the estimator is unbiased, it has an outrageously large expected error
(so it is essentially useless).� Reduce the error by repeating the experiment lots of times, and average the results.� Choose N random points, then

I ≈ (f̂1 + f̂2 + . . . f̂N)Ωh/N� The expected error is reduced by a factor
√

N , but N should be chosen very large.� This will only be a competitive method for high dimensional quadrature, or for problems
dealing with awkward volumes or surfaces.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 4

� The evaluation of integral will be better if the points are uniformly scattered in the
entire area� Another way of thinking:

∫ b

a

f(x)dx = (b − a)EU [a;b](f(x))� If we draw N random numbers, xi, i = 1, . . . , N from a U [a; b], an approximation of
the integral of f(x) over interval [a, b] is given by

(b − a)

N

N∑

i=1

f(xi)� Accuracy attained depends on the number of trials� The key point is to get random numbers !

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 5

Law of large numbers

� Underlying idea of Monte Carlo integration may be found in the Law of Large Numbers:� If Xi is a collection i.i.d. random variables with density f(x), then

lim
N→∞

1

N

N∑

i=1

Xi =

∫
xf(x)dx, almost surely� Further, we know that in this case

Var(
1

N

N∑

i=1

Xi) =
σ2

N
, where σ2 = Var(Xi)

If σ2 is not known, it can be estimated by

σ̂2 =
1

N − 1

N∑

i=1

(Xi − X)2; X =
1

N

N∑

i=1

Xi

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 6

Law of large numbers

⇒ Integrating a function f(x) over [0, 1] is nothing else than computing the mean of f(x)
assuming that x ∼ U [0, 1]. Therefore a crude application of the Monte Carlo method
to compute the integral is to draw N numbers, Ui from a U [0, 1] distribution and take:

Îf =
1

N

N∑

i=1

f(Ui)

as an approximation to the integral.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 7

� This estimate of the integral is a random variable with variance

σ2
Îf

=
1

N

∫ 1

0

(f(x) − Îf)2dx =
σ2

f

N� σ2
f can be estimated by

σ̂2
f =

1

N − 1

N∑

i=1

(f(Ui) − Îf)2

such that the standard error of the Monte Carlo integral is σÎf
= σ̂f/

√
N .

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 8

Example

� Crude application of Monte Carlo integration:
∫ 1

0

exdx

� Table:

N Îf σ̂Îf

10 1.5490 0.1353
100 1.6995 0.0540
1000 1.7254 0.0163
10000 1.7245 0.0049
100000 1.7214 0.00156
1000000 1.7185 0.00049� A huge number of data is needed to achieve, on average, a good enough approximation

(1000000 point are needed to get an error lower than 0.5 × 10−4.

⇒ Explains why Monte Carlo integration is seldom used for univariate integration, without
modification.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 9

Randomness

� Randomness is difficult to define, we usually associate randomness with unpredictability� A sequence of numbers is random if it has no shorter description that itself� Physical processes such as flipping a coin of tossing a dice, are deterministic if enough
is known about equations governing their motion and appropriate initial conditions� Another characteristic of True randomness is lack of repeatability� This can make testing algorithms or debugging computer code difficult, or impossible� Repeatability is desirable, but one must ensure independence among trials

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 10

Pseudo-random Numbers

� Computer algorithms for generating random numbers are deterministic; a sequence
generated may appear random (it exhibits no apparent pattern)� Such sequences of numbers are called Pseudo-random; They are quite predictable and
reproducible !� As only a finite number of numbers can be represented by a computer, any sequence
must eventually repeat.� Simple methods with a well-understood theoretical basis are preferable.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 11

How we can speed up the MC?

The Monte Carlo simulation can be improved by:� Improving the code: vectorization, removing loops, efficient memory management.� Variance Reduction Techniques:

– Antithetic sampling.

– Control Variates.

– Stratified Sampling.

– Importance sampling.� Taking proper random number generator:

– Congruential Generators.

– Fibonacci Generators.

– Latin Hypercube sampling.

– Sobol Sampling Algorithms.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 12

Modifications Monte Carlo Integration

Antithetic sampling

It is well-known that if a random variable Z ∼ N(0, 1), then also −Z ∼ N(0, 1). We
can use this property to drastically reduce the number of paths needed in the Monte Carlo
simulation. Suppose that V̂ is the approximation obtained by MC, and Ṽ is the one
obtained by using −Z. By taking the average

V =
1

2

(
Ṽ + V̂

)

we obtain a new approximation. Since V̂ and V are both random variables we aim at:

V ar(V) < V ar(V̂).

We have:

V ar(V) =
1

4
V ar(Ṽ + V̂) =

1

4
V ar(Ṽ) +

1

4
V ar(V̂) +

1

2
Cov(Ṽ , V̂).

So: V ar(V) ≤ 1
2

(
V ar(V̂) + V ar(Ṽ)

)
.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 13

Modifications Monte Carlo Integration

Stratified Sampling� Idea: Variance of f over a subinterval of [0, 1] should be lower than the variance over
whole interval.� Prevent draws from clustering in a particular region of the interval; The procedure is
forced to visit each subinterval. The information set used is enlarged.� Set λ ∈ (0, 1) and draw Na = λN data points over [0, λ] and Nb = N−Na = (1−λ)N
over [λ, 1]. The integral is then evaluated by

Îs
f =

1

Na

Na∑

i=1

f(xa
i) +

1

Nb

Nb∑

i=1

f(xb
i)

where xa
i ∈ [0, λ] and xb

i ∈ [λ, 1].� Variance of this estimator is:

λ2

Na
Vara(f(x)) +

(1 − λ)2

Nb
Varb(f(x)) =

λ

N
Vara(f(x)) +

(1 − λ)

N
Varb(f(x))

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 14

� How to select λ ? Answer: Choose it such that volatility is minimized: Vara((f(x)) =
Varb(f(x)).� This drives the overall variance to Varb(f(x))/N .

� Example with λ = 0.25 :

N Îf σ̂Îf

10 1.5218 0.1353
100 1.6995 0.0414
1000 1.7254 0.01188
10000 1.7245 0.00359
100000 1.7214 0.00114

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 15

Modifications

Control Variates� This method tries to extract information from a function that approximates the function
to be integrated arbitrarily well.� Assume there exists a function ϕ that is similar to f , but that can be easily integrated.� The identity ∫

f(x)dx =

∫
(f(x) − ϕ(x))dx +

∫
ϕ(x)dx

restates the Monte Carlo integration of the first term plus the known integral of ϕ.� The variance of (f − ϕ) is given by σ2
f + σ2

ϕ − 2Cov(f, ϕ). This is lower than the

variance of σ2
f provided the covariance is high enough.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 16

Example

Control Variates� We use ϕ(x) = 1 + x, since ex ≈ 1 + x in a neighborhood of zero.

� ∫ 1

0 (1 + x)dx = 1.5 is easily computed.

N Îf σ̂Îf

10 1.6450 0.0501
100 1.7190 0.0229
1000 1.7250 0.00689
10000 1.7213 0.00210
100000 1.7198 0.00066
1000000 1.7184 0.00020

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 17

Importance Sampling

� By drawing numbers for a uniform distribution in crude Monte Carlo methods, infor-
mation is spread all over the interval we are sampling over.� A simple transformation of the problem may exist for which Monte Carlo can generate
a far better result in terms of variance.� Suppose a function g(x) exists such that h(x) = f(x)/g(x) is almost constant over
the domain of integration. Restate the problem

∫
f(x)dx =

∫
f(x)

g(x)
g(x)dx =

∫
h(x)g(x)dx� We can now easily integrate f by instead sampling h(x), but not by drawing numbers

from a uniform density function, but rather from a nonuniform density g(x)dx.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 18

Importance Sampling

� The approximated integral is given by

Î is
f =

1

N

N∑

i=1

f(xi)

g(xi)� With variance

σ2
Îf

=
1

N
(

∫
f(x)2

g(x)2
g(x)dx − (

∫
f(x)

g(x)
g(x)dx)2)

=
1

N
(

∫
f(x)2

g(x)
dx − (

∫
f(x)dx)2)� How to select g(x) ? Answer: g should have a shape close to that of f while being

simple to sample.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 19

Importance Sampling

Example� We use g(x) = (1 + α)xα, with α = 1.5.� The selection of the g function requires good knowledge of the function to be inte-
grated, which may not always be the case

N Îf σ̂Îf

10 1.5490 0.0428
100 1.6995 0.0054
1000 1.7254 0.000514
10000 1.7245 0.0000495
100000 1.7214 0.0000049
1000000 1.7185 0.00000049

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 20

Usual Numerical Integration

Quadrature formulas� A classic problem of numerical analysis: Approximating the definite integral
∫ b

a

f(x)dx� Polynomial Pm(x) approximates the function f(x). Replace the integral by
∫ b

a

Pm(x)dx� Divide interval [a, b] into n subintervals: h = (b − a)/n. Trapezoidal rule:

T (h) = h

[
f(a)

2
+ f(a + h) + . . . + f(b − h) +

f(b)

2

]

� The error of T (h) satisfies a quadratic expansion:

T (h) =

∫ b

a

f(x)dx + O(h2)

depending on the differentiability of f

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 21

Quasi-Random Sequences

� For some applications, achieving reasonably uniform coverage of sampled data can be
more important than whether the sample points are truly random.� Truly random sequences tend to exhibit clumping, leading to an uneven coverage of
sampled data for a given number of points� A perfectly uniform coverage can be achieved by using a regular grid of sample points� This approach does not scale well to higher dimensions� A compromise between these extremes of coverage and randomness is provided by
quasi-random sequences.� These sequences are carefully constructed to give a uniform coverage of sampled points
while maintaining a reasonable random appearance.� By design, points tend to avoid each other, so clumping associated with true random-
ness is eliminated.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 22

Quasi-Random Sequences

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 23

Quasi-Random Sequences

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 24

Low-Discrepancy Sequences

Halton Points (page 77)

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 25

Congruential Random Number Generators

� Congruential generators have the form

Ni = (aNi−1 + b) (mod M),

with a and b given integers� Starting integer N0 is called seed� Integer M is approximately (often equal to) the largest integer representable on a
machine� The quality of such generators depends on choices of a and b, and its period cannot
exceed M� To produce random floating-points numbers Ui, uniformly distributed on interval [0, 1),
the random integers must be divided by M : Ui = Ni/M .

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 26

Properties

a. Ni ∈ {0, 1, . . . ,M − 1}
b. The Ni are periodic with period ≤ M . Ni = Ni+p, p ≤ M .

⇒ Make M as large as possible; With period M , the Ui are uniformly distributed when
exactly M numbers are needed. (Each grid point on [0, 1) is occupied once on a grid
with mesh size 1/M .

c. N = 0 is ruled out in case b = 0.
With a = 1 the generator gives Nn = (N0+nb) mod M which is too easily predictable

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 27

Fibonacci Generators

� Alternative methods that produce floating-point random numbers on interval [0, 1) are
Fibonacci Generators.� A new value is generated as a sum, difference or product of previous values.� Typical example:

Ni = Ni−17 − Ni−5� This generator has lags of 17 and 5. The lags must be chosen carefully� Such a formula may produce a negative result, in which case a remedy is to add 1 to
get back to interval [0, 1)� These generators require more storage than the congruent generators, and a special
starting procedure. Division is not required.� Well-designed generators of this type typically have a much longer period than congru-
ential generators, since repetition of one member of a sequence does not entail that
all subsequent members will also repeat in the same order

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 28

Example

� Algorithm:

Repeat : ζ := Ui − Uj

if ζ < 0, set ζ := ζ + 1

Ui := ζ

i := i − 1

j := j − 1

if i = 0, set i := 17

if j = 0, set j := 17� Initialization:
Set i = 17, j = 5, compute U1, . . . , U17 with a congruential generator
(M = 714025, a = 1366, b = 150889).
Choose seed N0 freely.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 29

Inversion

� Suppose U ∼ U [0, 1] and F be a continuously strictly increasing distribution function.
Then F−1(U) is a sample from F .� Proof: U ∼ U [0, 1] means P(U ≤ ξ) = ξ for 0 ≤ ξ ≤ 1.
Consequently, P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x).� For the normal distribution there is no closed-form expression for F
nor for inverse F−1.

⇒ A possibility is “numerical inversion”, i.e, finding x in F (x) = u, with u prescribed.� Use Newton’s method, or bisection to find x in F (x) − u = 0.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 30

Transformations

Between Random Variables� Suppose X is random variable with density f(x) and distribution F (x).
Assume h : Ω → B, strictly monotonous with Ω, B in IR, where Ω is the support of
f(x) (f is zero outside Ω).

(a) Then Y := h(X) is a random variable with distribution F (h−1(y)).

(b) If h−1 is absolutely continuous then for almost all y the density of h(X) reads

f(h−1(y))

∣∣∣∣
dh−1(y)

dy

∣∣∣∣ .

– Proof: (a): P(h(X) ≤ y) = P(X ≤ h−1(y)) = F (h−1(y)).
(b): h−1 absolutely continuous ⇒ The density of Y = h(X) equals the derivative
of the distribution function almost everywhere.
Evaluating dF (h−1(y))/dy with the chain rule implies the assertion.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 31

Other intervals, Nonuniform Distributions

� Uniform distribution on [a, b): Transform Ni from [0, 1) by:

(b − a)Ni + a� Sample nonuniform distributions: If the cumulative distribution function of desired
probability density function is easily invertible, we can generate uniform random num-
bers and invert them.� For example, we can take

− log (Ui)/λ

where the Ui are uniform on [0, 1). These numbers are exponentially distributed:

f(t) = λe−λt, t > 0

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 32

Transformation in higher D

� Suppose X is a random variable in IRn with density f(x) > 0 on the support Ω. The
transformation h : Ω → B is assumed to be invertible and the inverse continuously
differentiable on B.
Y := h(X) is the transformed variable. Then Y has the density

f(h−1(y))

∣∣∣∣
∂(x1, . . . , xn)

∂(y1, . . . , yn)

∣∣∣∣ , y ∈ B

where x = h−1(y) and ∂(x1, . . . , xn)/∂(y1, . . . , yn) is the determinant of the Jacobian
matrix of all first-order derivatives of h−1(y).

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 33

Transformation to Normal Distribution

2D� Start with Ω = [0, 1]2 and the density of the uniform distribution f = 1 on Ω.
Transformation {

y1 =
√−2 log x1 cos 2πx2 =: h1(x1, x2)

y2 =
√−2 log x1 sin 2πx2 =: h2(x1, x2)

}

� The inverse function h−1 is given by
{

x1 = exp (−1/2(y2
1 + y2

2))
x2 = 1

2π
arctan y2

y1

}

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 34

Normal Distribution

� The determinant of the Jacobian matrix is

∂(x1, x2)

∂(y1, y2)
= det

(
∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

)
=

1

2π
exp(−0.5(y2

1 + y2
2))(−y1

1

1 +
y2
2

y2
1

1

y1
− y2

1

1 +
y2
2

y2
1

y2

y2
1

= − 1

2π
exp (−0.5(y2

1 + y2
2)).� This shows that |∂(x1, x2)/∂(y1, y2)| is the density of the standard normal distribution

in IR2.� Since this density is the product of two 1D densities, the two components of y are
independent.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 35

N (0, 1)

10000 Numbers

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 36

Normal Distribution

� An important example is the generation of random numbers that are normally dis-
tributed with given mean and variance.� Available routines often assume mean of 0 and a variance of 1� If some other mean µ and variance σ2 are desired then each value xi produced by a
routine can be modified by a transformation σxk + µ to achieve the desired normal
distribution.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 37

Exotic Options

A Potpourri of options and equations !� Compound, chooser, binary� Path dependent: Barrier options, lookback, Asian� Equations and numerics for Asians

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 38

Compound, chooser, binary

� Compound option: Call on a call: right to buy a ‘call with maturity T and strike K’
at time T0 for the price K0. Payoff:

CC(S, T0,K0, K, T) = max [C(S,K, T) − K0, 0]� Chooser option: Gives the holder the right to choose whether the underlying option at
time T0 is a Call or a Put with the same strike K and maturity T . The payoff of a
chooser option is

CH(S,K, T0, T) = max [C(S,K, T), P (S,K, T)]� Binary: Cash or Nothing: Pays out Q at expiry T if option is in the money S > K,
otherwise expires worthless. Payoff:

B(S,Q,K, T) = Q1S≥K

variation: Asset or nothing, where Q is the asset itself.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 39

Binaries or Digitals

� Binary options have a discontinuous payoff at expiry.� An example for a binary call, is:
The contract pays 1 at T , if the asset price is then greater than the exercise price E.� The to the binary call belonging final condition is

V (S, T) = H(S − E)

where H(·) is the Heaviside function.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 40

Path-dependency

� Options whose value depends on the asset history, but can still be written as V (S, t)
are said to be weakly path dependent.� American options, with early exercise, are considered to be weakly path dependent.
The next common reason for weak path dependence in a contract is a barrier.� Strongly path-dependent contracts are of particular interest. These have payoff that
depend on some property of the asset price path in addition to the value of the un-
derlying at the present time. So, V 6= V (S, t). The contract value is a function of at
least one more independent variable, such as a ‘running average’ of asset prices.� Weakly path-dependent contracts have the same number of dimensions as the non-
path-dependent versions� Strongly path dependent contracts are governed by an extra dimension. The new
independent variable is a measure of the path-dependent quantity.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 41

Path-dependent options

� Barrier options (US, 1967) are options that either come alive or die when predetermined
trigger points (barriers) are reached.
Down-and-out call: Option is knocked out if S hits a certain barrier H. Payoff:

CDO(S,K, T) = max (S − K, 0) if S ≥ H ; else ceases to exist� Lookback options: Path dependent options whose payoffs depend on the max or min
of the asset during a certain period (lookback period [T0, T]).
Payoff European fixed strike lookback call: (max[T0,T](St) − K)+

Payoff European fixed strike lookback put: (K − min[T0,T](St))
+

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 42

Barrier options

� Barrier options come in two main varieties, the ‘in’ barrier option (or knock-in) and
the ‘out’ barrier option (knock-out). The former only have a payoff if the barrier level
is reached before expiry and the latter only have a payoff if the barrier is not reached.� Barrier options are popular for various reasons.� Usually, a purchaser has very precise views about the direction of the market. If he
wants the payoff from a call option but does not want to pay for all the upside potential,
believing that the upward movement of the underlying will be limited prior to expiry,
then he may choose to buy an up-and-out call. It will be cheaper than a similar vanilla
call, since the upside is severely limited.� Conversely, an ‘in’ option will be bought by someone who believes that the barrier level
will be realized. Again the option is cheaper then the equivalent vanilla option.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 43

Different types of barriers

� The out option only pays off if a level is not reached. If the barrier is reached the
option is said to have knocked out.� The in option pays off as long as a level is reached before expiry. If the barrier is
reached then the option is said to have knocked in.� If the barrier is above the initial asset value, we have an up option� If the barrier is below the initial value, we have a down option� The payoffs are the usual ones� Barrier can be time dependent

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 44

PDE for Barrier options

� These options satisfy the Black-Scholes equation, on a special domain, with special
boundary conditions� The details of the barrier feature come in through the specification of the boundary
conditions� If the asset reaches the barrier Su in an ‘out’ barrier option then the contract becomes
worthless:

V (Su, t) = 0 for t < T� If we have a down-and-out option with a barrier at Sd we solve for Sd < S < ∞ with

V (Sd, t) = 0

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 45

‘In’ Barriers

� An ‘in’ option only has a payoff if the barrier is triggered. If the barrier is not triggered
we have V (S, T) = 0� The value in the option is in the potential to hit the barrier. If the option is an up-
and-in contract then on the upper barrier the contract must have the same value as a
vanilla contract:

V (Su, t) = value of vanilla contract, function of t

So,
V (Su, t) = Vvan(Su, t) for t < T

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 46

Hedging barrier options

� Barrier options have discontinuous delta at the barrier

For a knock-out, the option value is continuous, decreasing approximately continuously
towards the barrier, then being zero beyond the barrier.� A discontinuity in the delta means that the gamma is instantaneously infinite at the
barrier. Delta hedging through the barrier is virtually impossible, and costly.� There have been a number of suggestions made for ways to statically hedge barrier
options. These methods try to mimic as closely as possible the value of a barrier option
with vanilla calls and puts or with binary options.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 47

Asian options

� Asian options: The payoff depends on the average of the underlying. Types of averages:� Arithmetic average:

A =
1

n

n∑

i=1

Sti� Geometric average: A = (Πn
i=1Sti)

1/n� Continuous average

A =
1

t

∫ t

0

Sτdτ� All the above may be expressed as At =
∫ t

0 f(Sτ , τ)dτ

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 48

Asian payoffs

� (A − K)+: fixed strike call� (K − A)+ : fixed strike put� (ST − A)+ : floating strike call� (A − ST)+ : floating strike put� The PDE reads:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
+ f(S, t)

∂V

∂A
− rV = 0

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 49

Discrete Averaging

� A discrete averaging is most used in practice. Let sampling times t1, . . . , tN , and define
the averages by:

An =
1

n

n∑

i=1

S(ti)� Notice that An = An−1 + S(tn)−An−1
n� Denoting t+ and t− the times before and after the date tn:

A(S, t+) = A(S, t−) +
S − A(S, t−)

n

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 50

Discrete Averaging (cont.)

� Simplifying notation: A+ = A− + S−A−
n� From no-arbitrage one has

V (S,A+, t+) = V (S,A−, t−)� However, for fixed (S,A) this defines a jump across tn� Away from the observation dates one solves the plain BS equation

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

and apply at jump times the jump condition. Summarizing:

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 51

Algorithm for fixed strike Asian put

Take a time slice [tN , T]:

– Divide [0, Amax] and [0, Smax] with grid Aj and Si

– Solve for each Aj the BS equation with final condition (K −A)+ (say J equations
simultaneously) and boundary conditions (K − Aj)

+, S → ∞
– The surface obtained at time tN (call it t+N) is then shifted by interpolation:

V (S,A, t−n) = V (S,A +
S − A

N
, t+N)

– The new surface V (S,A, t−N) is used as new final condition for the new set of BS
equations on time slice [tN−1, tN] and so on...

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 52

Asian Options

Option depending on continuous average� Previously details on Asian options with discrete averaging.
Now, continuous averaging.� The exercise price or the asset price is replaced by an average of the asset price:� Final conditions for an arithmetic-average floating strike call:

u(S, T) = max(S − 1
T

∫ T

0 S(τ)dτ, 0)� With a new variable: I(t) :=
∫ t

0 S(τ)dτ , one finds a similar Black-Scholes type equa-
tion for Asian options:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rs

∂V

∂S
+ S

∂V

∂I
− rV = 0� There is no diffusion term in the I-direction.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 53

Path dependency and the integral

� We start by assuming that the underlying asset follows the lognormal random walk:

dS = µSdt + σSdW

Imagine a contract that pays off at maturity T an amount that is a function of the
path taken by the asset between zero and maturity� Suppose that this path-dependent quantity can be represented by an integral of some
function of the asset over the period zero to T :

I(T) =

∫ T

0

f(S, τ)dτ� Most path-dependent quantities in exotic derivative contracts can be written in this
form with a suitable choice of f(S, t).

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 54

� Prior to maturity we have information about the possible final value of S (at time T)
in the present value of S at time t. For example, the higher S is today, the higher it
will probably end up at maturity.

Similarly we have information about the possible final value of I in the value of the
integral to date:

I(t) =

∫ t

0

f(S, τ)dτ

As we get closer to maturity, we become more confident about the final value of I .� The value of the option is therefore not only a function of S and t, but also a function
of I ; I will be our new independent variable, called a state variable

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 55

� As we will use Itô’s lemma, we need to know the stochastic differential equation satisfied
by I . This is simply (incrementing t by dt we find that):

dI = f(S, t)dt� I is thus a smooth function, and the equation for dI does not contain stochastic terms

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 56

Examples

� An Asian option has a payoff that depends on the average of asset price over some
period. If that period is from time zero to maturity and the average is arithmetic then:

I =

∫ t

0

Sdτ� The payoff may then be, (a floating strike put), for example,

max (
I

T
− S, 0)� Another example: Imagine a contract that pays off a function of the square of the

underlying asset, but only counts those times for which the asset is below Su. Then

I =

∫ t

0

S2H(Su − S)dτ

where H is the Heaviside function.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 57

Continuous sampling

The pricing equation� We derive the pricing PDE for a contract that pays some function of new variable I� The value of the contract is now a function of the three variables: V (S, I, t).� Set up a portfolio containing one of the path-dependent options and short a number
∆ of the underlying asset:

Π = V (S, I, t) − ∆S� The change in the value of this portfolio is given by

dΠ =

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt +

∂V

∂I
dI +

(
∂V

∂S
− ∆

)
dS� Choosing ∆ = ∂V/∂S to hedge the risk, we find:

dΠ =

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ f(S, t)

∂V

∂I

)
dt

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 58

� This change is risk free and thus earns the risk-free rate of interest r, leading to the
PDE:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ f(S, t)

∂V

∂I
+ rS

∂V

∂S
− rV = 0� This is to be solved subject to

V (S, I, t) = payoff� This completes the formulation of the valuation problem.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 59

Higher dimensions

� The methods outlined are not restricted to a single path-dependent quantity. Any finite
number of path-dependent variables can be accomodated, theoretically.� Imagine that a contract pays off the difference between a continuous geometric and a
continuous arithmetic average. To price this one would need to introduce Ig and Ia,
defined by

Ig =

∫ t

0

log (S)dτ, Ia =

∫ t

0

Sdτ� The solution would be a function of four variables V (S, Ig, Ia, t).� This growth in dimensionality may be difficult for solving a PDE with numerical tech-
niques !

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 60

Similarity reductions

� Some options have a particular structure that permits a reduction in the dimensionality
of the problem by use of a similarity variable.� The dimensionality of the continuously-sampled artihmetic floating strike option can
be reduced from three to two.� The payoff for the call option is

max

(
S − 1

T

∫ T

0

S(τ)dτ, 0

)

� We can write the running payoff for the call option as

I max

(
R − 1

t
, 0

)
, where I =

∫ t

0

S(τ)dτ, and R =
S

∫ t

0 S(τ)dτ

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 61

� The payoff at maturity may then be written as

I max

(
R − 1

T
, 0

)

� In view of the form of the payoff, it is plausible that the option value takes the form:

V (S,R, t) = IW (R, t). with R =
S

I� We find that W satisfies:

∂W

∂t
+

1

2
σ2R2∂

2W

∂R2
+ R(r − R)

∂W

∂R
− (r − R)W = 0� This reduction is not possible for American variants

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 62

Put-Call Parity for European Floating Strike

� The payoff at maturity for a portfolio of one European floating strike call held long and
one put held short is

I max (R − 1

T
, 0) − I max (

1

T
− R, 0)� Whether R is greater or less than T at maturity, this payoff is simply:

S − I

T� The value of this portfolio is identical to one consisting of one asset and a financial
product whose payoff is −I/T

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 63

� In order to value this product find a solution of the floating strike equation of the form

W (R, t) = b(t) + a(t)R

and with a(T) = 0 and b(T) = −1/T ; such a solution would have the required payoff
of −I/T .� Substitution and satisfying the boundary conditions, we find that

a(t) =
−1

rT

(
1 − e−r(T−t)

)
, b(t) = − 1

T
e−r(T−t)� We conclude that

Vc − Vp = S − S

rT
(1 − e−r(T−t)) − 1

T
e−r(T−t)

∫ t

0

S(τ)dτ

where Vc and Vp are the values of the European arithmetic floating strike call and put.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 64

� With a new variable: A(t) := (
∫ t

0 S(τ)dτ)/t, one obtains the following Black-Scholes
type equation for Asian options:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rs

∂V

∂S
+

(
S − A

t

)
∂V

∂A
− rV = 0� There is no diffusion term in the A-direction.

⇒ In CFD, this situation often occurs and appropriate discretizations for such terms have
been developed there.

⇒ Ultraparabolic equation.� Moreover, American-style Asian options exist (combination of convection dominance
and free boundary aspects)� We cannot transform the equation to a diffusion equation anymore. We need to
discretization and solve the original equation.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 65

Definition of the problem

Examples of multi-asset options� A basket option is an option whose payoff depends on the value of a portfolio (or
basket) of assets. Basket options are growing in popularity as a means of hedging the
risk of a portfolio and are highly interesting for banks nowadays.� They are attractive because an option on a basket is cheaper than buying options
on the individual assets. Furthermore, their payoff profile replicates the changes in a
portfolio’s value more closely than any combination of options on the underlying assets.� Basket options: u(S(T), T) =

(∑d
i=1 wiSi − K

)+

� Call option on the minimum of the underlying assets u(S(T), T) = (mini Si − K)+� Put option on the maximum of the underlying assets u(S(T), T) = (K − maxi Si)
+� Exchange option (two-asset): u(S(T), T) = (S1 − S2)

+

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 66

Multi-asset options

Problem definition� Multi-asset options are multi-dimensional. Using numerical techniques, the number of
grid points grows exponentially ⇒ Curse of dimensionality. Problems are not solvable
on nowadays machines unless advanced techniques are used.� Sparse grid methods reduces the number of grid points per dimension, so larger prob-
lems can be computed. In finance, the sparse grid method for solving PDE’s is used
for the first time by C. Reisinger [4].� Partitioning/Splitting and parallelization of the method reduces memory usage.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 67

PDE methods

Multi-d Black-Scholes equation

The PDE-method is based on the solution of the multi-dimensional Black-Scholes equation:

∂u

∂t
+

1

2

d∑

i=1

d∑

i=1

ρijσiσjSiSj
∂2u

∂Si∂Sj
+

d∑

i=1

(r − δi) Si
∂u

∂Si
− ru = 0 (1)

With� Si, the value of underlying asset i� σi volatility of asset i� ρij correlation between asset i and j� r risk-free interest rate� δi continuous dividend yield

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 68

Dividends

� The owner of a stock theoretically owns a piece of the company. This ownership can
only be turned into cash, if he owns so many of the stocks that he can take over the
company and keep all profits for himself, which is unrealistically (for most of us).� To the average investor the value in holding the stock comes from the dividends and
any growth in the stock’s value. Dividends are the lump payments, paid out every
quarter or every six months, to the holder of the stock.� The amount of dividend varies from year to year depending on the profitability of the
company. Companies like to try to keep the level of dividends about the same.� The amount of dividend is decided by the board of directors of the company and is
usually set a month or so before the dividend is actually paid.� When the stock is bought it either comes with its entitlement to the next dividend
(cum) or not (ex). There is a date at around the time of dividend payment when the
stock goes from cum to ex. The original holder of a stock gets the dividend but the
person who buys it obviously does not.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 69

Options on dividend-paying equities

� A stock that is cum dividend is better than one that is ex dividend. Thus at the time
that the dividend is paid there will be a drop in the value of the stock. (The jump in
asset price is more complex in practice.)� The price of an option on an dividend-paying asset is affected by these payments.
Therefore we must modify the Black-Scholes analysis.� Different structures are possible for the dividend payment

– payments may be deterministic or stochastic

– payments may be made continuously or at discrete times� Here, we only consider deterministic dividends, whose amount and timing are known.� Let’s consider that in a time dt the underlying asset pays out a dividend DSdt with
D constant. The payment is independent of time except through the S-dependence.
It represents a continuous and constant dividend yield.� This structure is a good model for index options.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 70

� Arbitrage considerations show that the asset price must fall by the amount of dividend
payment. This is modeled as: dS = σSdw + (µ − D)Sdt .� The dividend payment also has its effect on the hedged portfolio: Since we receive
DSdt for every asset held and we hold −∆ of the underlying, the portfolio changes by
an amount −DS∆dt. Therefore, we add to our dΠ from before this amount:

dΠ = dV − ∆dS − DS∆dt.

We find after similar reasoning as for European options that dividend is included in the
following formulation:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − D)S

∂V

∂S
− rV = 0� This model is also applicable to options on foreign currencies, though only for short

dated options. Since holding an amount of foreign currency yields interest at the foreign
rate rf , in this case D = rf� A nonzero dividend yield also has an effect on the boundary and final conditions.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 71

Options on dividend-paying equities

� At the time that a dividend is paid there will be a drop in the value of the stock.� The price of an option on an dividend-paying asset is affected by these payments.� Different structures are possible for the dividend payment (deterministic or stochastic
with payments continuously or at discrete times)� We consider discrete deterministic dividends, whose amount and timing are known.� Arbitrage arguments require:

V (S, t−d) = V (S − D, t+d)

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 72

Final/Boundary conditions

� European Call option: Right to buy assets at maturity t = T for exercise price K.� Final condition: V (S, T) = max(S − K, 0)� Boundary conditions S = 0: V (0, t) = 0,

for S → ∞: V (Smax, t) = Smax − Ke−r(T−t) − De−r(td−t) or Vss = 0.� The strategy to solve the Black-Scholes equation numerically is as follows

– Start solving from t = T to t = td with the usual pay-off.

– Apply an interpolation to calculate the new asset and option price on the grid
discounted with D.

– Restart the numerical process with the PDE from the interpolated price as final
condition from td to t = 0.

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 73

Example

� Multiple discrete dividends: analytic solution not available� Parameters: s0 = K = 100, r = 0.06, σc = 0.25, multiple dividends of 4 (ex-dividend
date is each half year), T = 1, 2, 3, 4, 5, 6. Grid: smax = RK(3 ≤ R ≤ 7), µ = 0.15

Grid T = 1 Grid T = 2 Grid T = 3
20 × 20 10.660 20 × 40 15.202 20 × 80 18.607
40 × 40 10.661 40 × 80 15.201 40 × 160 18.600

Lewis (Wilmott Mag. 2003) 10.661 15.199 18.598
Grid T = 4 Grid T = 5 Grid T = 6

20 × 80 21.370 20 × 100 23.697 20 × 120 25.710
40 × 160 21.362 40 × 200 23.691 40 × 240 25.698

Lewis 21.364 23.697 25.710

Summerschool Computational Finance, Hitotsubashi University, August 2009/nr. 74

