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Abstract

This work aims to model the optimal control of dike heights. The
control problem leads to so-called Hamilton-Jacobi-Bellman (HJB) varia-
tional inequalities, where the dike-increase and reinforcement times act as
input quantities to the control problem. The HJB equations are solved nu-
merically with an Essentially Non-Oscillatory (ENO) method. The ENO
methodology is originally intended for hyperbolic conservation laws and
extended to deal with diffusion-type problems in this work. The method
is applied to the dike optimisation of an island, for both deterministic and
stochastic models for the economic growth.

1 Introduction

The optimal control of dike heights as a protection against flooding is a trade-
off between the investment costs of dike increases and the expected costs due
to flooding. This concept of economic optimisation was established by Van
Dantzig [8] in the aftermath of the flooding disaster that hit the Netherlands
in 1953. Van Dantzig’s model was deterministic and discrete in time and was
later improved by Eijgenraam [9] to properly account for economic growth.

The present work uses a model in which the stochastic behaviour of economic
growth is modelled in continuous time. The resulting optimisation problem
leads to a so-called Hamilton-Jacobi-Bellman (HJB) equation. It is a system of
second-order partial differential equations that needs to be solved backwards in
time. This is achieved by numerical approximation.

There is a long tradition of numerically solving optimal control problems via
the HJB equations, and very nice books and papers have been written on the
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topic, see [1, 3, 4, 10]. For second-order equations, however, at most second-
order accurate discretizations were used, for example, based on the notion of
viscosity solution. In the present paper we aim for higher-order discretizations.

A wide variety of numerical methods for partial differential equations exists.
The proper choice for a numerical method is motivated by carefully considering
the properties of the problem. The state vector can be of high dimension, the
time horizon large and the equations of convective type, i.e. the terms containing
first-order derivatives may be dominant.

The uniqueness requirement for the solution of nonlinear partial differential
equations such as the HJB equations is non-trivial and greatly affects their nu-
merical treatment. This is also encountered, among other areas, in Mathemat-
ical Finance, where the relevant solution is the so-called viscosity solution [10].
Since it is known from theory that a stable, consistent and monotone discretiza-
tion converges to the viscosity solution [2], researchers such as Chen et al. [6]
elaborate on a monotone discretization to guarantee convergence to the viscos-
ity solution. The drawback of a monotone method is that it has limited order of
accuracy. Similar issues arise in the closely-related field of hyperbolic conserva-
tion laws, where the only relevant solution is the so-called entropy solution, see
e.g. [14]. Striving for higher-order accuracy than purely monotone schemes, we
will adopt the well-established rationale of the realm of Computational Fluid
Dynamics (CFD).

The Total Variation (TV) plays a central role in nonlinear stability theory
of CFD methods. It is defined as

TV (v) = lim sup
ǫ→0

∞
∫

−∞

|v(x) − v(x− ǫ)| dx, (1)

and a similar definition for its discrete counterpart. An important class of
methods in CFD are the so-called Total Variation Diminishing (TVD) methods,
i.e. TV (u(·, t + ∆t)) ≤ TV (u(·, t)). The TVD property makes the methods
TV-stable. This is important, because if a method is in conservation form,
consistent and TV-stable, then convergence can be proven [14]. TVD methods
are monotonicity preserving in the sense that they prevent Gibbs-like oscillations
near discontinuities in the solution. TVD methods are non-linear and their
accuracy falls back to first-order near discontinuities.

To reach a higher order of accuracy, we will use Essentially Non-Oscillatory
(ENO) methods. ENO methods are not TVD, hence monotonicity preservation
and convergence are strictly speaking unproven. However, there is a strong
belief that ENO methods are TV-stable, at least for most practical problems
([19]). Spurious oscillations, on the level of the truncation error, may occur
only in the smooth part of the solution ([12]). Hence the name Essentially
Non-Oscillatory. ENO-type schemes have been used for HJB equations before
for first-order equations, see [5] and the references therein. We will encounter
second-order HJB equations, so that we have to deal with an ENO discretization
for the diffusion terms.
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The diffusion term in the equations, associated with the stochastic behaviour
of the model, poses new difficulties. We will show that a standard high-order
discretization leads to a non-monotone discretization. This is often disregarded
and one relies on the smoothing behaviour of the elliptic diffusion operator.
However, for non-smooth initial data, undesired results, such as oscillatory and
negative values, are encountered at the initial stages. Therefore, in this paper
we extend and apply the ENO methodology to the diffusion operator as well.

We will combine the high-order ENO finite differences spatial discretization
with a high-order TVD Runge-Kutta time integration method, as prescribed in
[19], for the HJB equations, including diffusion. A potential drawback could
be that this restricts the time-step when the diffusion coefficient (volatility) in
the model is large, compared to implicit (non-TVD) schemes. However, the
high-order accuracy of the spatial discretization reduces the required spatial
grid resolution and, as an immediate consequence, the number of time steps as
well.

The HJB inequalities that arise in Financial Mathematics applications are
governed by nondifferentiable or even discontinuous final conditions. We will
develop a numerical method which is also applicable to such control problems.

This paper is organised as follows: In Section 2, the numerical discretization,
by means of ENO schemes is discussed, where Subsection 2.2 introduces ENO
schemes for diffusion. In Section 3, the mathematical problem of flooding and
dike height control is described in detail and numerical results with the ENO
scheme are presented. Section 4 concludes.

2 Numerical Approach

Formulating an optimal control problem requires an expression for the total
future expected discounted costs and input variables. Optimisation of the costs
will yield a control law for the input variables, which governs optimal values. We
consider an impulsive control formulation, where it is assumed that the input
variable increases instantaneously. Both the optimal input variable and the
intervention times are typically not known in such optimal stopping problems [3]
and need to be determined. The numerical treatment of impulse control model
equations can be split into two parts: the uncontrolled problem, i.e. between
intervention times tk and tk+1− and the impulse control.

These problems are typically defined backwards in time, starting at final
time, making optimal decisions at times tk until initial time t0 is reached and a
control law is defined.

2.1 Uncontrolled problem

The uncontrolled part of the problem is typically of convection-diffusion-reaction
type and has the following general form:

∂u

∂t
+ ∇ · f(u) = ∇ ·K(u, t)∇u+ s(u, t), (2)
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complemented with appropriate boundary and initial conditions. For the sake of
simplicity, time is reversed to bring it in an initial-value-problem form. Further-
more, the convection part ∇ · f relates to the deterministic part of the system
dynamics, while the diffusion part relates to the stochastic behaviour. The
source term, s, in Eqn. (2) accounts for the running costs and discounting (as
we will see in Section 3). Note that Eqn. (2) is brought into conservative form,
whereas the original operator in a control problem is not. This is not strictly
necessary for the problem under consideration, but is a, say, generally beneficial
for the numerical treatment of models based on conservation laws.

We mentioned in the introduction that the nonlinearity of the partial dif-
ferential equations raises the question about uniqueness of the solution and its
consequences for the discretization. This motivated us to employ the ENO
methodology. It combines high-order accuracy with convergence to the relevant
(viscosity, or entropy) solution, albeit strictly speaking unproven, but proven
satisfactory in many applications.

The boundaries of the computational domain are often regular in control
problems, so a method that relies on Cartesian meshes, possibly combined with
coordinate mappings, would suffice. Furthermore, the state space can be up to
three-dimensional and straightforward dimensional splitting would be advanta-
geous, pointing towards a finite difference setting. Finally, to respect the conser-
vative nature of Eqn. (2), although not strictly necessary for the dike problem
discussed in Section 3, we use conservative finite differences in the Shu-Osher
form [19, 20, 15].

The model equations are of purely convective type when the system dynamics
are fully deterministic, i.e. K(u, t) = 0 in Eqn. (2) and fully diffusive when the
drift in a stochastic state system vanishes, i.e. f(u) = 0. We do not want to
make any assumptions on the magnitude of drift and diffusion and will discuss
their discretizations separately. We will now give a brief overview of the ENO
method, as originally intended for convection-type problems, with the purpose
of extending it to the discretization of the diffusion operator in the next section.

2.1.1 Convection

Assume a fully deterministic problem and no source terms. The model equation,
Eqn. (2), reduces to

∂u

∂t
+ ∇ · f(u) = 0, (3)

which is a hyperbolic conservation law. A discretization that is inherently con-
servative can be obtained by integrating Eqn. (3) over a control volume. Assume
a Cartesian mesh with coordinate directions xi, such that x = (x1, . . . , xN )t,
and grid spacings ∆xi and define the sliding average operators Ai and difference
operators ∆i along the line of Merriman [15] as follows:

AiΦ(x) =
1

∆xi

1
2∆xi
∫

− 1
2 ∆xi

Φ(x + ξei) dξ, (4)
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∆iΦ(x) = Φ(x +
1

2
∆ei) − Φ(x −

1

2
∆ei), (5)

where ei is the unit vector in the ith coordinate direction. The volume average
is then A1A2 . . .AN , which, applied to Eqn. (3), yields

A1A2 . . .AN

∂u

∂t
= −

∆1A2A3 . . .ANf1
∆x1

−
∆2A1A3 . . .ANf2

∆x2
+ . . .

−
∆NA1 . . .AN−2AN−1fN

∆xN

,
(6)

where f1, f2, . . . fN are the components of the flux vector f. Since the mesh
widths ∆xi are constant, the difference and average operators commute, so that

∂u

∂t
= −

∆1A1
−1f1

∆x1
−

∆2A2
−1f2

∆x2
+ . . .−

∆NAN
−1fN

∆xN

. (7)

Note that this will not work on non-uniform meshes. In that case, we will use
a coordinate-transformation to a uniform mesh. When we define hi as

hi = A−1
i fi, (8)

Eqn. (3) takes the Shu-Osher conservative-difference form

∂u

∂t
= −

N
∑

i=1

∆ihi

∆xi

= −

N
∑

i=1

hi(x + 1
2∆xiei) − hi(x − 1

2∆xiei)

∆xi

. (9)

A conservative discretization of Eqn. (3) is obtained by simply evaluating Eqn. (9)
at nodal points. The advantage of the Shu-Osher form is immediately apparent;
a ”dimension-by-dimension” operator-splitting technique is permitted and, as
a consequence, purely one-dimensional reconstructions to find hi(x + 1

2∆xiei)
may be applied to each coordinate direction. This makes the Shu-Osher form
very well suited for high-dimensional problems on Cartesian meshes. Note that
Eqn. (9) is still exact when evaluated at nodal points. The remaining question
is how to reconstruct h at intermediate locations, x + 1

2∆xiei, from the nodal
values.

The ENO doctrine reconstructs fluxes recursively with an increasing order
of accuracy by adding neighbouring nodes to the stencil. To this end a Newton
polynomial in the neighbourhood of x + 1

2∆xei is constructed. Starting from a
single node, the stencil is recursively extended with neighbouring nodes. These
neighbouring nodes are selected based on a criterion on the divided difference
table, and is such that it yields the smoothest possible interpolating polynomial.

For the ease of notation, we will exploit operator splitting and consider one
spatial dimension only, i.e.

∂u

∂t
= −

h(x+ 1
2∆x) − h(x− 1

2∆x)

∆x
. (10)
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First define a Cartesian grid that comprises nodes xj = j∆x. We will now use
subscripts to refer to nodal values, e.g. uj(t) = u(xj , t). The semi-discretization
of Eqn. (10) is simply

duj

dt
= −

hj+ 1
2
− hj− 1

2

∆x
. (11)

Shu and Osher [20] introduce the primitive H(x) of h(x):

h(x) =
dH

dx
(x). (12)

Combining this with the definition of h(x) in Eqn. (8) yields (omitting the
time-dependency of u)

H(x+ 1
2∆x) −H(x− 1

2∆x)

∆x
= f(u(x)). (13)

In other words, the divided difference table of H can be computed from the
divided difference table of f(x), whose values are known at the nodes, i.e.

H [xj− 1
2
, . . . , xj− 1

2+k] =
1

k
f [u(xj), . . . , u(xj+k−1)], (14)

where the square brackets indicate the divided difference. Newton polynomials
can now be (recursively) constructed to approximate H(x) in a neighbourhood
of xj+ 1

2
, see e.g. [12]

H(x) = H(xj+ 1
2
) +H [xℓ(1)− 1

2
, xℓ(1)+ 1

2
] (x− xj+ 1

2
)

+

r
∑

k=2

H [xℓ(k)− 1
2
, . . . , xℓ(k)− 1

2+k]

ℓ(k−1)+k−1
∏

m=ℓ(k−1)

(x − xm− 1
2
)

+ e(x)∆xr+1 + O
(

∆xr+2
)

,

(15)

and, using Eqns. (12) and (14),

h(xj+ 1
2
) = f(u(xℓ(1)))

+

r
∑

k=2

f [u(xℓ(k)), . . . , u(xℓ(k)+k−1)]

k

d

dx

ℓ(k−1)+k−1
∏

m=ℓ(k−1)

(x − xm− 1
2
)

∣

∣

∣

∣

∣

∣

x=x
j+ 1

2

+d(xj+ 1
2
)∆xr + O

(

∆xr+1
)

,

(16)

where ℓ(k) is the leftmost node used in the kth stencil. It is chosen such that
the smoothest possible interpolating polynomial is obtained, see [19, 20, 12] for
details. If we approximate h(xj+ 1

2
) by hj+ 1

2
,

hj+ 1
2

= f(u(xℓ(1)))

+
r
∑

k=2

f [u(xℓ(k)), . . . , u(xℓ(k)+k−1)]

k

ℓ(k−1)+k−1
∏

m=ℓ(k−1)

m 6=j+1

(xj+ 1
2
− xm− 1

2
), (17)
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then apparently Eqn. (11) is an approximation of Eqn. (10) with truncation
error

(d(xj+ 1
2
) − d(xj− 1

2
))∆xr−1 + O (∆xr) ,

which is O (∆xr) if d(x) is Lipschitz continuous, see [12].
Returning to the selection of the leftmost node at the kth-level recursion,

the first node, xℓ(1) is chosen in correspondance with Godunov’s scheme, just
like MUSCL schemes do, see [19] for more details, hence

ℓ(1) =

{

j, aj+ 1
2
≥ 0,

j + 1, otherwise,
(18)

where aj+ 1
2

is the advection velocity, e.g. aj+ 1
2

= ∂f/∂u(xj+ 1
2
). The stencil is

widened recursively to yield the smoothest possible interpolation polynomial:

ℓ(k+1) =







ℓ(k) − 1, , |f [u[xℓ(k)−1, . . . , xℓ(k)+k−1]]| ≤
|f [u[xℓ(k) , . . . , xℓ(k)+k]]|,

ℓ(k), otherwise.
(19)

A nonlinear stability result for the ENO scheme is the following. It is well
known and mentioned before that if the numerical approximation is Total Vari-
ation bounded, it converges to the weak solution of Eqn. (3) for ∆x → 0.
According to Harten et al. [12], the total variation TV decreases in time up to
O (∆xr):

TV (un+1) ≤ TV (un) + O (∆xr) , (20)

under the assumption that the time integration is monotone. Here, superscript
n refers to the time level, i.e.

un
j = u(xj , t

n), (21)

un = {un
1 , u

n
2 , . . .}. (22)

We will apply the high-order Runge-Kutta type TVD time discretizations of
Shu and Osher [19] that serve this need.

2.2 Diffusion

We now turn to the discretization of the diffusion operator Eqn. (2) by firstly
looking at the heat equation

∂u

∂t
=
∂2u

∂x2
, (23)

with appropriate boundary and initial conditions. The objective is to find a
high-order non-oscillatory discretization. Here, we have to keep in mind that
the convective part of Eqn. (2) motivated us to use a Runge-Kutta type TVD
time discretization, see Section 2.1.1. This is a convex combination of explicit
Euler time-steps and according to Shu and Osher [19] it is sufficient for stability
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to consider a forward-Euler-type numerical method un+1
j = E(un; j) (hereafter

referred as “method E”),

E(un; j) := un
j + ∆t L(un; j), (24)

where L(un; j) is the discretization of
∂2u

∂x2
(xj , t

n) and again using the notation

of Eqns. (21) and (22).
We will first prove that there is no central and linear scheme, in the sense

of Eqns. (25), (26), possible that is both higher-order (> 2) accurate and yields
a monotone numerical method E.

Theorem 2.1. There is no central difference scheme L of order of accuracy
higher than two for which the numerical method E is monotone.

Proof. We will construct the high-order discretization by means of Richardson
extrapolation by taking a linear combination of the well-known second-order
approximation, with mesh widths k∆x:

Lk(un; j) =
1

k∆x

(

un
j−k − 2un

j + un
j+k

)

, (25)

and

L(un; j) =
N
∑

k=1

αkL
k(un; j). (26)

The constants αk must be such that

1. L is consistent,

2. L has truncation error O
(

∆x2(M+1)
)

and M ≥ 1,

3. E is monotone, i.e.
∂E(u; j)

∂ui

≥ 0, ∀i, j.

ad 1. Consistency
We require

N
∑

k=1

αk = 1. (27)

ad 2. Truncation error
The truncation error τk of Lk, with mesh width k∆x, is

τk = K1(k∆x)
2 + . . .+KM (k∆x)2M + O

(

∆x2(M+1)
)

, (28)

and the truncation error τ of L is then

τ = K1

N
∑

k=1

αk(k∆x)2 + . . .+KM

N
∑

k=1

αk(k∆x)2M + O
(

∆x2(M+1)
)

. (29)
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For an O
(

∆x2(M+1)
)

method we require

N
∑

k=1

αkk
2m = 0, m = 1, . . . ,M. (30)

ad 3. Monotonicity
Substitution of Eqns. (25) and (26) in Eqn. (24) reveals for E:

E(un; j) =
∆t

∆x2

(

N
∑

k=1

αk

k2
(un

j−k + un
j+k) +

(

∆x2

∆t
− 2

N
∑

k=1

αk

k2

)

un
j

)

(31)

and to satisfy the monotonicity constraint
∂E(u; j)

∂ui

≥ 0, ∀i, j, we require

αk ≥ 0, k = 1, . . . , N, (32)
N
∑

k=1

αk

k2
≤

1

2

∆x2

∆t
. (33)

Substituting Eqn. (32) into Eqn. (30) gives αk = 0, k = 1, . . . , N , which is in
contradiction with Eqn. (27). This proves the theorem.

The non-monotonicity of the high-order discretization of the diffusion oper-
ator is often disregarded and one relies on its smoothing behaviour. However,
for non-smooth initial data, undesired results, such as oscillatory and negative
values, are encountered at the initial stages.

Theorem 2.1 for the discretization of the heat equation can be viewed as a
Godunov order barrier theorem (see for example [14], for discretizations of the
first-order convection operator) 1.

Since no higher-order linear scheme exists which has the desired monotonic-
ity properties, we will revert to non-linear schemes and extend the ENO method-
ology, originally intended for first-order derivatives, to second-order derivatives.
We will present three approaches. The first one is suitable for discretizing simply
∂2u/∂x2 as in Eqn. (23). The second one is also applicable to ∂(k(x)∂u/∂x)/∂x,
where k(x) is some scalar coefficient. The third one is a generalisation and suit-
able for the form ∇ ·K(u, t)∇u as in Eqn. (2), where K is a matrix.

2.2.1 Constant heat coefficient

Let’s first consider the discretization of Eqn. (23) once more and put it in the
form of Eqn. (3) by substituting −∂u/∂x for f(u). This gives again Eqn. (10)

∂u

∂t
= −

h(x+ 1
2∆x) − h(x− 1

2∆x)

∆x
,

1Godunov’s order barrier theorem states that linear numerical schemes for solving first-
order PDEs, having the property of not generating new extrema, can be at most first-order
accurate.
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where, as in Eqn. (8), h is defined by

Ah = −
∂u

∂x
. (34)

A straightforward extension of Eqn. (12) is

h(x) =
d2H

dx2
(x), (35)

which yields (omitting the time-dependency of u)

dH

dx
(x+

1

2
∆x) −

dH

dx
(x−

1

2
∆x)

∆x
= −

∂u

∂x
(x) (36)

and integration gives the analog of Eqn. (13)

H(x+ 1
2∆x) −H(x− 1

2∆x)

∆x
= −u(x) + c, (37)

where c is some constant. The divided difference table of H can thus be com-
puted from the divided difference table of u, compare Eqn. (14),

H [xj− 1
2
, . . . , xj− 1

2+k] = −
1

k
u[xj , . . . , xj+k−1], k > 1. (38)

Note that the constant c is not important, since we only need divided differences
of H of second-order and higher, i.e. k > 1. Substitution in Eqn. (15) and using
Eqn. (35) gives an expression for h(xj+ 1

2
) :

h(xj+ 1
2
) = −

r
∑

k=2

u[xℓ(k) , . . . , xℓ(k)+k−1]

k

d2

dx2

ℓ(k−1)+k−1
∏

m=ℓ(k−1)

(x − xm− 1
2
)

∣

∣

∣

∣

∣

∣

x=x
j+ 1

2

+d(xj+ 1
2
)∆xr−1 + O (∆xr) ,

(39)
where the order of the truncation term is now decreased by one compared to

Eqn. (16), since the second-order derivative in h := d2
H

dx2
replaces the first-order

derivative in Eqn. (12). In other words, if the order of the truncation term
is to match the one of the discretization of convection, the upper limit in the
summation in Eqn. (39) has to be increased from r to r + 1. Then, changing
the indices k to k + 1 and ℓ(k) to ℓ(k−1) and separating the first term in the
summation gives us the form of Eqn. (16):

h(xj+ 1
2
) = −u[xℓ(1) , xℓ(1)+1] +

−

r
∑

k=2

u[xℓ(k) , . . . , xℓ(k)+k]

k + 1

d2

dx2

ℓ(k−1)+k
∏

m=ℓ(k−1)

(x− xm− 1
2
)

∣

∣

∣

∣

∣

∣

x=x
j+ 1

2

+d̂(xj+ 1
2
)∆xr + O

(

∆xr+1
)

.

(40)
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If we approximate h(xj+ 1
2
) by hj+ 1

2
,

hj+ 1
2

= −
u(xℓ(1)+1) − u(xℓ(1))

∆x
+

−

r
∑

k=2

u[xℓ(k) , . . . , xℓ(k)+k]

k + 1

d2

dx2

ℓ(k−1)+k
∏

m=ℓ(k−1)

(x− xm− 1
2
)

∣

∣

∣

∣

∣

∣

x=x
j+1

2

,
(41)

then apparently Eqn. (11) is an approximation of Eqn. (23) with truncation
error

(d̂(xj+ 1
2
) − d̂(xj− 1

2
))∆xr−1 + O (∆xr) ,

which is O (∆xr) if d̂(x) is Lipschitz continuous.
The remaining task is to prescribe the selection of the leftmost node ℓ(k)

in the kth-level recursion. When discretizing the convection operator, we saw
that the first leftmost node ℓ(1) was chosen such that the monotone first-order
upwind scheme was recovered for r = 1, see Eqn. (18). The subsequent nodes
ℓ(k), k = 2, . . . , r were such that the smoothest possible interpolation scheme
was obtained, see Eqn. (19). Extending this to the discretization of the diffusion
operator, we now require that:

1. The standard monotone three-point central scheme, Eqn. (25), is recovered
for r = 1,

2. The scheme is essentially non-oscillatory for r > 1.

We therefore propose the following:

Proposition 2.2. An essentially non-oscillatory discretization of the heat equa-

tion, Eqn. (23), which is rth-order accurate in space, is obtained by the numer-
ical method of Eqns. (11) and (41), combined with a Runge-Kutta type TVD
time discretization and taking

1. ℓ(1) = j, compare with Eqn. (18),

2. The smoothest possible interpolation scheme for r > 1 (compare with
Eqn. (19)), i.e.

ℓ(k+1) =







ℓ(k) − 1 |u[xℓ(k)−1, . . . , xℓ(k)+k]| ≤
|u[xℓ(k) , . . . , xℓ(k)+k+1]|,

ℓ(k) otherwise.
(42)

Remark 2.3. The first-order scheme, r = 1, is actually second-order accurate,
provided ℓ(1) = j, as the contribution of the second-order part of Eqn. (41), i.e.
k = 2 in the summation, vanishes, since due to symmetry around xj+ 1

2

d2

dx2
(x− xj− 1

2
)(x− xj+ 1

2
)(x− xj+1 1

2
)
∣

∣

∣

x=x
j+ 1

2

= 0. (43)
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Figure 1: First six time steps of the numerical solution u of the heat equation;
fourth-order central scheme at the left side, and fourth-order ENO for diffusion
at the right side of the picture; third-order RK-TVD time discretization

Remark 2.4. A high-order central and linear scheme in the sense of Eqns. (25)
and (26) can be constructed by taking

ℓ(k+1) =

{

ℓ(k) − 1 k is even,

ℓ(k) k is odd.
(44)

Note that all contributions in Eqn. (41) now vanish when k is even, due to
symmetry as in Eqn. (43). This is to be expected based on the analysis of the
truncation error in Eqn. (29).

Numerical Example

We will now illustrate the monotonicity of the ENO discretization for the 1D
heat equation, Eqn. (23), with initial condition u(x, 0) = δ(x), where δ is
the Dirac delta function, and homogeneous Neumann boundary conditions. A
fourth-order spatial discretization is combined with a third-order Runge-Kutta
TVD (RK-TVD-3) time discretization. The spatial grid consists of 21 nodes
and comprises the node xj = 0. This is important, since we discretize the initial
conditions conservatively as follows

u0
j =

{

0 xj 6= 0,
1

∆x
xj = 0.

(45)

The time step is ∆t = (σ/2)∆x2, where monotonicity of RK-TVD-3 requires
σ ≤ 1, see [19]. We take σ = 1/2. Results for both the fourth-order central and
the ENO scheme of Proposition 2.2 are depicted in Fig. 1. The central scheme
produces oscillatory and negative values for u, whereas the results for the ENO
scheme are non-oscillatory and non-negative.

12



2.2.2 Non-constant heat coefficient

Diffusion formulated simply as a second-order derivative appears in many of our
applications, as we will see later on. However, there are circumstances where
we need to discretize

∂u

∂t
=

∂

∂x
k(x)

∂u

∂x
. (46)

One could consider a coordinate transformation and bring this equation into
the previously discussed form. Bearing in mind that we need an equidistant
mesh, now both in the original (for convection) and transformed coordinates,
this approach is not appealing.

Remark 2.5. If we repeat our previous effort, we again obtain Eqn. (10)

∂u

∂t
= −

h(x+ 1
2∆x) − h(x− 1

2∆x)

∆x
,

where now, as in Eqns. (8) and (34), h is defined by

Ah = −k(x)
∂u

∂x
. (47)

If we would use Eqn. (35), i.e. h(x) = d2H/dx2(x), we obtain (omitting the
time-dependency of u)

dH

dx
(x+

1

2
∆x) −

dH

dx
(x−

1

2
∆x)

∆x
= −k(x)

∂u

∂x
(x) (48)

whose right-hand side can not be integrated in general form as in Eqn. (37)
because of the non-constant k. If we would choose, instead of Eqn. (35),

h(x) =
d

dx
k(x)

dH

dx
(x), (49)

we would obtain

k(x+
1

2
∆x)

dH

dx
(x+

1

2
∆x) − k(x−

1

2
∆x)

dH

dx
H(x−

1

2
∆x)

∆x =

−k(x)
∂u

∂x
(x),

(50)

which is again not integrable in general form. The divided difference tables of
H can not be computed from the divided differences of u as easily as before and
therefore this approach isn’t appealing either.

We will therefore discretize Eqn. (46) in two steps, by firstly computing

f = −k
∂u

∂x
, (51)

13



up to rth-order accuracy and then

∂u

∂t
= −

∂f

∂x
. (52)

This methodology has some similarities to the variational Discontinuous Galerkin
technique for second-order equations in [7].

We maintain the same requirements:

1. The standard monotone three-point central scheme, similar to Eqn. (25),
is recovered for r = 1,

2. The scheme is essentially non-oscillatory for r > 1.

Instead of imposing these demands on the discretization in whole, we will impose
them to Eqns. (51) and (52) separately. The second demand requires an ENO
reconstruction. It seems justifiable to apply the algorithm which is available for
the discretization of the convection operator to compute the first-order deriva-
tives. However, it can readily be seen that this easily violates our first demand.
To meet the first demand, we have to employ symmetric differences for r = 1
(just like before) and use staggered locations for f to avoid checkerboarding.
Still, computing f goes in much the same way as before, see Eqn. (11)

f(xj+ 1
2
) = −k(xj+ 1

2
)
hj+1 − hj

∆x
. (53)

Adapting Eqn. (17) to our needs by evaluating it at xj and substituting u for

f gives an rth-order approximation for f(xj) by taking

hj = u(xℓ(1))

+

r
∑

k=2

u[xℓ(k) , . . . , xℓ(k)+k−1]

k

d

dx

ℓ(k−1)+k−1
∏

m=ℓ(k−1)

(x− xm− 1
2
)

∣

∣

∣

∣

∣

∣

x=xj

, (54)

under the same conditions as before. The central scheme is retained for r = 1
by setting ℓ(1) = j.

An rth-order accurate computation of Eqn. (52) can easily be derived from
Eqns. (53) and (54) by switching the indices by one half:

duj

dt
= −

gj+ 1
2
− gj− 1

2

∆x
, (55)

where

gj+ 1
2

= f(xℓ(1)+ 1
2
)

+

r
∑

k=2

f [xℓ(k)+ 1
2
, . . . , xℓ(k)+k− 1

2
]

k

d

dx

ℓ(k−1)+k−1
∏

m=ℓ(k−1)

(x− xm)

∣

∣

∣

∣

∣

∣

x=xj+
1
2

(56)

and using ℓ(1) = j to get the central scheme for r = 1. Summing up we come
to the following.

14



Proposition 2.6. An essentially non-oscillatory discretization of the heat equa-

tion, Eqn. (46), which is rth-order accurate in space, is obtained by the numeri-
cal method of Eqns. (53) to (56), combined with a Runge-Kutta type TVD time
discretization and taking

1. ℓ(1) = j,

2. The smoothest possible interpolation schemes for r > 1, compare with
Eqns. (19) and (42), i.e.

ℓ(k+1) =







ℓ(k) − 1 |u[xℓ(k)−1, . . . , xℓ(k)+k−1]| ≤
|u[xℓ(k) , . . . , xℓ(k)+k]|,

ℓ(k) otherwise
(57)

for the computation of hj in Eqn. (54) and, similarly,

ℓ(k+1) =







ℓ(k) − 1 |f [xℓ(k)− 1
2
, . . . , xℓ(k)+k− 1

2
]| ≤

|f [xℓ(k)+ 1
2
, . . . , xℓ(k)+k+ 1

2
]|,

ℓ(k) otherwise

(58)

for the computation of gj+ 1
2

in Eqn. (56).

Remark 2.7. The k = 2 term in the summation of Eqn. (54) cancels in the same
manner as described by Remark 2.3:

d

dx
(x − xj− 1

2
)(x − xj+ 1

2
)
∣

∣

∣

x=xj

= 0 (59)

and similarly for Eqn. (56).

2.2.3 Cross-derivatives

The last step to make is to extend the methodology to multiple dimensions, i.e.

∂u

∂t
= ∇ ·K(u, t)∇u, (60)

which is the diffusion term in Eqn. (2), where K is a matrix, for example related
to the correlation between the stochastic processes in Eqn. (81). The diagonal
terms can all be placed in the previously discussed form, ∂(k(x)∂u/∂x)/∂x. So,
without loss of generality, we only need to consider the cross-derivative terms,
as expressed by

∂u

∂t
=

∂

∂x
Kxy(x, y)

∂u

∂y
. (61)

We can take the same approach by firstly computing

f = −Kxy

∂u

∂y
, (62)
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up to rth-order accuracy and then again considering Eqn. (52)

∂u

∂t
= −

∂f

∂x
.

The computation of the second step, more precisely of ∂f/∂x, has already been
discussed, see Proposition 2.6. To compute ∂f/∂x|(xj,yl), inspection of Eqn. (56)
shows that we need ∂u/∂y at staggered locations (xj+ 1

2
, yl), whereas u-data are

known at locations (xj , yl). If we want to apply one-dimensional algorithms only,

we firstly have to compute ∂u/∂y|(xj ,yl) and then interpolate rth-order accu-
rately to the staggered locations. For both the computation of the y-derivatives
and the interpolation, it will come as no surprise that we impose the conditions:

1. The standard schemes are recovered for r = 2,

2. The schemes are essentially non-oscillatory for r > 2.

For the computation of the y-derivative we use a one-dimensional method D:

∂u

∂y
(xj , yl) = D(u(xj , ·); l), (63)

which can be derived without much effort from Eqns. (11) and (17). For some
variable φ(y) we have

D(φ; l) =
hl+ 1

2
− hl− 1

2

∆y
, (64)

where

hl+ 1
2

= φ(yℓ(1)) +
r
∑

k=2

φ[yℓ(k) , . . . , yℓ(k)+k−1]

k

ℓ(k−1)+k−1
∏

m=ℓ(k−1)

m 6=l+1

(yl+ 1
2
− ym− 1

2
) (65)

is an rth-order accurate approximation, under the same conditions as before.
The only adjustment we need to make is the selection of ℓ(1) and ℓ(2), so that
the standard central scheme is recovered for r = 2, which was our first demand.
So ℓ(1) = ℓ(2) = k. The other ℓ(k), k > 2 are as in Eqn. (19) and such that the
smoothest possible interpolation polynomial is obtained:

ℓ(l+1) =







ℓ(l) − 1 |u[xℓ(l)−1, . . . , xℓ(l)+l−1]| ≤
|u[xℓ(l)), . . . , xℓ(l)+l]|,

ℓ(l) otherwise.

(66)

For the interpolation of the y-derivatives to the staggered locations, a one-
dimensional method, as used before, is employed:

∂u

∂y
(xj+ 1

2
, yl) = I(

∂u

∂y
(·, yl); j +

1

2
), (67)
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where for some ψ(x)

I(ψ; j + 1
2 ) := ψ(xℓ(1)) +

r
∑

k=2

ψ[xℓ(k) , . . . , xℓ(k)+k−1]

ℓ(k−1)+k−2
∏

m=ℓ(k−1)

(xj+ 1
2
− xm)

(68)

is an rth-order accurate approximation, under the same conditions as before,
with

ℓ(1) = ℓ(2) = j (69)

and the selection of the leftmost nodes is as just prescribed for method D

ℓ(l+1) =







ℓ(l) − 1, , |ψ[xℓ(l)−1, . . . , xℓ(l)+l−1]| ≤
|ψ[xℓ(l)), . . . , xℓ(l)+l]|,

ℓ(l), otherwise.

(70)

In summary:

Proposition 2.8. An essentially non-oscillatory discretization of Eqn. (61),

which is rth-order accurate in space, is obtained by the numerical method of
Eqns. (55), (56) and (58), combined with a Runge-Kutta type TVD time dis-
cretization, where symbolically

f(xj+ 1
2
, yl) = −Kxy(xj+ 1

2
, yk) I

(

{D(u(xm, ·); l),m = ·} ; j +
1

2

)

, (71)

with the method D defined by Eqns. (64) to (66) and interpolation I by Eqns. (68)
to (70).

2.3 Numerical Example

The Laplace equation serves to assess the accuracy of the spatial discretization.
Given a prescribed function v, find u that satisfies

∆u(x) = ∆v(x), x = (x, y)t ∈ Ω, (72)

with Ω = {x ∈ IR2|x ≤ 0 ∧ y ≥ 0 ∧ 1
2 ≤ ‖x‖ ≤ 1},i.e. a quarter of an open disc,

and v(x) = sin(4πx).The boundary conditions are such that u equals v at δΩ,
i.e. u(x) = v(x), x ∈ ∂Ω.Of course, the error is just e = v − u. We employ
a coordinate transformation from the physical domain to the computational
domain {(ξ, η) ∈ [0, 1]2} and obtain

1

d(ξ, η)
∇̂ ·K(ξ, η)∇̂u(x(ξ, η)) = ∆u(x(ξ, η)), (73)

where ∇̂ = (∂/∂ξ, ∂/∂η)t and

K =
1

d

(

x2
η + y2

η −(xξxη + yξyη)
−(xξxη + yξyη) x2

ξ + y2
ξ

)

, (74)
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Figure 2: Grid convergence for the Laplace test-case

in which the subscripts indicate partial derivation and d = xξyη − xηyξ. A
uniform Cartesian mesh consisting of (N + 1) × (N + 1) nodes, including the
boundary nodes, is employed. Eqn. (73) is discretized with the ENO method-
ology as described in the Section 2.2. The discretization schemes are nonlinear
and we linearize them by using v for the selection of the leftmost nodes in
Eqns. (57) and (58) and Eqns. (66) and (70). This allows for a direct solve of
the linear system that now has arisen.

Remark 2.9. It is worth noting that we compute the mesh derivatives xξ, etc. dis-
cretely with the ENO methodology as well. As a matter of fact, data of map
x(ξ, η) are only prescribed at nodes (ξj , ηl) and the mesh derivatives at the
staggered locations are computed in exactly the same manner as the fluxes f in
Propositions 2.6 and 2.8.

The error e = v − u, measured in the L∞-norm is plotted in Fig. 2. The
dashed lines in the figure shows the theoretical second-, fourth, sixth- and eighth-
order convergence curve resp. (O(h2) etc. in the figure), the straight lines show
the error convergence achieved by the ENO schemes with different values for
discretization order r. The figure shows that the grid convergence with respect
to mesh widths h = 1

N
, for different discretization orders r is in accordance

with the theoretically expected convergence behaviour. The grid convergence
matches the discretization order.
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2.4 Butterfly Spread

The first test-case is an application from Mathematical Finance. The problem
is formulated as [18]:

∂u

∂t
− rx

∂u

∂x
= max

σ∈{σmin,σmax}

(

1

2
(σx)2

∂2u

∂x2

)

− ru, x ∈ (0, xR), t ∈ [0, T ], (75)

with boundary conditions

∂u

∂t
(0, t) = −ru,

∂u

∂t
(xR, t) = 0 (76)

and initial condition

u(x, 0) = max(x −K1, 0) − 2 max(x −
1

2
(K1 +K2), 0) + max(x−K2, 0). (77)

An uncertain volatility σ is prescribed by

σ =











σmin

∂2u

∂x2
> 0,

σmax

∂2u

∂x2
≤ 0.

(78)

We will not discuss the background of the financial problem but focus on the
numerical scheme to solve (75). Pooley et al. [18] show that a non-monotone
scheme can lead to incorrect solutions. They utilise a locally first-order upwind-
like finite difference discretization for the convection operator and the common
second-order discretization for the diffusion operator. A monotone scheme is
obtained, on the condition of an implicit time integration, either fully implicit
or Crank-Nicholson. This leads to a nonlinear iterative time integration.

To accommodate a non-uniform mesh, we here use a coordinate transforma-
tion x(ξ), ξ ∈ [0, 1].

Approximately 75% of the nodes are uniformly distributed between x = xL

and xR, 0 < xL < xR, and the remaining nodes are exponentially distributed
between x = 0 and xL.

With nL the number of points in the stretched region, we use the transfor-
mation:

xi =
1 − α̂i−1

1 − α̂nL−1
· xL, 1 ≤ i ≤ nL.

Here, the stretching parameter α̂ is defined such that

α̂ · (xnL
− xnL−1) =

xR − xL

nx − nL

,

with nx the total amount of grid points; dL := (xnL
− xnL−1) is the mesh

width at the left side of xL, and dR := (xR − xL)/(nx − nL) is the right side
(uniform) mesh width. We require α̂ = dR/dL, so that the grid is smooth at
xL. Parameter α̂ is determined by Newton’s method. An example is given in
Fig. 3.
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Figure 3: Coordinate transformation for the Butterfly Spread test-case; N = 60

N r = 6, n = 3 r = 4, n = 2 r = 2, n = 1 Pooley et al. [18]
60 2.3075 2.3073 2.2997 2.3501

120 2.2967 2.2966 2.2945 2.3250
240 2.2974 2.2974 2.2969 2.3116
480 2.2976 2.2976 2.2975 2.3047
960 2.2977 2.2977 2.2976 2.3012

extr. 2.2977

Table 1: Convergence results of u(100, T )

Substitution in Eqn. (78) yields

∂u

∂t
− r

x

x′
∂u

∂ξ
=

1

2
(σx)2

1

x′
∂

∂ξ

(

1

x′
∂u

∂ξ

)

− ru, ξ ∈ (0, 1), t ∈ [0, T ]. (79)

The following data are used: T = 0.25, r = 0.1, K1 = 90, K2 = 110, σmin =
0.15, σmax = 0.25 and we take xL = 70 and xR = 130.

The derivative ∂u/∂ξ is discretized as explained in Section 2.1.1 by setting
f = u in Eqn. (13). Note that the upwind direction in Eqn. (18) is determined
by setting aj+ 1

2
= −r(x/x′)j+ 1

2
. The discretization of ∂/∂ξ(1/x′∂u/∂ξ) is as

described in Proposition 2.6. To ensure stability, we take for ∆t:

∆t =
1

2

∆x2

1
2 (σmaxxR)2

. (80)

Since ∆t is proportional to ∆x2, we set the order n of the RK-TVD time inte-
gration equal to the square root of the order r of the spatial discretization. The
convergence results of u(100, T ) are shown in Table 1. In this table, by ‘extr.’
the quadratically extrapolated values from N = 240, 480 and 960 is meant. It
is reasonable to assume that the numerical solution converges to the same value
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as obtained by Pooley at al in [18]. The higher order schemes show fast conver-
gence and reach highly satisfactory approximations for N = 120, although the
differences in this test are relatively small.

3 The dike height optimisation problem

In this section we explain in detail the formulation of an optimal dike control
problem.

3.1 Model equations

The future expected costs are comprised of the costs due to flooding, the in-
vestment costs of dike level increases and the terminal costs. There were three
variables in van Dantzig’s original model [8] that set up the state space, the
uniform dike height, uniform water level and economic value at risk. Extend-
ing the model by assuming stochastic behaviour in continuous time, the system
dynamics can be put as

dX = a(X(t), t) dt+m(X(t), t) dZ, (81)

where X(t) ≡ x(t) = (x1(t), x2(t), x3(t))
t is the state vector. Here x1 repre-

sents the dike height, x2 the water level and x3 the economic value, respec-
tively. The deterministic part of the evolution of X is expressed by the drift
a(X, t) = (a1(X, t), a2(X, t), a3(X, t))

t, while Z expresses Brownian motion and
m(X(t), t) = diag(m1(X(t), t),m2(X(t), t),m3(X(t), t)) represents the covari-
ance matrix here.

It is important to understand that x2 represents an average water level,
see [11] and [16]. De Haan [11] remarks that flooding occurs when high tide
is accompanied by a storm. He applies extreme-value theory and connects the
occurrence of the extreme event to a Poisson point process. Van Noortwijk et
al. [16] use a Poisson process to generate the extreme event, i.e. the flooding,
and adopt a peaks-over-threshold distribution for the distribution of the jump
magnitude. We will employ these ideas by assuming that the absolute water
level w(t) is a summation of the average water level, x2(t), and a jump, J (t):

w(t) = x2(t) + J (t), (82)

see Fig. 4 for an example.
Having defined the water level in such a manner, it is possible to express the

discounted future losses as:

T
∫

t

e−r(s−t)x3(s) lp(x2(s) + J (t) − x1(s)) ds,

where T is the time horizon, r is a deterministic discount rate and lp, defined
by

lp(y) = max(1 − e−λpy, 0), (83)
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Figure 4: Example of the composition of the water level by an average level
x2(t) and a jump J (t). The jump intensity of the Poisson process is λ = 1/10.

measures the fraction of the economic value x3(s) that is lost when the absolute
water level w(s) exceeds the dike height x1(s) by an amount w(s) − x1(s).
Several parameters, appearing in the definition of the problem (like λp here),
are given in Table 2.

The terminal costs at time T , named b1, are set as

b1(x) =

∞
∫

T

e−r(s−T ) λx3(s)β(x1(s) − x2(s)) ds, (84)

in which

β(h) =

∞
∫

−∞

lp(y − h) f(y) dy, (85)

The statistics for the extreme water levels, expressed by the probability density
function f , are based on annual data in a discrete-time model, so if we are to
use it in our model, we must set the intensity of the Poison process to once per
year, i.e. λ = 1 yr−1, with λ the jump intensity, or the expected frequency of
the jumps. f(y) is the probability density function of the jumps in the Poisson
process,

f(y) = k1e
−k1(y−k2)e−e−k1(y−k2)

, (86)

(k1 and k2 constants, Table 2).
The construction costs of the dikes, bi(x, u) in Eqn. (88), are

bi(x, u) = kf + ku(u2 tan(φ) + u (2x1tan(φ) + ŵ)), (87)

(kf , ku, φ and ŵ constants, Table 2).
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Now, the total discounted expected costs J , can be expressed as:

J(x, t, u) = IEx

{

T
∫

t

e−r(s−t)x3(s)lp(x2(s) + J (s) − x1(s)) ds, +

∑

t≤tk<T

e−r(tk−t)bi(x(tk−), uk(x(tk−))) + e−r(T−t)b1(x(T ))

}

,

(88)
where IEx is the expectation conditioned on x and u(t) denotes the increase in
dike height, which acts as an input to the control problem.

The terminal condition V (x, T ) = b1(x) expresses the total discounted ex-
pected costs at the time horizon T and is obtained by assuming that the water
level and dike height remain constant after the time horizon [13].

The dike increase is imposed at a sequence of intervention times tk, i.e.

x1(tk) = x1(tk−) + uk(x(tk−)). (89)

The tk− in Eqn. (89) indicates that stochastic process X is càdlàg, i.e. right
continuous with left limits.

The optimal cost-to-go function is

V (x, t) = inf
û
J(x, t, û). (90)

By a dynamic programming argument, for details see, for example, [3], and
applying Itô’s formula, see e.g. [17], the following differential equations are
obtained in the case that it is not optimal to increase the dike height:






0 =
∂V

∂t
(x, t) + LV (x, t) − rV (x, t) + λx3β(x1 − x2),

V (x, t−) ≥ inf
û
V (x+ (û, 0, 0)t, t) + bi(x, û),

(91)

for t ∈ (tk−1, tk) and when it is optimal to increase dike heights:






0 ≥
∂V

∂t
(x, t) + LV (x, t) − rV (x, t) + λx3β(x1 − x2),

V (x, t−) = inf
û
V (x+ (û, 0, 0)t, t) + bi(x, û),

(92)

for t ∈ {. . . , tk−1, tk, . . .), where

LV (x, t) = at(x, t)
∂V

∂x
(x, t) +

1

2
trace

(

mmt ∂
2V

∂x2
(x, t)

)

, (93)

(94)

The running costs are represented by λβ(x1 − x2)x3 in Eqns. (91) and (92),
where β is defined in Eqn. (85).

The combination of Eqns. (91) and (92) leads to a Hamilton-Jacobi-Bellman
(HJB) variational inequality.

Note that the equations (91) and (92) define a so-called obstacle problem,
with a free boundary. Either the inequality in Equation (91) or the one in
Equation (92) becomes an equality. Such problems can be formulated as linear
complementarity problems, solely based on equalities and solved relatively easily
as such (discussed below).
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3.2 Impulse control

Section 2.1 described the numerical approach of the uncontrolled part of the
problem. We will now discuss the optimal control, i.e. finding the dike rein-
forcements uk at intervention times tk that minimise the total expected future
costs, see Eqn. (92). As mentioned before, the intervention times tk are fixed,
in practice annually, and the dike increases are instantaneously. This means
that the total expected costs V (x, tk) from Eqn. (90), just after the possible
dike increase at tk, are evaluated by integrating the equality of Eqn. (92) back-
wards in time from tk+1− to tk by the methods just described. Arriving at
intervention time tk, one has to decide on the optimal dike increase uk to obtain
optimal costs V (x, tk−). The optimal control is computed from the equality of
Eqn. (92), i.e.

uk(x) = arg inf
û∈U

V (x + (û, 0, 0)t, t) + bi(x, û). (95)

The optimisation can be carried out over a discrete set U , which is computa-
tionally the least demanding, or a continuous set.

3.2.1 Discrete optimisation

Assume that, for computational efficiency, we take a discrete set of possible
inputs U , i.e. U = {0,∆u, 2∆u, . . .}.The optimal costs just before the possible
dike increase are then

V (x, t−) = inf
û∈U

V (x+ (û, 0, 0)t, t) + bi(x, û), (96)

Remark 3.1. For computational efficiency, it is advantageous to have all x1 + u
coincide with the grid nodes of x1. This prevents the need to interpolate from
the nodal data to x1 + u for all discrete x1 and all u ∈ U . This can be achieved
by taking ∆x1 = ∆u/m, where m is an integer.

Remark 3.2. Assume that we have computed a numerical solution of the problem
and we want to make a realisation X(t) by integrating the system dynamics,
Eqn. (81) forward in time, starting from some initial data. We arrive just before
intervention time tk, with state X(tk−). The question is how to compute the
input uk. Since uk ∈ U is discrete, we can not simply interpolate uk from the
nodal data to x1(tk−) as in Eqn. (89). Instead, we have the data from the two
neighbouring nodes, called uL and uR for convenience. Then, we compute

uk(X(tk−)) = arg inf
û∈{uL,uR}

V (X(tk−) + (û, 0, 0)t, tk) + bi(X(tk−), û), (97)

where the V (·, tk−) is approximated at X(tk−) + (û, 0, 0)t with an rth-order
accurate ENO interpolation.
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3.2.2 Continuous optimisation

There may be a need to optimise over a continuous set of inputs. We will use
investment costs of the following form:

bi(x, u) =

{

0 u = 0,
b+i (x, u) u > 0,

(98)

where b+i is a smooth function, such as a polynomial expression and b+i (x, 0) 6= 0.
We therefore first compute u+

k in the reduced set U \ {0}:

u+
k (x) = arg inf

û∈U\{0}
V (x+ (û, 0, 0)t, t) + b+i (x, û) (99)

and then uk as

uk(x) = arg inf
û∈{0,u

+
k

(x)}
V (x+ (û, 0, 0)t, t) + bi(x, û), (100)

using an rth-order accurate ENO interpolation for V (x+(u+
k (x), 0, 0)t, t). Since

b+i (x, u) is continuous and continuously differentiable with respect to u, u+
k is

the solution û of

∂

∂û

{

V (x+ (û, 0, 0)t, t) + b+i (x, û)
}

= 0, (101)

which results in the following condition for u+
k :

∂V

∂x1
(x+ (u+

k , 0, 0)t, t) +
∂b+i
∂u

(x, u+
k ) = 0. (102)

We solve this equation with a Secant method. The first term, ∂V /∂x1, has

to be computed from nodal values V (xj) to arbitrary locations with rth-order
accuracy. The Secant method requires continuity of ∂V /∂x1, so we can not
simply employ an ENO reconstruction of V and take its derivative. Instead, we
firstly compute ∂V /∂x1 at a staggered location similar to Eqns. (53) and (54)
of Proposition 2.6. Then, we approximate ∂V /∂x1 at the desired location with

an rth-order accurate ENO interpolation. To ensure that we find the global
extremum, we take the first iterate in the Secant algorithm from a discrete
optimisation, where we set ∆u = ∆h.

Remark 3.3. Once the control law is computed, consider a realisationX(t). The
input uk(X(tk−)) is computed as follows. Due to discontinuity of bi at u = 0,
uk itself is discontinuous. Therefore, first u+

k (X(tk−)) is computed from nodal

values of u+
k by means of an rth-order accurate ENO interpolation. Thereafter

uk(X(tk−)) is determined by using Eqn. (100) and setting x = X(tk−).

3.3 Dike optimisation; Model I

The test-case here is the dike optimisation problem as described in Section 3.1.
We consider a Dutch island, and first take data, where applicable, from the
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Parameter Value Details
α3 0.025; econ. growth

x3(0) 34 · 103 MEUR init. value
k1 8.16299 · 10−2 cm;−1 Eq. (86), see [13]
k2 1.88452 · 102 cm; Eq. (86), see [13]
λp 1.2 · 10−2 cm−1; Eq. (83)
r 0.05; Eq. (88)
T 300 yr;
kf 22.975 MEUR; Eq. (87)
ku 1.921 · 10−4 MEUR/cm2; Eq. (87)
φ 1.25; Eq. (87)
ŵ 500 cm; Eq. (87)

Table 2: Parameter values for the dike height problem

t [yr] 0 50 100 150 200 250 300
w(t)-w(0) [cm] 0 25 60 105 140 165 180

Table 3: Predicted average water level rise w(t) − w(0)

discrete-time model of [13]. The system dynamics are deterministic in this test
case, translating to a = (0, dw/dt(t), α3x3)

t and m = 0 in Eqn. (81), where w(t)
is the predicted average water level and α3 is the economic growth factor. Note
that w is now redefined to represent the average water level and should not be
confused with its previous definition in Eqn. (82).

Substitution in Eqn. (85) yields for the terminal costs

b1(x) =
λβ(x1(T ) − x2(T ))

r − α3
x3(T ). (103)

The open parameters in the problem definition are defined in Table 2. The
average water level is assumed piecewise linear between the data in Table 3 and
the initial water level is w(0) = 0 cm. We can reduce the dimension of the
problem by setting

h = x1 − x2, (104)

τ = T − t, (105)

V (x, t) = ex3W (h,τ). (106)

Note that h can be understood as the relative dike height and the time has been
reversed by introducing τ , left continuous with right limits, for convenience.
Substitution of the system dynamics in the uncontrolled part of the governing
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comp. time [s]
grid Nh ∆h [cm] Nt ∆t [yr] discr. opt. cont. opt

1 81 5 300 1 7.20 18.54
2 161 2.5 600 0.5 11.37 24.77
3 321 1.25 1200 0.25 22.27 42.95
4 641 0.625 2400 0.125 54.88 112.06
5 1281 0.3125 4800 0.0625 159.85 374.41

Table 4: Grid resolutions and computing times for the dike-optimisation test-
case; both discrete and continuous optimisation

equations, Eqn. (91) yields


















∂W

∂τ
= −dw

dt
(T − τ)

∂W

∂h
− (r − α3) +

λβ(h)

eW
,

W (h, τ+) ≥ ln
(

inf
û∈U

[

eW (h+û,τ) +

bi((w(T−τ)+h,w(T−τ),x3(T−τ))t,û)
x3(T−τ)

])

(107)

with x2 = w, and similar for the controlled part, Eqn. (92), subject to initial
condition Eqn. (103)

W (h, 0) = max

(

ln

(

λβ(h)

r − α3

)

, ǫ

)

, (108)

where we choose ǫ = 10−16.
The integral in Eqn. (85) is computed numerically with an appropriate in-

tegration rule, changing the integration interval to [ymin, ymax] and taking Ny

intervals, where ymax = −ymin = 500 cm and Ny = 1000.
We take h ∈ [hL, hR], with hL = 300 cm, hR = 700 cm. We will take Nh

nodes and vary it to show grid convergence. Since dw

dt
≥ 0, it is sufficient to

apply the following (somewhat artificial) boundary condition:

∂W

∂τ
(hL, τ) = −(r − α3) +

λβ(hL)

eW (hL,τ)
. (109)

The input u is assumed discrete in [13]: U = {0, 5, 10, . . .} cm.We will adopt
these values in case of discrete optimisation. The possible control times τk are

τk ∈ {0, 1, 2, . . . , T} yr. The discretization is 4th-order accurate in space and

3rd-order in time.

Results

Computations are performed on five grids. The grid resolutions and correspond-
ing computing times are presented in Table 4.

The computed control law, i.e. u(h, tk), is presented in Fig. 5 for the coarsest
and finest grids (grids 1 and 5). In this figure, the optimal dike heights for an
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Figure 5: Control law for the dike-optimisation test-case; continuous optimi-
sation; the control law in this figure depends on the dike-height x1, along the
horizontal and time t, along the vertical axis. Given some (x1, t), the color
indicates the optimal dike increase u, see the adjacent colorbar for the scaling;
the optimal dike heights for x1(0) = 425cm are indicated by a black line.

tA uA tB uB tC uC tD uD

[yr] [cm] [yr] [cm] [yr] [cm] [yr] [cm]
grid 1 147 45 193 45 245 35 300 30
grid 2 146 45 190 40 238 40 300 30
grid 3 146 45 190 40 237 30 298 30
grid 4 146 45 190 40 236 35 289 30
grid 5 146 45 189 40 236 35 289 30

discr. time 147 50 191 45 239 40 293 35

Table 5: Optimal dike-reinforcements (t, u)A to (t, u)D for x1(0) = 425 cm for
the different grids; discrete optimisation

initial dike-level of x1(0) = 425 cm are indicated by a black line. This line is
vertical when the dikes do not have to be increased, whereas the horizontal parts
indicate a dike increase. The corresponding optimal dike-reinforcement times
and increases are presented in Tables 5 and 6.

Very good grid convergence is observed and the data compares very well with
the results of the discrete time model of [13]. The continuous optimisation ap-
proximately doubles computing time, while faster grid convergence is observed,
most prominently for the third dike reinforcement ‘C’.

28



tA uA tB uB tC uC tD uD

[yr] [cm] [yr] [cm] [yr] [cm] [yr] [cm]
grid 1 147 45.73 194 43.99 245 37.29 300 28.72
grid 2 147 45.87 191 41.55 240 37.04 299 30.80
grid 3 146 44.96 190 41.71 239 37.20 297 30.83
grid 4 146 44.98 190 41.70 239 37.18 296 30.55
grid 5 146 44.99 190 41.70 239 37.18 296 30.61

discr. time 147 50 191 45 239 40 293 35

Table 6: Same as Table 5; continuous optimisation

3.4 Dike optimisation with stochastic economic growth

We will now extend our previous dike optimisation problem by assuming stochas-
tic economic growth as follows:

dx3 = α3x3 dt+ µ3x3 dz, (110)

where we take µ3 = 0.15. The terminal conditions is as before. Since x3

and J are stochastically independent, Eqn. (84) is again obtained. We cannot
immediately apply the reduction of Eqn. (106), but set

h = x1 − x2, (111)

y = −α3t+ lnx3, (112)

τ = T − t, (113)

V (x, t) = x3e
W (h,y,τ). (114)

This particular choice of variables is numerically beneficial, since it keeps W
within bounds and transforms it in an, almost, piece-wise linear form.

Note that y is chosen such that y = constant corresponds to the expected
economic growth. The governing equation Eqn. (107) transforms into







































∂W

∂τ
= −dw

dt
(T − τ)

∂W

∂h
− (r − α3) +

1
2µ

2
3(1 +

∂W

∂y
)
∂W

∂y
+

1

2
µ2

3

∂2W

∂y2
+

λβ(h)

eW
,

W (h, y, τ+) ≥ ln
(

inf
û∈U

[

eW (h+û,y,τ) +

bi((w(T − τ) + h,w(T − τ), ey+α3(T−τ))t, û)

ey+α3(T−τ)

])

,

(115)

for (h, y, τ) ∈ [hL, hR]× [yL, yR]× [0, T ] and with the same initial conditions as
before. i.e.

W (h, y, 0) = max

(

ln

(

λβ(h)

r − α3

)

, ǫ

)

(116)
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and boundary conditions

∂W

∂τ
(hL, y, τ) = −(r − α3) +

1

2
µ2

3(1 +
∂W

∂y
(hL, y, τ))

∂W

∂y
(hL, y, τ) +

1

2
µ2

3

∂2W

∂y2
(hL, y, τ) + +

λβ(hL)

eW (hL,y,τ)
, (117)

∂W

∂τ
(h, yL, τ) = −

dw

dt
(T − τ)

∂W

∂h
(h, yL, τ) − (r − α3) +

λβ(h)

eW (h,yL,τ)
,(118)

∂W

∂τ
(h, yR, τ) = −

dw

dt
(T − τ)

∂W

∂h
(h, yL, τ) − (r − α3) +

λβ(h)

eW (h,yL,τ)
.(119)

The controlled part is similar. We take hL = lnX3(0)−lnκ and hR = lnX3(0)+
lnκ, such that

1

κ
IE{X3(t)} ≤ x3 ≤ κIE{X3(t)}. (120)

We set κ = 4 and did not observe significantly different results for κ = 5 or
κ = 6, so we assume that the boundaries y = yL and y = yR are sufficiently
far away. A heuristic time-step criterion is obtained by considering the stability
condition of the time-integration method for convection in h- and y-direction
and diffusion in y-direction respectively, i.e.

∆τ ≤ σmin





∆h

maxabs(dw

dt
)
,

∆y
1
2µ

2
3

,
1

2

∆y2

1
2µ

2
3



 , (121)

where we take 1 ≥ σ = 0.4. We choose the maximum possible ∆τ such that it
satisfies Eqn. (121) and that the control-time interval tk+1 − tk is a multiple of
∆τ .

Results

We were satisfied with the results on grid 2 of the previous problem, so we fixed
Nh = 161. Five different grids are now defined with varying number of nodes
in the y-direction, see Table 7. Note that the computing time is now presented
in minutes. The optimal dike-reinforcement times and increases, when the eco-
nomic growth is confined to its expected value, are presented in Table 8. Rapid
grid convergence is observed. The differences with the previous deterministic
economic growth test-case appear to be relatively small. The corresponding
optimal control law, i.e. u(h, ln(X3(0)), tk), is presented in Fig. 6 for grid 5.
Results on the other grids are the same, as may be expected from the rapid grid
convergence in Table 8. Fig. 7 shows the optimal control law in (x1, x3)-planes
on the same grid. Note that the sawtooth behaviour of the smallest isocon-
tourline is an artifact of the plotting software. Recall that the control law is
discontinuous, due to the threshold value in the investment costs, see Eqn. (98).
As an illustration, the isocontours of u+, i.e. optimised over the set U \ {0}, are
plotted in Fig. 8 for t = 100 and exhibit a smooth behaviour. For an exposure of
the optimal dike-level computation near the discontinuity of u, see Remark 3.3.
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comp. time
grid Ny ∆y [cm] Nt ∆t [yr] [min]

1 11 0.5545 600 0.5 1.71
2 21 0.2773 600 0.5 2.96
3 41 0.1386 1200 0.25 8.56
4 81 0.0693 3600 0.0833 39.95
5 161 0.0347 14400 0.0208 297.86

Table 7: Grid resolutions and computing times for the dike-optimisation test-
case with stochastic economic growth; Nh = 161; continuous optimisation

tA uA tB uB tC uC tD uD

[yr] [cm] [yr] [cm] [yr] [cm] [yr] [cm]
grid 1 148 44.75 191 40.45 241 37.62 297 31.82
grid 2 148 44.74 191 40.46 241 37.62 297 31.82
grid 3 148 44.78 191 40.45 241 37.62 297 31.86
grid 4 148 44.81 191 40.44 241 37.62 297 31.87
grid 5 148 44.82 191 40.44 241 37.62 297 31.88

Table 8: Optimal dike-reinforcements (t, u)A to (t, u)D for the different grids; the
economic growth is confined to its expected value, i.e. the plane x3 = IE{X3(t)};
x1(0) = 425 cm
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Figure 6: Optimal control law in the plane x3 = IE{X3(t)} for the dike-
optimisation test-case with stochastic economic growth; continuous optimisa-
tion. Given some (x1, t), the color indicates the optimal dike increase u in
time, see the adjacent colorbar for the scaling; the optimal dike heights for
x1(0) = 425cm are indicated by a black line.
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Figure 7: Optimal control law in (x1, x3) planes for the dike-optimisation test-
case with stochastic economic growth; continuous optimisation; Given some
(x1, x3), the color indicates the optimal dike increase u in time, see the adjacent
colorbar for the scaling.
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Figure 8: Control law u+ over the reduced set U \ {0} in an (x1, x3) plane
for the dike-optimisation test-case with stochastic economic growth; continuous
optimisation; grid 5; t = 100 yr
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4 Conclusions

A model to compute the optimal dike heights and reinforcement times in contin-
uous time has been presented. The problem is formulated as an optimal control
problem and based on the minimisation of future expected losses due to floods,
and investment costs. The system dynamics are described by the dike height, av-
erage water level and economic value at risk. A Poisson point process is adopted
to model extreme water-levels, enabling an expression for the future expected
losses. The control problem leads to the so-called Hamilton-Jacobi-Bellman
(HJB) variational inequalities, where the dike-increase and reinforcement times
act as input to the control problem.

The HJB equations are a set of partial differential equations that are solved
numerically by a conservative finite difference discretization. To ensure the con-
vergence to the proper solution, a high-order Essentially Non-Oscillatory (ENO)
method is adopted. The ENO methodology is originally intended for hyperbolic
conservation laws and is extended here to deal with diffusion-type problems.
The method is validated by considering a test-case from Computational Fi-
nance. Faster grid convergence was observed, compared to lower-order results
from literature, at the costs of explicit time-integration, limiting the maximum
allowable time-step for stability and monotonicity.

The framework presented, based on ENO schemes, may serve as an alter-
native for techniques based on viscosity solutions. The framework offers dis-
cretizations of different orders of accuracy in a natural way. This is particularly
attractive for high-dimensional HJB problems, for which one cannot use many
grid points per coordinate direction, and for problems governed by steep gra-
dients and discontinuities in the initial conditions, or in the solutions at the
intervention times. The present dike optimisation problem does not exhibit
these phenomena, which is basically because of a smart choice of the unknowns,
in log-scale and scaled by the drift in the economic growth.
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