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Abstract

We derive two types of saddlepoint approximations for expectations in
the form of E[(X − K)+], where X is the sum of n independent random
variables and K is a known constant. We establish error convergence rates
for both types of approximations in the i.i.d. case. The approximations
are further extended to cover the case of lattice variables. An application
of the saddlepoint approximations to CDO pricing is presented.

1 Introduction

We consider the saddlepoint approximations of E[(X−K)+] , where X is the sum
of n independent random variables Xi, i = 1, . . . , n, and K is a known constant.
The expectation is frequently encountered in finance and insurance. It plays an
integral role in the pricing of the Collateralized Debt Obligations (CDO) (Yang
et al. (2006) and Antonov et al. (2005)). In option pricing, E[(X − K)+] is the
payoff of a call option (Rogers & Zane, 1999). In insurance, E[(X − K)+] is
known as the stop-loss premium. The expectation is also closely connected to
E[X |X ≥ K], which corresponds to the expected shortfall, also known as the tail
conditional expectation, of a credit or insurance portfolio. It plays an increas-
ingly important role in risk management in financial and insurance institutions.

In this article we derive two types of saddlepoint expansions for the quantity
E[(X − K)+]. The first type of approximations is based on Esscher tilting and
the Edgeworth expansion. The resulting approximations confirm the results in
Antonov et al. (2005), which are obtained by a different approach. Our contribu-
tions are: (1) We have provided the rates of convergence for the approximation
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formulas in the i.i.d. case. (2) We present explicit saddlepoint approximations
for the log-return model considered in Rogers & Zane (1999) and Studer (2001).
With our formulas only one saddlepoint needs to be computed, whereas the
measure change approach employed in Rogers & Zane (1999) and Studer (2001)
requires the calculation of two saddlepoints. (3) We have also provided the cor-
responding saddlepoint approximations for lattice variables. The lattice case is
largely ignored in the literature so far, even in applications where lattice vari-
ables are highly relevant like, for example, the pricing of CDOs.

Our main contribution is the second type of saddlepoint approximations.
They are derived following the approach in Lugannani & Rice (1980) and Daniels
(1987) where the Lugannani-Rice formula to tail probabilities was derived. The
higher order version of the approximations distinguishes itself from all existing
saddlepoint approximations by its remarkable simplicity, high accuracy and fast
convergence. The application of the approximations for lattice variables to the
valuation of CDO’s leads to almost exact results.

The two expectations we have discussed are related as follows,

E[X |X ≥ K] =
E[(X − K)

+
]

P(X ≥ K)
+ K. (1.1)

Also closely related functions are E[(K − X)+] and E[X |X < K]. The connec-
tions are well known and we put them here only for completeness.

E[(K − X)+] = E[(X − K)+] − E[X ] + K,

E[X |X < K] =
(

E[X ] − E[X1{X≥K}]
)

/P(X < K).

For simplicity of notation, we define

C := E[(X − K)+]. (1.2)

The article is organized as follows. In section 2 we recall the saddlepoint ap-
proximations for densities and tail probabilities. Section 3 reviews the existing
literature for calculating C and related quantities by the formulas in section
2. In sections 4 and 5 we derive two types of formulas for the saddlepoint ap-
proximations to C. Section 6 gives the corresponding formulas for the lattice
variables. Numerical results are presented in section 7, including in particular
an application to CDO pricing.

2 Densities and tail probabilities

Dating back to Esscher (1932), the saddlepoint approximation has been recog-
nized as a valuable tool in asymptotic analysis and statistical computing. It has
found a wide range of applications in finance and insurance, reliability theory,
physics and biology. The saddlepoint approximation literature so far mainly fo-
cuses on the approximation of densities (Daniels, 1954) and tail probabilities
(Lugannani & Rice (1980) and Daniels (1987)). For a comprehensive exposition
of saddlepoint approximations, see Jensen (1995).
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We start with some probability space (Ω,F , P). Let Xi, i = 1 . . . n be n in-
dependently and identically distributed continuous random variables all defined
on the given probability space and X =

∑n
i=1 Xi. Suppose the moment gener-

ating function (MGF) of X1 is analytic and given by M1(t) for t in some open
neighborhood of zero. The MGF of the sum X is then simply the product of
the MGF of Xi, i.e.,

M(t) = (M1(t))
n.

Let κ(t) = log M(t) be the Cumulant Generating Function(CGF) of X . The
density and tail probability of X can be represented by the following inversion
formulas

fX(K) =
1

2πi

∫ τ+i∞

τ−i∞
exp(κ(t) − tK)dt, (2.1)

P(X ≥ K) =
1

2πi

∫ τ+i∞

τ−i∞

exp(κ(t) − tK)

t
dt (τ > 0). (2.2)

Throughout this paper we adopt the following notation:

• f(n) = g(n) + O(h(n)) means (f(n) − g(n))/h(n) is bounded as n ap-
proaches some limiting value. When appropriate we delete the O(h(n))
term and write f(n) ≈ g(n), denoting g(n) as an approximation to f(n).

• φ(·) and Φ(·) denote, respectively, the pdf and cdf of a standard normal
random variable,

• κ1(t) = log M1(t) be the CGF of X1.

• µ := E[X ] and µ1 = E[X1] are the expectation of X and X1 under P,

• T represents the saddlepoint that gives κ′
1(T ) = K/n or κ′(T ) = K,

• λr := κ(r)(T )/κ′′(T )r/2 is the standardized cumulant of order r evaluated

at T , and λ1,r := κ
(r)
1 (T )/κ′′

1(T )r/2,

• Z := T
√

κ′′(T ) and Z1 := T
√

κ′′
1 (T ),

• W := sgn(T )
√

2[KT − κ(T )] and W1 := sgn(T )
√

2[KT/n− κ1(T )] with
sgn(T ) being the sign of T .

It is obvious that µ = nµ1, Z =
√

nZ1, W =
√

nW1, λ3 = λ1,3/
√

n and
λ4 = λ1,4/n.

In the sequel we should write formulas in terms of X1 (i.e., formulas with
subscript 1 such as Z1, W1, etc) when deriving the approximations and study-

ing the order of the approximation errors. In fact the i.i.d. assumption is only
necessary for the study of the error convergence rates. The approximations are
however readily applicable when the random variables Xi are not identically
distributed. For this reason, we should delete the error terms once the order of
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the approximation errors has been established, and write the formulas in terms
of X (i.e., Z, W , etc) for both generality and notational simplicity.

The saddlepoint approximation for densities is given by the Daniels (1954)
formula:

fX(K) = φ(
√

nW1)
T√
nZ1

[

1 +
1

n

(

λ1,4

8
−

5λ2
1,3

24

)

+ O
(

n−2
)

]

≈ φ(W )
T

Z

(

1 +
λ4

8
− 5λ2

3

24

)

=: fD. (2.3)

For tail probabilities, two types of distinct saddlepoint expansions exist. The
first type of expansion is given by

P(X ≥ K) = e
n
2 (Z2

1−W 2
1 )[1 − Φ(

√
nZ1)]

[

1 + O
(

n− 1
2

)]

≈ e−
W2

2 + Z2

2 [1 − Φ(Z)] =: P1, (2.4)

P(X ≥ K) =

[

P1

(

1 − nλ1,3

6
Z3

1

)

+ φ(
√

nW1)
λ1,3

6
√

n

(

nZ2
1 − 1

)

]

[

1 + O
(

n−1
)]

≈ P1

(

1 − λ3

6
Z3

)

+ φ(W )
λ3

6

(

Z2 − 1
)

=: P2, (2.5)

in the case T ≥ 0. For T < 0 similar formulas are available, see Daniels (1987).
The second type of expansion is obtained by Lugannani & Rice (1980), with

P(X ≥ K) = [1 − Φ(
√

nW1)] + φ(
√

nW1)

[

1√
n

(

1

Z1
− 1

W1

)

+ O
(

n− 3
2

)

]

(2.6)

≈ 1 − Φ(W ) + φ(W )

[

1

Z
− 1

W

]

=: P3,

P(X ≥ K) = P3 + φ(
√

nW1)

{

n− 3
2

[

1

Z1

(

λ1,4

8
−

5λ2
1,3

24

)

−λ1,3

2Z2
1

− 1

Z3
1

+
1

W 3
1

]

+ O
(

n− 5
2

)

}

≈ P3 + φ(W )

[

1

Z

(

λ4

8
− 5λ2

3

24

)

− λ3

2Z2
− 1

Z3
+

1

W 3

]

=: P4. (2.7)

Widely known as the Lugannani-Rice formula, P3 is most popular among the
four tail probability approximations for both simplicity and accuracy. A good
review of saddlepoint approximations for the tail probability is given in Daniels
(1987).

3 Measure change approaches

Before we derive the formulas for E[(X − K)+], we would like to briefly review
an existing approach to approximating the quantity. Usually the saddlepoint
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expansions for densities or tail probabilities are employed after a suitable change
of measure.

An inversion formula similar to those for densities and tail probabilities also
exists for E[(X − K)

+
], which is given by

E

[

(X − K)
+
]

=
1

2πi

∫ τ+i∞

τ−i∞

exp(κ(t) − tK)

t2
dt (τ > 0). (3.1)

Yang et al. (2006) rewrite the inversion formula to be

E

[

(X − K)+
]

=
1

2πi

∫ τ+i∞

τ−i∞
exp(κ(t) − log t2 − tK)dt

=
1

2πi

∫ τ+i∞

τ−i∞
exp(κ̃(t) − tK)dt, (3.2)

where κ̃(t) = κ(t) − log t2. The right-hand side of (3.2) is then in the form of
(2.1) and the Daniels formula (2.3) can be used for approximation. It should be
pointed out, however, that in this case always two saddlepoints exist.

This approach is selected as a competitor to our approximation formulas
later in our numerical experiments.

Bounded random variables

Studer (2001) considers the approximation of the expected shortfall, in two
models of the associated random variable.

The first model deals with bounded random variables. Without loss of gen-
erality, we only consider the case in which X has a nonnegative lower bound.
Define the probability measure Q on (Ω,F) by Q(A) =

∫

A
X/µdP for A ∈ F ,

then

E[X |X ≥ K] =
1

P(X ≥ K)

∫

{X≥K}
XdP =

µ

P(X ≥ K)

∫

{X≥K}

X

µ
dP

=
µ

P(X ≥ K)
Q(X ≥ K). (3.3)

Hence the expected shortfall is transformed to be a multiple of the ratio of two
tail probabilities. The MGF of X under probability Q is given by

MQ(t) =

∫

etX X

µ
dP =

M ′(t)

µ
=

M(t)κ′(t)

µ

as κ′(t) = [log M(t)]′ = M ′(t)/M(t). It follows that

κQ(t) = log MQ(t) = κ(t) + log (κ′(t)) − log(µ). (3.4)

For more general cases, see Studer (2001), section 2.6.2.
The saddlepoint approximation for tail probabilities can be applied for both

probabilities P and Q in (3.3). A disadvantage of this approach is that two sad-
dlepoints need to be determined, as the saddlepoints under the two probability
measures are generally different.
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Log-return model

The second case in Studer (2001) deals with E[eX |X ≥ K] rather than with
E[X |X ≥ K]. The expected shortfall E[eX |X ≥ K] can also be written as a
multiple of the ratio of two tail probabilities. Define the probability measure Q

on (Ω,F) by Q(A) =
∫

A
eX/M(1)dP for A ∈ F , then

E[eX |X ≥ K] =
1

P(X ≥ K)

∫

{X≥K}
eXdP =

M(1)

P(X ≥ K)

∫

{X≥K}

eX

M(1)
dP

=
M(1)

P(X ≥ K)
Q(X ≥ K). (3.5)

The MGF and CGF of X under probability Q are given by

MQ(t) =

∫

etX eX

M(1)
dP =

M(t + 1)

M(1)
,

κQ(t) = κ(t + 1) − κ(1).

This also forms the basis for the approach used in Rogers & Zane (1999) for
option pricing where the log-price process follows a Lévy process. Just like the
case of bounded random variables, two saddlepoints need to be determined for
the expectation.

4 Classical saddlepoint approximations

In the sections to follow we give, in the spirit of Daniels (1987), two types of
explicit saddlepoint approximations for E[(X − K)+]. For each type of approx-
imation, we give a lower order and a higher order version. The approximations
to E[X |X ≥ K] then simply follow from (1.1). In contrast to Studer (2001) and
Rogers & Zane (1999), no measure change is required and only one saddlepoint
needs to be computed.

Following Jensen (1995), we call this first type of approximations the clas-

sical saddlepoint approximations. Approximation formulas for E[(X − K)+] of
this type already appeared in Antonov et al. (2005), however without any dis-
cussion on the error terms. They are obtained by means of application of the
saddlepoint approximation to (3.1), i.e., on the basis of the Taylor expansion of
κ(t)− tK around t = T . Here we provide a statistically-oriented derivation that
employs Esscher tilting and the Edgeworth expansion. Rates of convergence for
the approximations are readily available with our approach in the i.i.d. case.
Another advantage of our approach is that it leads to explicit saddlepoint ap-
proximations in the log-return model from Studer (2001), which is not possible
with the approach in Antonov et al. (2005).

For now we assume that the saddlepoint t = T which solves κ′(t) = K is
positive. The expectation E[(X − K)+] is reformulated under an exponentially
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tilted probability measure,

E

[

(X − K)
+
]

=

∫ ∞

K

(x − K)f(x)dx = e−
nW2

1
2

∫ ∞

K

(x − K)e−T (x−K)f̃(x)dx,

(4.1)
where κ′(T ) = K and f̃(x) = f(x) exp(Tx−κ(T )). The same exponential tilting
is also applied in Robinson (1982) and Daniels (1987) for the approximation of
tail probabilities.

The MGF associated with f̃(x) is given by M̃(t) = M(T + t)/M(T ). It
immediately follows that the mean and variance of a random variable X̃ with
density f̃(·) are given by EX̃ = K and V ar(X̃) = κ′′(T ) = nκ′′

1(T ). By writing
ξ = (x − K)/

√

nκ′′
1(T ) and f̃(x)dx = g(ξ)dξ, Eq. (4.1) reads

E

[

(X − K)+
]

= e−
nW2

1
2

√

nκ′′
1(T )

∫ ∞

0

ξe−
√

nZ1ξg(ξ)dξ. (4.2)

For ξ with a density function, g(ξ) can be approximated uniformly by a nor-

mal distribution such that g(ξ) = φ(ξ)[1 + O(n− 1
2 )]. The integral in (4.2) then

becomes
∫ ∞

0

ξe−
√

nZ1ξg(ξ)dξ =

∫ ∞

0

ξe−
√

nZ1ξφ(ξ)
[

1 + O
(

n− 1
2

)]

dξ

=
exp(

nZ2
1

2 )√
2π

∫ ∞

0

ξe−
(ξ+

√
nZ1)2

2 dξ
[

1 + O
(

n− 1
2

)]

=

{

1√
2π

−
√

nZ1e
nZ2

1
2

[

1 − Φ(
√

nZ1)
]

}

[

1 + O
(

n− 1
2

)]

.

(4.3)

Inserting (4.3) in (4.2) leads to the following approximation

E

[

(X − K)
+
]

=e−
nW2

1
2

{
√

nκ′′
1(T )

2π
− Tnκ′′

1(T )e
nZ2

1
2

[

1 − Φ(
√

nZ1)
]

}

[

1 + O
(

n− 1
2

)]

. (4.4)

By deleting the error term in (4.4) and representing the remaining terms in
quantities related to X , we obtain the following approximation,

E

[

(X − K)+
]

≈ e−
W2

2

{
√

κ′′(T )

2π
− Tκ′′(T )e

Z2

2 [1 − Φ(Z)]

}

=: C1. (4.5)

Higher order terms enter if g(ξ) is approximated by its Edgeworth expansion,
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e.g., g(ξ) = φ(ξ)[1 +
λ1,3

6
√

n
(ξ3 − 3ξ) + O(n−1)]. Then

E

[

(X − K)
+
]

= C1

[

1 + O(n−1)
]

+ e−
nW2

1
2

√

κ′′
1(T )

λ1,3

6

∫ ∞

0

ξe−Zξφ(ξ)(ξ3 − 3ξ)dξ

= C1

[

1 + O(n−1)
]

+ e−
nW2

1
2

√

κ′′
1(T )

λ1,3

6

e
Z2

2

√
2π

∫ ∞

0

e−
(ξ+Z)2

2

(

−ξ4 + 3ξ2
)

dξ

= C1

[

1 + O(n−1)
]

+ e
n
2 (Z2

1−W 2
1 )
√

κ′′
1(T )

λ1,3

6

×
{

[1 − Φ(
√

nZ1)](n
2Z4

1 + 3nZ2
1) − φ(

√
nZ1)(n

3
2 Z3

1 + 2
√

nZ1)
}

(4.6)

Deleting the error term in (4.6), we get the higher order version of the approx-
imation as follows,

C2 := C1 + e
Z2

2 −W2

2

√

κ′′(T )
λ3

6

{

[1 − Φ(Z)](Z4 + 3Z2) − φ(Z)(Z3 + 2Z)
}

.

(4.7)
The approximations C1 and C2 are in agreement with the formulas given by
Antonov et al. (2005).

Negative saddlepoint

We have assumed that the saddlepoint is positive when deriving C1 and C2 in
(4.5) and (4.7), or, in other words, µ < K. If the saddlepoint T equals 0, or
equivalently, µ = K, it is straightforward to see that C1 and C2 both reduce to
the following formula,

E[(X − µ)+] =

√

κ′′(0)

2π
=: C0. (4.8)

In case that µ > K, we should work with Y = −X and E[Y 1{Y ≥−K}] instead
since

E[X1{X≥K}] = µ + E[−X1{−X≥−K}] = µ + E[Y 1{Y ≥−K}].

The CGF of Y is given by κY (t) = κX(−t). The saddlepoint that solves κY (t) =
−K is −T > 0, so that C1 and C2 can be applied to Y . Note that

κ
(r)
Y (t) = (−1)rκ

(r)
X (−t),

where the superscript (r) denotes the r-th derivative. Transforming back to X ,
we find the following saddlepoint approximation to E[(X − K)+] in the case of
a negative saddlepoint,

C−
1 = µ − K + e−

W2

2

{

√

κ′′(T )/(2π) + Tκ′′(T )e
Z2

2 Φ(Z)
}

, (4.9)

C−
2 = C−

1 − e
Z2

2 −W2

2

√

κ′′(T )
λ3

6

{

Φ(Z)(Z4 + 3Z2) + φ(Z)(Z3 + 2Z)
}

. (4.10)
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Log-return model revisited

We now show how to deal with the log-return model in Studer (2001) with-
out dealing with two probability measures simultaneously. We work with
E
[

eX
1{X≥K}

]

which equals E
[

eX |X ≥ K
]

P(X ≥ K). Replace x in (4.1) by
ex and make the same change of variables,

E
[

eX
1{X≥K}

]

= e−
W2

2

∫ ∞

0

eK+ξ
√

nκ′′(T )e−Zξg(ξ)dξ.

After approximating g(ξ) by the standard normal density, we obtain

E
[

eX
1{X≥K}

]

≈ e−
W2

2 +K+ Ż2

2
1√
2π

∫ ∞

0

e−
(ξ+Ż)2

2 dξ

= e−
W2

2 +K+ Ż2

2 [1 − Φ(Ż)], (4.11)

where Ż = (T −1)
√

κ′′(T ). Equation (4.11) is basically eKP1, where P1 is given

by (2.4), with Z replaced by Ż. It is easy to verify that this approximation is
exact when X is normally distributed. A higher order approximation would be

E
[

eX
1{X≥K}

]

≈ e−
W2

2 +K+ Ż2

2

{

[1 − Φ(Ż)]

(

1 − λ3

6
√

n
Ż3

)

+
λ3

6
√

n
φ(Ż)(Ż2 − 1)

}

.

5 The Lugannani-Rice type formulas

The second type of saddlepoint approximations to E[(X−K)+] can be obtained
with the same change of variable as was employed in section 4 of Daniels (1987),
where the Lugannani-Rice formula to tail probability was derived. As a result we
shall call the obtained formulas Lugannani-Rice type formulas. In this section we
derive the approximation formulas by means of the Laurent expansion, without
the analysis of the rates of error convergence in the i.i.d case. An alternative
(lengthy) derivation, including the analysis of the convergence, is presented in
an appendix.

We look at K = nx for fixed x and let κ′
1(T ) = x, so that κ′(T ) = nκ′

1(T ) =
nx = K. We follow the Bleistein approach employed in Daniels (1987) to ap-
proximate κ1(t) − tx over an interval containing both t = 0 and t = T by a
quadratic function. Here, T need not be positive any more. Since nx = K we
have − 1

2W 2
1 = κ1(T )−Tx, with W1 taking the same sign as T . Let w be defined

between 0 and W1 such that

1

2
(w − W1)

2 = κ1(t) − tx − κ1(T ) + Tx. (5.1)

Then we have
1

2
w2 − W1w = κ1(t) − tκ′

1(T ), (5.2)
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and t = 0 ⇔ w = 0, t = T ⇔ w = W1. Differentiate both sides of (5.2) once
and twice to obtain

w
dw

dt
− W1

dw

dt
= κ′

1(t) − κ′
1(T ),

(

dw

dt

)2

+ (w − W1)
d2w

dt2
= κ′′

1(t).

In the neighborhood of t = T (or, equivalently, w = W1) we have dw
dt =

√

κ′′
1(T ).

Note that µ1 = E[X1] = κ′
1(0). In the neighborhood of t = 0 (or, equivalently,

w = 0), we have
dw

dt
=
√

κ′′
1(0) if T = 0, (5.3)

dw

dt
=

κ′
1(T ) − κ′

1(0)

W1
=

x − µ1

W1
if T 6= 0.

Hence, in the neighborhood of t = 0 we have w ∝ t. Moreover,

1

t

dt

dw
∼ 1

w
,

κ′
1(t)

t

dt

dw
∼ µ1

w
. (5.4)

The inversion formula for E[(X − K)+] can then be formulated as:

E

[

(X − K)+
]

=
1

2πi

∫ τ+i∞

τ−i∞
en( 1

2w2−W1w) 1

t2
dt

dw
dw (τ > 0). (5.5)

Taking the first three terms of the Laurent expansion of 1
t2

dt
dw at w = 0 gives

1

t2
dt

dw
≈ A1w

−2 + A2w
−1 + A3, (5.6)

where

A1 =
1

2πi

∮

γ

1

t2
dt

dw

dw

w−1
=

1

2πi

∮

γ

w

t2
dt, (5.7)

A2 =
1

2πi

∮

γ

1

t2
dt

dw
dw =

1

2πi

∮

γ

1

t2
dt. (5.8)

The path of integration, γ, traces out a circle around 0 in a counterclockwise
manner. Since w

t2 and 1
t2 have poles of order 1 and 2 at t = 0, respectively, we

obtain

A1 = lim
t→0

t
w

t2
= w′(0) =

x − µ1

W1
, (5.9)

A2 = lim
t→0

d

dt
t2

1

t2
= 0. (5.10)

A3 can now be chosen such that the approximation (5.6) is exact at T , where
we have dw

dt =
√

κ′′
1(T ). This leads to

A3 =
1

T 2
√

κ′′
1(T )

− (x − µ1)

W1
W−2

1 =
1

TZ1
− (x − µ1)

W 3
1

. (5.11)
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We substitute (5.6) in (5.5) to get

E

[

(X − K)+
]

≈ A1

2πi

∫ τ+i∞

τ−i∞
en( 1

2 w2−W1w) dw

w2
+

A3

2πi

∫ τ+i∞

τ−i∞
en( 1

2 w2−W1w)dw. (5.12)

After yet another change of variables, y =
√

nw, the first term becomes

A1

2πi

∫ τ+i∞

τ−i∞
en( 1

2w2−W1w) dw

w2
= A1

√
n

∫ τ+i∞

τ−i∞

1

2πi
e

1
2y2−√

nW1y dy

y2
. (5.13)

The integral in (5.13) is precisely the inversion formula of E(Y − W )+, where
Y is a standard Gaussian distributed variable. By basic calculus we find

E(Y − W )+ = φ(W ) − W [1 − Φ(W )]. (5.14)

The second term in (5.12) is given by

A3

2πi

∫ τ+i∞

τ−i∞
en( 1

2w2−W1w)dw =
A3√
n2πi

∫ τ+i∞

τ−i∞
e

1
2 (y−√

nW1)2dye−
1
2nW 2

1

=
A3√
2πn

e−
1
2nW 2

1 =
A3√

n
φ(W ). (5.15)

Adding up (5.13) and (5.15) we obtain the higher order version of the Lugannani-

Rice type saddlepoint approximation to the expectation E

[

(X − K)
+
]

,

C4 := (µ − K)

[

1 − Φ(W ) − φ(W )

W

]

+ φ(W )

[

1

TZ
+ (µ − K)

1

W 3

]

. (5.16)

This is a very compact approximation formula that only involves κ′′(T ), and no
cumulants of higher order. In this sense the complexity of the calculation of C4

is comparable to C1.
In the appendix we will show however that the order of error convergence

of C4 is O
(

n− 5
2

)

. A lower order version of the approximation, which we will

denote by C3, is given by

C3 := (µ − K)

[

1 − Φ(W ) − φ(W )

W

]

. (5.17)

C3 is an extremely neat formula requiring only the knowledge of W . More pre-
cisely, we don’t need to compute κ′′(T ). The order of error convergence of C3 is

shown to be O
(

n− 3
2

)

.

Remark 1. Interestingly, Martin (2006) gives an approximation formula for
E[(X −K)+], decomposing the expectation to one term involving the tail prob-
ability and another term involving the probability density,

E

[

(X − K)
+
]

≈ (µ − K)P(X ≥ K) +
K − µ

T
fX(K).

11



Martin (2006) suggests approximating P(X ≥ K) by the Lugannani-Rice for-
mula P3 in (2.6) and fX(K) by the Daniels formula fD in (2.3). In the i.i.d.
case, this leads to an approximation CM := n(µ1 − x)P3 + n(x− µ1)fD/T with
a rate of convergence n−1/2 as the first term has an error of order n−1/2 and
the second term has an error of order n−3/2. We propose to replace P3 by its
higher order version, P4 in (2.7). This gives the following formula,

E

[

(X − K)
+
]

≈ C3 + (µ − K)φ(W )

(

1

W 3
− λ3

2Z2
− 1

Z3

)

. (5.18)

Equation (5.18) is simpler than CM as λ4 is not included. It has a rate of
convergence of order n−3/2. However compared to C4, Equation (5.18) contains
a term of λ3 and is certainly more complicated to evaluate. Note further that
if we neglect in CM the terms of the higher order standard cumulants λ3 and
λ4 in fD we get precisely C3 as given in (5.17). For these reasons, C4 is to be
preferred.

Zero saddlepoint

Daniels (1987) noted that if the saddlepoint equals T = 0, or in other words,
µ = K, the approximations to tail probability P1 to P4 all reduce to

P(X ≥ K) =
1

2
− λ3(0)

6
√

2π
.

We would like to show that, under the same circumstances, C3 and C4 also
reduce to the formula C0 in (4.8). To show that C3 ≡ C0 when T = 0, we point
out that

lim
T→0

C3 = lim
T→0

κ′(0) − κ′(T )

T

[

T (1 − Φ(W )) − φ(W )
T

W

]

.

Note that when T → 0, κ′(0)−κ′(T )
T → −κ′′(0), T (1 − Φ(W )) → 0 and T

W →
[κ′′(0)]−

1
2 (see (5.3)). This implies that limT→0 C3 = C0. Similarly we also have

limT→0 C4 = C0.

6 Lattice variables

So far we have considered approximations to continuous variables. Let us now
turn to the lattice case. This case is largely ignored in the literature, even in
applications in which lattice variables are highly relevant. For example, in the
pricing of CDOs, the random variable concerned is essentially the number of
defaults in the pool of companies and is thus discrete.

Suppose that X̂ only takes integer values k with nonzero probabilities p(k).

12



The inversion formula of E[(X̂ − K)+] can then be formulated as

E[(X̂ − K)+] =
∞
∑

k=K+1

(k − K)p(k) =
∞
∑

k=K+1

(k − K)
1

2πi

∫ τ+iπ

τ−iπ

exp(κ(t) − tk)dt

=
1

2πi

∫ τ+iπ

τ−iπ

exp(κ(t) − tK)

∞
∑

m=1

me−tmdt

=
1

2πi

∫ τ+iπ

τ−iπ

exp(κ(t) − tK)

t2
t2e−t

(1 − e−t)2
dt (τ > 0).

For K > µ, we proceed by expanding the two terms in the integrand separately.
According to a truncated version of Watson’s Lemma (see Lemma 4.5.1 and 4.5.2
in Kolassa, 2006), for an integrand in the form of exp(nα

2 (t−T )2)
∑∞

j=0(t−T )j,
the change in the contour of integration for t from τ±i∞ to τ±iπ leads to a neg-
ligible difference which is exponentially small in n. Blackwell & Hodges (1959)
declare further that the integral over the range τ + iy where |y| > log n/

√
n is

negligible. This means that we are able to incorporate the formulas for continu-
ous variables C1 and C2 in the approximations for the lattice variables. We find,
for lattice variables, the following approximations corresponding to C1 and C2

in (4.5) and (4.7), respectively,

Ĉ1 = C1
T 2e−T

(1 − e−T )2
, (6.1)

Ĉ2 = C2
T 2e−T

(1 − e−T )2

+ e−
W2

2 + Z2

2 {φ(Z) − Z[(1 − Φ(Z)]} Te−T
(

2 − T − 2e−T − Te−T
)

√

κ′′(T )(1 − e−T )3
. (6.2)

For the approximations to E[X̂ |X̂ ≥ K], we also need the lattice version for the
tail probability

P(X̂ ≥ K) ≈ e−
W2

2 + Z2

2 [1 − Φ(Z)]
T

1 − e−T
=: P̂1 (6.3)

or its higher order version

P(X̂ ≥ K) ≈ e−
W2

2 + Z2

2
T

1 − e−T
×
{

[1 − Φ(Z)]

(

2 − λ3

6
Z3 − T

eT − 1

)

+ φ(Z)

[

λ3

6
(Z2 − 1) +

1

Z
− T

Z(eT − 1)

]}

=: P̂2. (6.4)

Recall that the Lugannani-Rice formula for lattice variables reads

P(X̂ ≥ K) ≈ 1 − Φ(W ) + φ(W )

[

1

Ẑ
− 1

W

]

=: P̂3, (6.5)

where Ẑ = (1 − e−T )
√

κ′′(T ). Similar lattice formulas can also be obtained for

C3 and C4, which will be denoted by Ĉ3 and Ĉ4, respectively.
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We first write down the inversion formula of the tail probability of a lattice
variable,

Q(X̂ ≥ K) =

∞
∑

k=K

Q(X̂ = k) =
1

2πi

∫ τ+iπ

τ−iπ

exp(κQ(t) − tK)

1 − e−t
dt. (6.6)

Combining (6.6) with Lemma 1 (from Appendix A), we obtain

E

[

X̂1{X̂≥K}

]

=
1

2πi

∫ τ+iπ

τ−iπ

κ′(t)
exp(κ(t) − tK)

1 − e−t
dt.

By the same change of variables as in section 5, we have

E

[

X̂1{X̂≥K}

]

=
1

2πi

∫ τ+iπ

τ−iπ

κ′(t)e
1
2w2−Ww 1

1 − e−t

dt

dw
dw

=
1

2πi

∫ τ+iπ

τ−iπ

e
1
2 w2−Ww

[

µ

w
+

κ′(t)

1 − e−t

dt

dw
− µ

w

]

dw.

As in Appendix A, since limt→0 1 − e−t = t, this leads to

Ĉ3 = (µ − K)

[

1 − Φ(W ) − φ(W )

W

]

≡ C3. (6.7)

Including higher order terms we obtain

Ĉ4 = Ĉ3 + φ(W )

[

e−T

Ẑ(1 − e−T )
+ (µ − K)

1

W 3

]

. (6.8)

A higher order version of P̂3 can be derived similarly,

P(X̂ ≥ K) ≈ 1 − Φ(W ) + φ(W )

[

1

Ẑ

(

1 +
λ4

8
− 5λ2

3

24

)

−e−T λ3

2Ẑ2
− e−T (1 + e−T )

2Ẑ3
− 1

W
+

1

W 3

]

=: P̂4. (6.9)

This can be used to estimate E[X̂ |X̂ ≥ K].
The rates of convergence of Ĉ1 to Ĉ4 in the i.i.d. case are identical to their

non-lattice counterparts and shall not be elaborated further.

7 Numerical results

7.1 Exponential and Bernoulli variables

By two numerical experiments we evaluate the quality of the various approxi-
mations derived in the earlier sections. The approach proposed by Yang et al.
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(2006) is used as a competitor to our approximation formulas. Since their ap-
proach employs the saddlepoint approximation to densities, the approximations
for continuous variables need not be modified for lattice variables. Their first
order approximation to C will be denoted by CY 1 and the second order approx-
imation will be denoted by CY 2. The calculation of CY 1 (resp. CY 2) requires
the 2nd (resp. 3rd and 4th) derivatives of the function κ(t)− log t2. As a result,
the complexity of the calculation of CY 1 and CY 2 is comparable to that of C1

and C2, respectively.
In our first example X =

∑n
i=1 Xi where Xi are i.i.d. exponentially dis-

tributed with density p(x) = e−x. The CGF of X reads κ(t) = −n log(1 − t).
The saddlepoint to κ′(t) = K is given by T = 1 − n/K. Moreover, we have

κ′′(T ) =
K2

n
, λ3 =

2√
n

, λ4 =
6

n
.

The exact distribution is available as X ∼ Gamma(n, 1). The tail probability
is then given by

P(X ≥ K) = 1 − γ(n, K)

Γ(n)
,

and

E[X1{X≥K}] = n

[

1 − γ(n + 1, K)

Γ(n + 1)

]

,

where Γ and γ are the gamma function and the incomplete gamma function,
respectively.

We first fix n = 100. For different levels K, from 107 to 145, we calculate
E[(X−K)+]. The expectation decreases from 4.50 to 9.53×10−5 as K increases.
The tail probability E(X ≥ 145) is 3.26× 10−5, indicating that we have entered
the tail of the distribution. The relative errors of the various approximations
are illustrated in Figure 1.

Then we fix the ratio K/n = 1.15 and set n = 10 × 2i for i = 1, . . . 8. The
expectation decreases from 0.70 to 1.05×10−6 as n increases. The tail probability
E(X ≥ 1472) is 1.46 × 10−7. The relative errors of the various approximations
are shown in Figure 2.

In the second example we consider the sum of Bernoulli random variables.
This is particularly relevant for CDO pricing because the number of defaults in
an underlying portfolio can be modeled by a sum of Bernoulli random variables.
Consequently, by the results in this example we are able to estimate, at least
partially, the performance of various approximations for CDO pricing.

We set X =
∑n

i=1 Xi where Xi are i.i.d. Bernoulli variables with P(Xi =
1) = 1 − P(Xi = 0) = p = 0.15. Its CGF is given by κ(t) = n log (1 − p + pet).

Here the saddlepoint to κ′(t) = K equals T = log
[

K(1−p)
(n−K)p

]

and

κ′′(T ) =
K(n − K)

n
, λ3 =

n − 2K
√

nK(n − K)
, λ4 =

n2 − 6nK + 6K2

nK(n − K)
.
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Figure 1: Relative Errors of various saddlepoint approximations for E[(
P

n

i=1
Xi −

K)+] for fixed n and different K. Xi is exponentially distributed with density f(x) =
e−x(x ≥ 0). n=100, K ranges from 107 to 145.
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Figure 2: Relative Errors of various saddlepoint approximations for E[(
P
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i=1
Xi −

K)+] for different n. Xi is exponentially distributed with density f(x) = e−x(x ≥ 0).
n = 10 × 2i for i = 1, . . . 8, K = 1.15n.
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In this specific case, X is binomially distributed with

P(X = k) =

(

n

k

)

pk(1 − p)n−k,

which means that C as defined in (1.2) can also be calculated exactly.
Similar to the exponential case, we first fix n = 100. For different levels K

from 16 to 30 we calculate E[(X − K)+]. The expectation decreases from 0.24
to 1.92 × 10−6 as K increases. The tail probability E(X ≥ 30) is 1.05 × 10−4.

Then we fix the ratio K/n = 0.2 and set n = 10× 2i for i = 1, . . . 8. The ex-
pectation decreases from 0.98 to 6.42×10−5 as n increases. The tail probability
E(X ≥ 256) is 8.68 × 10−7. The relative errors of the various approximations
are presented in Figures 3 and 4, respectively. Note that the saddlepoint ap-
proximations in the Bernoulli case are based on the formulas Ĉ1-Ĉ4 for lattice
variables, derived in section 6.

In summary all approximations work quite well in our experiments in the
sense that they all produce small relative errors, also in the case that the expec-
tation is very small. The error convergence rates of the approximations C1-C4

shown in Figure 2 and Figure 4 confirm the derived theoretical convergence
rates. The higher order Lugannani-Rice type formulas, C4 and its lattice sister,
are clearly the winners. They produce almost exact approximations and have
the highest error convergence rate. Moreover, the calculation of C4 requires the
same information as C1 and Ĉ1. The performance of CY 1 and CY 2 is in general
comparable to C1 and C3 but inferior to C2.

7.2 CDO tranche pricing

In this section we show how the saddlepoint approximations can be used for the
CDO tranche pricing.

The value and payments of a CDO are derived from a portfolio of fixed-
income underlying assets, for example bonds. CDO securities are split into dif-
ferent risk classes, or tranches, and the pricing of the CDOs involves determining
the fair spread of the tranches. Details of the CDOs can be found in Bluhm &
Overbeck (2007) and Hull & White (2004).

Here we focus on the calculation of the fair spread of a CDO tranche. Let
us denote by tm = m∆t, m = 1, 2, . . . the payment dates, and let Li(tm) be the
loss due to obligor i up to tm and L(tm) =

∑

Li(tm) the portfolio loss. Then the
fair spread of a CDO tranche with a lower attachment point K1 and an upper
attachment point K2 is given by

s =

∑

m d(0, tm)
[

EL[K1,K2](tm) − EL[K1,K2](tm−1)
]

∆t
∑

m d(0, tm)
[

K2 − K1 − EL[K1,K2](tm)
] ,

where d(0, tm) denotes the discount factor from time tm to 0 and

EL[K1,K2](tm) := E[min(Ltm
, K2)] − E[min(Ltm

, K1)]
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Figure 3: Relative Errors of various saddlepoint approximations for E[(
P

n

i=1
Xi −

K)+] for fixed n and different K. Xi is Bernoulli distributed with p(Xi = 1) = 0.15.
n = 100, K ranges from 16 to 30.
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for i = 1, . . . 8, K = n/5.
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represents the tranche loss at tm. As E [min(X, K)] := EX − E(X − K)+, we
obtain

s =

∑

md(0, tm)
[

E(Ltm
−K1)

+−E(Ltm
−K2)

+−E(Ltm−1−K1)
++E(Ltm−1−K2)

+
]

∆t
∑

m d(0, tm) [K2 − K1 − E(Ltm
− K1)+ + E(Ltm

− K2)+]
.

So we see that the pricing of a CDO tranche can be reduced to the calculation
of E(Lt−K)+ for a number of payment dates and two attachment points, which
is exactly what we have been working on in the previous sections.

For simplicity of notation from now on we omit the subscript time index t.
Let Di be the default indicator of obligor i. Assuming a constant recovery rate,
1 − λ, the loss due to obligor i is given by Li = λDi. With D =

∑

Di the
number of defaults in the portfolio, then we have

E(L − K)+ = E

(

∑

Li − K
)+

= λE

(

∑

Di − K/λ
)+

= λE(D − K/λ)+.

(7.1)
The quantity K/λ is in general not an integer. Consequently we need to make
an adjustment before we can apply the saddlepoint approximations for lattice
variables. We have, denoting by ⌈x⌉ the nearest integer that is greater than or
equal to x,

E(D − K/λ)+ =
∑

k≥⌈K/λ⌉
(k − K/λ)P(D = k)

=
∑

k≥⌈K/λ⌉
(k − ⌈K/λ⌉)P(D = k) + (⌈K/λ⌉ − K/λ)

∑

k≥⌈K/λ⌉
P(D = k)

= E(X − ⌈K/λ⌉)+ + (⌈K/λ⌉ − K/λ)P(D ≥ ⌈K/λ⌉). (7.2)

For example, for the attachment point 3% of the iTraxx index (with a notional
125), and a recovery λ = 0.6, we have

E(L − 3% × 125)+ = 0.6E(D − 3.75/0.6)+ = 0.6
[

E(D − 7)+ + 0.75P(D ≥ 7)
]

.

Both the expectation and the tail probability in (7.2) can be approximated
by the saddlepoint approximations based on the same saddlepoint. Finally we
substitute (7.2) in (7.1).

Now we consider the approximation of (7.1) in the industrial standard Gaus-
sian copula model. In this model, Ai, the standardized asset return of counter-
party i is normally distributed and can be decomposed as Ai =

√
ρY +

√
1 − ρǫi,

where Y is a systematic factor which affects all counterparties and ǫi is a spe-
cific risk which only affects obligor i; ρ is called the asset correlation. The coun-
terparty defaults at time t if Ai < c with p = P(Ai < c) being the default
probability. Note that both c and p are time-dependent.

We consider a homogeneous portfolio of 125 counterparties, although the
saddlepoint approximations can handle well inhomogeneous portfolios. An ap-
plication of saddlepoint approximations to inhomogeneous credit portfolios can
be found in Yang et al. (2006) for CDO pricing and Huang et al. (2007) for
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the calculation of the portfolio Value at Risk. We choose to work with a ho-
mogeneous portfolio only because we can obtain the exact solution by binomial
expansion in this case.

For simplicity we consider only three payment dates and take the following
default probabilities, p(t1) = 0.0005, p(t2) = 0.005, p(t3) = 0.05. Further we
assume an asset correlation ρ = 0.3 and a constant recovery rate 1 − λ = 0.4.
The homogeneity assumption allows us to calculate the exact tranche losses
and spreads by the binomial distribution, which can be used as benchmarks to
evaluate the performance of the saddlepoint approximations.

For all standard attachment points of the iTraxx index, i.e., 3%, 6%, 9%,
12% and 22%, we calculate

E(L − K)+ =

∫

E[L(Y ) − K]+dP(Y ),

by approximating the integral by the Gauss-Legendre quadrature with 250 nodes
in the interval Y ∈ [−5, 5]. In Table 1 we present the estimates derived from the
saddlepoint approximations Ĉ4 and P̂3. In parenthesis are the relative errors of
the approximations with respect to the exact results obtained with the binomial
distribution.

AP p(t1)=0.0005 p(t2)=0.005 p(t3)=0.05

3% 6.1962e-04 (4.44e-05) 4.3983e-02 (2.06e-05) 1.7946e+00 (4.44e-06)
6% 8.5987e-05 (1.05e-05) 1.2159e-02 (4.68e-06) 9.6209e-01 (1.15e-06)
9% 1.6686e-05 (6.66e-06) 4.1627e-03 (2.72e-06) 5.3731e-01 (7.53e-07)

12% 3.1798e-06 (9.80e-06) 1.5707e-03 (3.54e-06) 3.0515e-01 (1.13e-06)
22% 2.5578e-10 (1.61e-05) 7.4415e-05 (8.74e-07) 4.5675e-02 (3.80e-07)

Table 1: The saddlepoint approximations to E(L−K)+ for three payment dates and
a variety of attachment points (AP) and their relative errors.

Suppose that d(0, t1) = 1.05, d(0, t2) = 1.1, d(0, t3) = 1.2 and ∆t = 1. The
saddlepoint approximation to the spreads of various tranches (in basis points)
are shown in Table 2. The results confirm the high accuracy of the saddlepoint
approximations.

8 Conclusions

We have derived two types of saddlepoint approximations to E[(X − K)+],
where X is the sum of n independent random variables and K is a known
constant. For each type of approximation, we have given a lower order as well
as a higher order version. We have also established the error convergence rates
for the approximations in the i.i.d. case. The approximations have been further
extended to cover the case of lattice variables. Numerical examples, including
in particular an application of the saddlepoint approximations to CDO pricing,
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Tranche SA Benchmark

[3%, 6%] 742.0349 742.0414
[6%, 9%] 363.9013 363.9019

[9%, 12%] 195.4237 195.4238
[12%, 22%] 64.6433 64.6434

[22%, 100%] 1.4492 1.4492

Table 2: The saddlepoint approximations (SA) to the spreads (in basis points) of
various tranches.

show that all these approximations work very well. The higher order Lugannani-
Rice type formulas to E[(X − K)+] are particularly attractive because of their
remarkable simplicity, extremely high accuracy and fast convergence.

Acknowledgment: The authors would like to thank an anonymous referee for
pointing out an elegant derivation of the saddlepoint approximation formula C4.

A Error Convergence of the Lugannani-Rice

type formulas

In this section we present an alternative derivation of the Lugannani-Rice type
saddlepoint approximations to E[(X−K)+]. An analysis of the error convergence
of the approximation formulas is also provided here.

In this alternative derivation to Equation (5.16), instead of directly with
E[(X−K)+], we first work on the saddlepoint approximations to E

[

X1{X≥K}
]

,
which is related to E[(X − K)+] in the following way,

E[(X − K)
+
] = E

[

X1{X≥K}
]

− KP(X ≥ K). (A.1)

To start, we derive the following inversion formula for E
[

X1{X≥K}
]

.

Lemma 1. Let κ(t) = log M(t) be the cumulant generating function of a con-

tinuous random variable X. Then

E
[

X1{X≥K}
]

=
1

2πi

∫ τ+i∞

τ−i∞
κ′(t)

exp(κ(t) − tK)

t
dt (τ > 0). (A.2)

Proof. We start with the case that X has a nonnegative lower bound. Employing
the same change of measure as in (3.3), we have E

[

X1{X≥K}
]

= µQ(X ≥ K),
where

Q(X ≥ K) =
1

2πi

∫ τ+i∞

τ−i∞

exp(κQ(t) − tK)

t
dt (τ > 0).
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Substituting κQ(t), which is given by (3.4), we find

E
[

X1{X≥K}
]

= µ
1

2πi

∫ τ+i∞

τ−i∞

exp [κ(t) + log κ′(t) − log µ − tK]

t
dt

=
1

2πi

∫ τ+i∞

τ−i∞
κ′(t)

exp(κ(t) − tK)

t
dt.

In the case that X has a negative lower bound, −a, with a > 0, we define
Y = X + a so that Y has a nonnegative lower bound. Then, the CGF of Y
and its first derivative are given by κY (t) = κ(t) + ta and κ′

Y (t) = κ′(t) + a,
respectively. Since

E
[

X1{X≥K}
]

= E
[

(Y − a)1{Y −a≥K}
]

= E
[

Y 1{Y −a≥K}
]

− aP(Y − a ≥ K),

and

E
[

Y 1{Y −a≥K}
]

=
1

2πi

∫ τ+i∞

τ−i∞
κ′(t)

exp(κ(t) − tK)

t
dt + aP(Y − a ≥ K),

we are again led to (A.2).
For unbounded X , we take XL = max(X, L), where L < −1/τ is a constant.

Since XL is bounded from below, we have

E
[

XL1{XL≥K}
]

=
1

2πi

∫ τ+i∞

τ−i∞
κ′

XL
(t)

exp(κXL
(t) − tK)

t
dt,

=
1

2πi

∫ τ+i∞

τ−i∞
M ′

XL
(t)

exp(−tK)

t
dt, (A.3)

where M ′
XL

(τ) = M ′(τ) +
∫ L

−∞(LeτL − xeτx)dP(x). For L < −1/τ , M ′
XL

(τ)
increases monotonically as L decreases and approaches M ′(τ) as L → −∞.
Note also that E

[

X1{X≥K}
]

= E
[

XL1{XL≥K}
]

for all L < K. Now take the
limit of both sides of (A.3) as L → −∞. Due to the monotone convergence
theorem, we again obtain

E
[

X1{X≥K}
]

=
1

2πi

∫ τ+i∞

τ−i∞
M ′(t)

exp(−tK)

t
dt

=
1

2πi

∫ τ+i∞

τ−i∞
κ′(t)

exp(κ(t) − tK)

t
dt.

We apply the same change of variables as in section 5 1. Based on Lemma

1Let w be defined between 0 and W1 such that 1

2
(w − W1)2 = κ1(t) − tx − κ1(T ) + Tx.

Then we have 1

2
w

2
− W1w = κ1(t) − tκ

′

1(T ),
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1, the inversion formula for E
[

X1{X≥nx}
]

can be formulated as:

E
[

X1{X≥nx}
]

=
1

2πi

∫ τ+i∞

τ−i∞
nκ′

1(t)e
n( 1

2w2−W1w) 1

t

dt

dw
dw

=
n

2πi

∫ τ+i∞

τ−i∞
en( 1

2w2−W1w)

[

µ1

w
+

κ′
1(t)

t

dt

dw
− µ1

w

]

dw

= nµ1

∫ τ+i∞

τ−i∞

1

2πi
en( 1

2 w2−W1w) dw

w

+
ne−

nW2
1

2

2πi

∫ W1+i∞

W1−i∞
e

1
2n(w−W1)

2

[

κ′
1(t)

t

dt

dw
− µ1

w

]

dw. (A.4)

The first integral takes the value 1−Φ(
√

nW1) = 1−Φ(W ). The second integral
does not have a singularity, because of Equation (5.4). Hence there is no problem
to change the integration contour from the imaginary axis along τ > 0 to one
along W1, as done in Equation (A.4), even if W1 and T are both negative.

The major contribution to the second integral comes from the saddlepoint.
The terms in the brackets are expanded around T and integrated to give an
expansion of the form

nφ(
√

nW1)(b1n
− 1

2 + b3n
− 3

2 + b5n
− 5

2 + . . .). (A.5)

By Watson’s lemma this is an asymptotic expansion in a neighborhood of W1.
For more details see Lemma 4.5.2 in Kolassa (2006). Coefficient b1 in (A.5)
can be obtained by only taking into account the leading terms of the Taylor
expansion of

κ′
1(t)

t

dt

dw
− µ1

w
=

κ′
1(t)

t

dt

dw

∣

∣

∣

T
− µ1

w

∣

∣

∣

W1

+ . . . =
x

Z1
− µ1

W1
+ . . . . (A.6)

Therefore we are led to

E
[

X1{X≥nx}
]

= nµ1

[

1 − Φ(
√

nW1)
]

+ nφ(
√

nW1)

[

1√
n

(

x

Z1
− µ1

W1

)

+ O
(

n− 3
2

)

]

(A.7)

Subtracting KP(X ≥ K) from (A.7) with the tail probability approximated by
the Lugannani-Rice formula P3 from (2.6), we see immediately that

E

[

(X − nx)
+
]

= n(µ1 − x)

[

1 − Φ(
√

nW1) −
φ(
√

nW1)√
nW1

+ O
(

n− 3
2

)

]

. (A.8)

Rewrite (A.7) and (A.8) in quantities related to X and deleting the error terms
we obtain the following approximation,

E
[

X1{X≥K}
]

≈ µ [1 − Φ(W )] + φ(W )

[

K

Z
− µ

W

]

. (A.9)

E

[

(X − K)+
]

≈ (µ − K)

[

1 − Φ(W ) − φ(W )

W

]

=: C3. (A.10)
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Next, we consider the coefficient b3 in (A.5). Write U := κ′′
1(T )T − κ′

1(T ).
The Taylor expansion of κ′

1(t)/t around T gives

κ′
1(t)

t
=

κ′
1(T )

T
+ (t − T )

U

T 2
+

(t − T )2

2

[

κ′′′
1 (T )

T
− 2U

T 3

]

+ . . . . (A.11)

Furthermore, we expand exp(n[κ1(t) − tx]) in the same way as Daniels (1954):

exp(n[κ1(t) − tx])

= exp

(

n[κ1(T ) − Tx] +
1

2
nκ′′

1 (T )(t − T )2 +
n

6
κ′′′

1 (T )(t − T )3 +
n

24
κ

(4)
1 (t − T )4 + . . .

)

=exp

(

n[κ1(T ) − Tx] +
1

2
nκ′′

1 (T )(t − T )2
)

×
[

1 +
n

6
κ′′′

1 (T )(t − T )3 +
n

24
κ

(4)
1 (T )(t − T )4 +

n2

72
κ′′′

1 (T )2(t − T )6 + . . .

]

.

(A.12)

We put (A.11) and (A.12) together, and have, at the line t = T + iy,

n

2πi

∫ T+i∞

T−i∞
en[κ1(t)−tx] κ

′
1(t)

t
dt =

ne−
nW2

1
2

2πi

∫ T+i∞

T−i∞
e

1
2nκ′′

1 (T )(t−T )2

×
[

1 +
n

6
κ′′′

1 (T )(t − T )3 +
n

24
κ

(4)
1 (T )(t − T )4 +

n2

72
κ′′′

1 (T )2(t − T )6 + . . .

]

×
{

κ′
1(T )

T
+ (t − T )

U

T 2
+

(t − T )2

2

[

κ′′′
1 (T )

T
− 2U

T 3

]

+ . . .

}

dt

=
ne−

nW2
1

2

2π

∫ +∞

−∞
e−

1
2 nκ′′

1 (T )y2
[

1 − n

6
κ′′′

1 (T )iy3 +
n

24
κ

(4)
1 (T )y4+

−n2

72
κ′′′

1 (T )2y6 + . . .

]{

κ′
1(T )

T
+ iy

U

T 2
− y2

2

[

κ′′′
1 (T )

T
− 2U

T 3

]

+ . . .

}

dy

=nφ(
√

nW1)

{

κ′
1(T )√
nZ1

+ n− 3
2

[

κ′
1(T )

Z1

(

λ1,4

8
− 5

24
λ2

1,3

)

+
Uλ1,3

2Z2
1

− λ1,3

2T
+

U

Z3
1

]

+ O
(

n− 5
2

)

}

=nφ(W )

[

x√
nZ1

+ n− 3
2

(

xλ1,4

8Z1
−

5xλ2
1,3

24Z1
+

1

TZ1
− xλ1,3

2Z2
1

− x

Z3
1

)

+ O
(

n− 5
2

)

]

.

(A.13)

Notice that (A.13) is itself a saddlepoint approximation to E[X1{X≥K}] for
K > µ. However, it becomes inaccurate when T approaches zero due to the
presence of a pole at zero in the integrand. Meanwhile expanding 1/w in the
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second integral in (A.4) around W1 gives

ne−
nW2

1
2

2πi

∫ W1+i∞

W1−i∞
e

1
2n(w−W1)

2 µ1

w
dw

=
nµ1e

−nW2
1

2

2πi

∫ W1+i∞

W1−i∞
e

1
2n(w−W1)

2

[

1

W1
− (w − W1)

W 2
1

+
(w − W1)

2

W 3
1

+ . . .

]

dw

=nµ1φ(
√

nW1)

[

1√
nW1

− 1

(
√

nW1)3
+ O

(

n− 5
2

)

]

. (A.14)

Adding (A.13) and (A.14) to 1 − Φ(
√

nW1) and then subtracting nx times
Equation (2.7), we obtain

E[(X − nx)
+
] =n(µ1 − x)

{

[1 − Φ(
√

nW1)] +
φ(
√

nW1)√
nW1

}

+ nφ(
√

nW1)

{

n− 3
2

[

1

TZ1
+

µ1 − x

W 3
1

]

+ O
(

n− 5
2

)

}

, (A.15)

which can be rewritten as:

E[(X − K)
+
] ≈ C3 + φ(W )

[

1

TZ
+ (µ − K)

1

W 3

]

=: C4. (A.16)

References

Antonov, A., Mechkov, S. & Misirpashaev, T. (2005), Analytical techniques for
synthetic CDOs and credit default risk measures, Technical report, Numerix.

Blackwell, D. & Hodges, J. L. (1959), ‘The probability in the extreme tail of a
convolution’, The Annals of Mathematical Statistics 31, 1113–1120.

Bluhm, C. & Overbeck, L. (2007), Structured Credit Portfolio Analysis, Baskets

& CDOs, Chapman & Hall/CRC, Boca Raton.

Daniels, H. E. (1954), ‘Saddlepoint approximations in statistics’, The Annals of

Mathematical Statistics 25(4), 631–650.

Daniels, H. E. (1987), ‘Tail probability approximations’, International Statistical

Review 55, 37–48.

Esscher, F. (1932), ‘On the probability function in the collective theory of risk’,
Skandinavisk Aktuarietidskrift 15, 175–195.

Huang, X., Oosterlee, C.W. & Weide, van der, J.A.M. (2007), ‘Higher-order sad-
dlepoint approximations in the Vasicek portfolio credit loss model’, Journal

of Computational Finance 11(1), 93–113.

Hull, J. & White, A. (2004), ‘Valuation of a CDO and an nth to Default CDS
Without Monte Carlo Simulation,’ Journal of Derivatives 12, 8–23.

25



Jensen, J. (1995), Saddlepoint Approximations, Oxford University Press.

Kolassa, J. E. (2006), Series Approximation Methods in Statistics, 3rd ed.,
Springer, New York.

Lugannani, R. & Rice, S. (1980), ‘Saddlepoint approximations for the distri-
bution of the sum of independent random variables’, Advances in Applied

Probability 12, 475–490.

Martin, R. (2006), ‘The saddlepoint method and portfolio optionalities’, RISK

(December), 93–95.

Robinson, J., ‘Saddlepoint Approximations for Permutation Tests and Confi-
dence Intervals’, Journal of Royal Statistical Society B 44(1), 91–101

Rogers, L. C. G. & Zane, O. (1999), ‘Saddlepoint approximations to option
prices’, The Annals of Applied Probability 9(2), 493–503.

Studer, M. (2001), Stochastic Taylor expansions and saddlepoint approxima-
tions for risk management, PhD thesis, ETH Zürich.
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