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Summary

In this thesis we attempt to fit financial models to market data consisting of
the bid and ask prices for American call and put options for various strikes.
As these are dividend paying assets we aim at determining the height of this
payment from the market data.

To model this assets with dividend we will use the Korn-Rogers approach,
which models the asset price based on these dividend payments. We use
three models to the dynamics of these dividend payments, the Black-Scholes
model, the Variance Gamma model and the CGMY model.

To calculate the option prices from this asset price model we use the
CONV method, a Fast Fourier Transform method. To determine how well a
parameter set fits the market data we use a weighted squared error function.

We use the Kriging method to search for a parameter set for which the
error function obtains the minimum value. The Kriging method models
the surface of the error function based on the evaluated points so far. For
each point in the surface it returns a normal distribution. Based on these
distributions we introduce a stopping criterion. As the Kriging model gets
quadratically slower with the number of evaluated points added, we need to
break off the algorithm at some point. In order to still get good results, we
need a search range which is small and smooth enough to find the optimal
solution before the algorithm breaks off.

The Black-Scholes driven model can not be calibrated to fit the market
data well enough. To calibrate the Variance Gamma model we need to
use a two-step method where we zoom in on the interesting region to get
stable results for the optimal value. This is time-expensive. The CGMY
driven model needs the Variance Gamma best fit to determine an initial
search space or the model or the algorithm breaks off too soon to give us
an interesting region to search. Even using this method, we still can not
get completely stable results even when we zoom in twice. This leaves
the Variance Gamma driven model as the only workable model we have
considered.

The optimal parameter sets for the Variance Gamma driven and the
CGMY driven model stay valid for about two weeks on the data sets we
examined.

We can not obtain very accurate implied dividends from a single data
set. The results differ by e 0.06 for parameter sets which all stay within the
bid-ask spread.
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1 Introduction

Many models exist to calculate option prices. One problem common to all
models is fitting the model to reality by determining an optimal parameter
set. Of course it is hard to determine which parameter set will best describe
the behavior of the asset and option prices in the future. One way to deter-
mine such a parameter set, in fact the way we will look at it in this thesis,
is to determine the parameter set which best fits market data.

Market data consists of the bid and ask spreads market makers have
to supply for each option. This does not necessarily mean that this is the
only correct price for the option, but the market mechanism is supposed to
correct prices which are either too high or too low. Market data reflects the
price the market makers think the option is worth. In particular, we can
determine from this market data the height of the dividend market makers
suspect the asset to have.

There are black-box programs available which in some way extract a
parameter set from the market data. In this thesis we want to investigate
some means to determine such parameter sets ourselves, and try and get
some insight in the problem.

To this end we will implement the Kriging algorithm [1] which is basi-
cally a general way to determine an optimum for any deterministic function.
Kriging works by taking a number of points evenly spread over the search
domain, evaluating the value of the function in those points and approxi-
mating the surface of the function using these values. This approximation
surface is searched for new points to evaluate. These new points are incor-
porated in the approximation which becomes a better approximation of the
real function the more points are added. At some point the evaluated point
with the optimal value is presented as the solution.

The market data consists of the bid and ask prices for simple American
call and put options. A put option is a contract that gives the owner the
privilege to sell a share of stock at a predetermined price, the so-called
strike price. A call option permits the owner to buy a share of stock at a
predetermined price. In the option contract a date is named after which
the contract is void, the expiry date. There are some differences in option
contracts based on when the option can be exercised. For example, European
options can only be exercised at the expiry date. American options can be
exercised at any time before expiry.

One well-known model to price options on assets without dividend pay-
ments is the Black-Scholes model [2]. The model has only one parameter
(we assume the interest rate r to be known), the volatility, which completely
determines the relation between the asset price and the option price (given
an expiry date and a strike price). Unfortunately, this is not realistic. When
determining the implied volatilities from options with the same expiry date
and different strike prices one would expect to get a straight line if the model
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was correct. In practice this graph would show a skew, the so-called volatil-
ity smile. One difference between model and reality which could explain this
behavior is the number of jumps of several standard deviations which occur
in the market. This behavior cannot be modeled by the Normal distribution
which drives the Black-Scholes model. The tails of the Normal distribution
vanish exponentially, which does not correspond to reality. Also, the Black-
Scholes model does not allow for jumps at all, while these jumps can be
observed in markets.

There are several models which address this problem in the Black-Scholes
model. In this thesis we will look at two Lévy jump models, Variance
Gamma [3] and CGMY [4]. In these models the asset price can jump and
the tails of the distribution are fatter than those of the Normal distribution.
Using these models it should be possible to model this volatily smile and fit
the model to a range of strike prices at once.

Unfortunately the Black-Scholes, Variance Gamma and CGMY mod-
els do not deal with dividend payments. In order to incorporate dividend
payments we will use the Korn-Rogers approach [5]. In this approach, the
asset price is not modeled directly, but as the sum of the expected dividend
payments. We can use the above models as dynamics for these dividend
payments.

Even given a model for the asset price, there are still several methods
to calculate option prices from these models. We will calculate the option
prices using the CONV method [6], a Fast Fourier Transform model.

In this thesis we will evaluate the effectiveness of the Kriging approach
on the three models. We will examine how well the models can fit the market
data and if the optimal parameter sets we find are stable in time. In these
parameter sets we will put some extra focus on how well they can predict
the implied dividend.

2 Notation

Throughout this document θ denotes a set of k parameters of the model we
try to fit to the market data.

θ = (θ1, . . . , θk) (1)

The last parameter will always denote the dividend rate θk = δ.
Each set represents a point in our search space. In the Kriging model

we consider n such sets and will distinguish them by writing θ
(i) to indicate

the ith set.

In the financial models we consider, the asset price is denoted by the random
variable S, or St if a more explicit time distinction is required. When we
use the risk-neutral asset price, we will explicitly indicate this by SRN.
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In the calculations we will use the log-transformed risk-neutral asset
price X = ln SRN. Again we will sometimes add a subscript to indicate the
time dependence more explicitly. The financial models are distinguished by
the characteristic function φ(u, t,θ) of the density of Xt. When discussing
the derivation of this function for a fixed parameter set we will drop θ from
this notation. The specific model will be indicated by a subscript where this
is relevant: φBS(u, t).

In the assessment phase we will use an objective function g(θ) to assign a
value to each set. Although g is written as a function of only θ, it is in fact
dependent on φ(u, t) and the market data as well:

g(θ) = g(φ(u, t,θ),market data) (2)

This value g(θ) can be considered as a measure of the distance of the model
using the parameter set θ. We will call this the error of this solution.
Because the market data contain uncertainty in the form of a gap between
bid and ask prices, we denote this error on the inputs as ǫ0 and provide it
as a reference whenever results are presented.

The minimum value of the set of sample points will be denoted as gmin.

gmin = min
i∈{1,...,n}

{g(θ(i))} (3)
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3 The Kriging model

In this chapter we will describe the Kriging model. We will start to discuss
the whole framework. In the following sections we will examine the sampler
and the genetic algorithm in some more detail.

3.1 Kriging

Kriging is a method to model the surface of a deterministic function with
k parameters. This surface is constructed by sampling at n points. It
mimics the optimization landscape, represented by an objective function.
The surface represents a surrogate for the true objective function. It is
continuously updated by including more points to its representation.

The Kriging model provides not only an estimate of the value at any
specific point but also an indication of the error. We use an optimization
algorithm that takes both of these values into account to find additional
sample points to improve our estimate of the optimal value as described in
[9].

In this section we will discuss the origin of the model, show how it works
and propose a stopping criterion. At the end of this section we will show
the algorithm in a flowchart.

3.1.1 Origin of the Kriging model

A well-known method to fit a response surface to n function evaluations

is linear regression. Let θ
(i) = (θ

(i)
1 , . . . , θ

(i)
k ) denote the ith sample point

and g(i) = g(θ(i)) the corresponding value of the evaluation function. The
samples are now treated as realizations from a stochastic model:

g(θ(i)) =

k
∑

h=1

βhlh(θ(i)) + ǫ(i)

In this model, each lh(θ) represents a linear or nonlinear continuous
function of θ, the βh’s are unknown coefficients to be estimated and the ǫ(i)

are normally distributed, independent error terms with mean zero.

This approach may be appropriate for physical measurements, but when
dealing with a deterministic function, as in our problem, there are some
modifications necessary.

1. The error terms can not be independent of θ.

Since the function g(θ) is deterministic, any error term will not be
random, but rather a leftover term in θ. From now on, we will write
ǫ(θ(i)) instead of ǫ(i).
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2. The error terms can not be independent of each other.

If g(θ) is a continuous function, this means that ǫ(θ) should also be
continuous as it is the difference between g(θ) and the continuous
regression terms. This implies that ǫ(θ(i)) and ǫ(θ(j)) are highly cor-
related when x(i) and x(j) are “close”.

These reservations lead to a different model. Instead of estimating the
weights of the regression terms, we will estimate weights in a correlation
structure. The regression terms are replaced by a constant term.

The sample points are now considered as realizations of the following
stochastic model:

g(θ(i)) = µ + ǫ(θ(i)) (i = 1, . . . , n), (4)

where µ is the mean of the stochastic process, ǫ(θ(i)) is Normal(0, σ2) and
correlations between processes are given by

Corr[ǫ(θ(i)), ǫ(θ(j))] = exp[−d(θ(i),θ(j))], (5)

where the “distance” is defined as

d(θ(i),θ(j)) =
k

∑

h=1

wh|θ(i)
h − θ

(j)
h |2 (wh ≥ 0). (6)

The whs represent weighting factors that are added to each parameter.

3.1.2 Constructing the initial Kriging model

In our final model we have k + 2 parameters:

w = (w1, . . . , wk), µ, σ2 (7)

To estimate these parameters we maximize the likelihood of our sample
points. In order to obtain a compact expression we introduce the following
notation.

We define g to be the n-vector of the objective values of all n sample points:

g = (g(θ(1)), . . . , g(θ(n))). (8)

R denotes the n × n-correlation matrix:

Ri,j = Corr[ǫ(θ(i)), ǫ(θ(j))]. (9)
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We write 1 for an n-vector of ones.

Using this notation we obtain the following expression for the likelihood
function:

ℓ(w, µ, σ2) =
1

(2π)n/2(σ2)n/2|R| 12
exp

[

−(g − 1µ)′R−1(g − 1µ)

2σ2

]

(10)

For fixed values of w we can calculate the values of µ and σ2 that max-
imize the likelihood function:

µ̂ =
1′R−1g

1′R−11
(11)

and

σ̂2 =
(g − 1µ̂)R−1(g − 1µ̂)

n
(12)

Substituting (11) and (12) in (10) we obtain a k-dimensional uncon-
strained nonlinear optimization problem.

We solve this problem by using an iterative method as suggested in [7]

w(i+1) = w(i) + B−1 d ln ℓ

dw
(13)

where

Bij =
1

2
trace

(

R−1 ∂R

∂wi
R−1 ∂R

∂wj

)

(14)

and

∂ ln ℓ

∂wi
= −1

2
trace

{

R−1 ∂R

∂wi

}

+
(g − 1µ̂)R−1 ∂R

∂wi
R−1(g − 1µ̂)

2σ̂
(15)

If (13) is not an improvement, we use an updated version of B

Bup = B + 2ddiagB (16)

for increasing numbers of d as described in [8]. This will ensure that each
step is an improvement. If the improvements get very small (¡0.1%) we stop
the search and consider the algorithm converged.

Once we have found the optimal weights, we can estimate the value of
the objective function for arbitrary θ

∗ using the following linear unbiased
predictor:

ĝ(θ∗) = µ̂ + r′R−1(g − 1µ̂) (17)

where ri(θ
∗) ≡ Corr[ǫ(θ∗), ǫ(θ(i))] is calculated using (6) and (5).

Likewise we can obtain an estimate of the accuracy of our solution by
the formula for the mean squared error of the predictor, denoted by s2(θ∗):

s2(θ∗) = σ̂2

[

1 − r′R−1r +
(1 − 1′R−1r)2

1′R−11

]

(18)

11



3.1.3 Finding the global optimum

Once the initial Kriging model is constructed we use a genetic algorithm to
determine a next optimal point to evaluate.

Since the model includes a measure of uncertainty (18) in a predicted
point, it would be possible to oversee the global optimum if we only took the
predicted value (17) into consideration. An improved way to search for the
optimum is to take the uncertainty into account. This leads to the so-called
search criterion of the Expected Improvement (EI) [9].

To calculate the EI, we consider g(θ∗) to be a random variable with
normal distribution, mean ĝ = ĝ(θ∗) and variance s2 = s2(θ∗). Under these
assumptions the expectation of the improvement on the current minimum
value gmin of our sample set is

E[I(θ∗)] = E[max(gmin − g(θ∗), 0)]

=

∫ ∞

−∞
(gmin − x)1{x<gmin}(x)

1

s
f(

x − ĝ

s
)dx

=

∫ gmin

−∞
(x − gmin)

1

s
f(

x − ĝ

s
)dx

=

∫
gmin−ĝ

s

−∞
(gmin − sz − ĝ)f(z)dz

= (gmin − ĝ)

∫
gmin−ĝ

s

−∞
f(z)dz − s

∫
gmin−ĝ

s

−∞
zf(z)dz

(19)

where f(x) is the density function of the standard normal distribution.
Since

∫ a

−∞
zf(z)dz =

∫ a

−∞
z

1√
2π

e
−z2

2 dz

= [− 1√
2π

e
−z2

2 ]a−∞

= −f(a)

(20)

we can write the following expression for the EI:

E[I(θ∗)] = (gmin − ĝ)F ((gmin − ĝ)/s) + sf((gmin − ĝ)/s) (21)

where F denotes the cumulative distribution function of the standard normal
distribution.

We now calculate the true value of the point with the highest EI and
add this as an extra sample point to the model. In this way we combine
searching for a global optimum with improvement of the approximation
surface in relevant areas.
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3.1.4 Stopping condition and validation

In general the Kriging method shows a descend in the maximum EI found
in each step. Sometimes it goes up when a new interesting region has been
found, but once explored, it drops further. Though this is certainly a sign of
convergence, when can we be reasonably sure the optimum has been found?

One way of determining how well our approximation surface fits the
objective function is to leave out a sample point and compare the prediction
of the model without this point to the true value in terms of the predicted
standard deviation. If all sample points are predicted within 3 standard
deviations of their true value we consider the model to fit well enough.

To formulate the stopping condition we assume that if all initial sample
points are predicted within 3 standard deviations of their true value, this
property will hold for all the predicted points in the domain D. In formula
form:

|g − ĝ| < 3s ∀g ∈ D (22)

If this assumption holds we can stop the algorithm once

gmin − ĝ < −3s ∀g ∈ D (23)

as all points in our approximation at are more than 3 standard deviations
distance of our current minimum.

For the maximum EI it holds that if

(−3F (−3) + f(−3))max
D

s ≤ max
D

EI (24)

then
gmin − ĝ

s
≥ −3 (25)

since

max
D

EI = max
D

(gmin − ĝ)F ((gmin − ĝ)/s) + sf((gmin − ĝ)/s) (26)

≤ max
D

s max
D

gmin − ĝ

s
F ((gmin − ĝ)/s) + f((gmin − ĝ)/s)

and xF (x) + f(x) is a strictly increasing function.
As an estimate for max

D
s we will use σ̂ and stop improving by EI once

max
D

EI < σ̂(−3F (−3) + f(−3)).

Note that when this criterion on EI is reached, (23) is not necessarily
fulfilled. However, if it does not hold then (23) has certainly not been
reached.

To make sure that (23) holds, we can add points with the highest num-
ber of standard deviation distance gmin−ĝ

s to the model. Once the highest
standard deviation distance is smaller than −3 we have reached our stopping
criterion (23). We will call this extra stopping criterion Maximum Variance
Distance (MVD). In chapter 5 we will determine if adding this criterion is
worth the extra trouble.
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3.1.5 Overview

In this section we will give an overview of the total method for finding an
optimal parameter set. In the following sections we will go into each of the
steps in more detail.

1. We construct an initial sample set.

2. We assess the performance of these sample points by an objective
function which basically measures the error of using the option price
model with these parameters compared to market data.

3. The performance of the sample points is used to create the initial Krig-
ing model. The model provides an approximation of the performance
of any parameter set and gives us an indication of the modeling error.

4. Since the model is an approximation, finding the optimal point in the
Kriging model could give us a local optimum or a point that is not
an optimum at all. Instead of looking for the point with the lowest
predicted value, we try to find the point that is most likely to improve
our current best sample point. This new objective function is known as
the Expected Improvement (EI). By adding the point with the highest
EI to the model, we improve the accuracy of optima and at the same
time ensure that points with a great chance of being global optima are
not left out.

A Genetic Algorithm (GA) is used to find the global optimum of the
EI.

5. The Kriging model is continuously updated by including new points in
the approximate model until we have reached our stopping criterion.

The complete process is depicted in Figure 1. More details on the sub-
sequent steps in the process will be provided in the following sections.
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Figure 1: Flowchart for determining the optimal parameter set.
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3.2 Sampler

To start the Kriging algorithm, we need some way to select the first sam-
ple points. One common way to select sample points is Latin Hypercube
Sampling (LHS) [10].

To generate n sample points in this algorithm, we split each axis of our
search space in n equal parts and take a sample in each. By combining these
results in a random order, we end up with n sample points that are more or
less evenly divided over the sample space.

However, this does lead to some clustering in the sample space as can
be seen in Figure 2. To get a more even spread of the sample points we can
also use the existing Kriging structure to generate sample points. We initi-
ate the algorithm with neutral weights and sample points with the highest
uncertainty, thus ensuring a more or less even spread over our sample space.
We will call this method Kriging Sampling (KS).

The precise algorithm is present point-wise below.

• As an initial guess the weights wi are set to 100√
dl2i

, where d is the number

of dimensions and li is the length of the interval for the ith variable.

• To fill the various matrices and vectors, the first points are selected at
random.

• Instead of using the Expected Improvement criterion to select new
sample points we add the point with the highest variance.

• More and more points are added until the required number of sample
points is reached.

While sampling this way is more complex and time consuming than
using LHS (it is equally expensive as adding points using the EI criterion),
the initial sample set is far superior in spread as can be seen in picture 3.
Disadvantages to this method are that we have no guarantee that each axis
is evenly sampled and there are relatively many points on the boundary of
our domain.

In chapter 5 we will compare the two to decide which one to use in the
calibration program.
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Figure 2: Spread of 50 sample points using Latin Hypercube Sampling on
the 2-D Rosenbrock function.
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Figure 3: Spread of 50 sample points using Kriging sampling on the 2-D
Rosenbrock function.
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3.3 Genetic Algorithm

In the center of the fitting algorithm a Genetic Algorithm (GA) is used
to find the point with the greatest expected improvement in the surrogate
optimization landscape.

In this section we will discuss the general approach of genetic algorithms
and describe our specific implementation.

3.3.1 General approach

GAs mimic genetics to search for the optimal solution. Solutions are repre-
sented as strings of bits. To compare how “close” strings are to each other
we compare the number of bits in which they differ. Standard binary encod-
ing has the drawback that some numbers that are neighbors differ in more
than one byte, for example 3 (011) and 4 (100).

To address this problem we move to a binary-reflected Gray code. This
is an encoding of integers with the characteristic that two neighbors differ
in only one bit. It is constructed recursively. We start out with 0 and 1. For
each interval [2i, 2i+1), i ≥ 1 we use all the previous numbers in backward
order and add a 1 in front of them.

000 − 0
001 − 1

011 − 2
010 − 3

110 − 4
111 − 5
101 − 6
100 − 7

(27)

and so on. Solutions will now be encoded as

(2, 5) → 011111 (28)

The function we’d like to optimize serves as a measure of the fitness of
the individuals.

fobj(x, y) = xy (29)

ffitness(011111) = fobj(2, 5) = 10 (30)

To find new solutions, we combine pairs of these strings (parents). Each
bit of the new solutions (children) is inherited from one of the two parents
(crossover). One way to do this is single-point crossover: a random point
somewhere in the string is chosen and all the bits in front of that point
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are from the first parent and the others from the second. The combination
gotten by switching the two parents results in a second child.

0010|11
1011|01
0010|01
1011|11

(31)

This reproduction process may be enhanced by adding a chance on mu-
tation, to keep the process from getting stuck in a local optimum.

A new population is now formed by making some combination of parents
and children and the process of crossover and mutation starts anew. The
process is terminated if some stopping criterion is reached.

3.3.2 Specific implementation

Though all genetic algorithms follow this general structure, there is a lot of
freedom in the implementation. We will use a µ-GA [11] with a population
size of 5, elitism, tournament parent selection and uniform crossover. The
algorithm will restart when the bits of each member of the population differs
in fewer than 5% of the bits of the best solution.

The process is depicted in Figure 4. We will describe how the general
process is altered.

We start out with only 5 randomly generated strings.

Next, we get to the selection of the parents. We use a process called tour-
nament parent selection. This works in the following manner:

1. The population is ordered in a random way.

2. The fitness of individual 1 is compared with individual 2. The one
with the greatest fitness is chosen as parent 1.

3. The fitness of individual 3 is compared with individual 4. The one
with the greatest fitness is chosen as parent 2.

4. Crossover is performed with parents 1 and 2.

This process is done twice, to obtain 4 children.

The crossover we use is called uniform crossover. It is performed in the
following fashion: for each bit of the child there is 50% chance of inheriting
that bit from parent 1 else it inherits from parent 2.

There is no mutation step. Diversity in the solutions is ensured by restarting
the process a number of times.
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Figure 4: Flowchart of the µ-GA algorithm.
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The next generation is formed by the 4 children and the fittest of the parents
(elitism).

After a while this process will converge. We consider it converged when
the bits of each population member differ in less than 5% from the bits of
the fittest member. When this occurs, the algorithm restarts. The fittest
member is preserved and 4 new random strings are generated.

When the algorithm converges to the same point 10 times in a row or after
20000 function evaluations which ever occurs first, we stop the algorithm
and return the best point so far as the optimal point.

Even if this procedure does not produce the optimal point every time,
this will not invalidate our search as those second best points will still be
good points to add to the model. In the worst case this will make the search
a bit less efficient.
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4 Pricing options with dividend payments

In this chapter we will focus on how to price options on stocks with dividend
payments.

We will first discuss a general framework to price options without divi-
dend payments which supports various models for the asset price. We follow
up this discussion with three models for the asset price. In the final section
we will show how the framework can be modified to incorporate dividend
payments in the asset and option prices.

4.1 Fast option price evaluation

To raise capital, corporations issue shares of stock. These shares of stock,
or stocks for short, are traded on financial markets. To add more flexibility,
contracts are made based on future values of these stocks. One example of
such a contract is a stock option.

Options are contracts that give the holder the opportunity to buy (a
“call” option) or sell (a “put” option) an asset on or before a future date
(the “maturity” date) at a predefined price (the “strike” price), all set in
the contract. The writer has the obligation to honor the contract. Since
the holder gained a right, clearly the option must have some value. As this
value is based on the future price of the asset, the model for the option price
will be closely related to the model for the development of the asset price.

A commonly used criterion to divide the options into classes is when the
option can be exercised. We distinguish the following types of options:

• The European option. This option has a single fixed exercise date.

• The Bermudan option. In this contact a finite number of exercise dates
are fixed.

• The American option. This option is the most flexible of the three, as
it can be exercised at any time before a fixed end date.

4.1.1 Modeling the asset price

Asset prices are modeled as continuous time random walk processes, so-
called Lévy processes. These processes produce sample paths that are cadlag
(continue à droite, limite à gauche) which means they have to be continu-
ous from the right and limited from the left. This leads to the following
definition:

Definition 1 (Lévy process). A Lévy process is a cadlag stochastic process

(Xt)t≥0 on (Ω,F , P) with values in Rd such that X0 = 0 with the following

properties:

22



1. Independent increments: for every increasing sequence of times t0, . . . , tn,

the random variables Xt1 − Xt0 , . . . ,Xtn − Xtn−1 are independent.

2. Stationary increments: the law of Xt+h − Xt does not depend on t.

3. Stochastic continuity: ∀t∀ǫ > 0, lim
h→0

P(|Xt+h − Xt| ≥ ǫ) = 0.

This last property does not mean that the sample paths are continuous,
it merely excludes jumps at fixed times.

One example of such a model is the Black-Scholes model [2].

dS

S
= mdt + θdW, (32)

where S is the asset price, m is the average rate of growth and θ is a
measure for the standard deviation of the returns called the volatility. W (t)
is a Wiener process, a continuous time stochastic process with independent
increments W (t) − W (s) ∼ N(0, t − s).

4.1.2 Risk-neutral Valuation Theorem

One of the important assumptions in pricing options is the concept of an
arbitrage free market. Basically this means there are no opportunities to
make a risk-free profit better than the interest rate r of a bank account.
If such an opportunity would exist, the market is assumed to immediately
adjust prices to eliminate it before it can be used.

Mathematically this translates to the existence of a so-called risk-neutral
measure Q which is equivalent to the real-world measure P, under which the
asset price divided by the bank account is a martingale. (A martingale is a
stochastic process in which the conditional expectation of its value at time
T > t, given the history of the process up to time t is the value of the process
at time t.)

If we transform (32) to this measure, it would change to

dSRN

SRN
= rdt + θdWRN (33)

The change of measure changes the expected return to the return of the
bank account and the random variable dW to a new random variable dWRN.

This gives us a model for the risk-neutral asset price.
Under the risk-neutral measure we can write for the price V (St, t) of a

European option with expiration time T :

V (St, t) = e−r(T−t)E
Q
t [V (ST , T )]. (34)

Using the definition of the expectation we can write this as

V (St, t) = e−r(T−t)

∫ ∞

−∞
V (ST , T )f(ST |St)dST , (35)
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where f(ST |St) is the transition density (under Q) for the asset price.
For example, if we would consider a European option to buy an asset at

time T for strike price E, the value of the contact at time T would be

V (ST , T ) = max(ST − E, 0) (36)

If the asset price is modeled by (32) the transition density under Q would
be

f(ST |St) =
1

ST

√

2πσ2(T − t)
e
−

[log
ST
St

−(r− 1
2 σ2)(T−t)]2

2σ2(T−t) (37)

Using this method we have to calculate the transition density and to
solve the integral (35) to calculate the option prices. This is the basis for
Transform methods in general and the CONV method in particular.

4.1.3 The CONV method

Transform methods aim at solving the risk-neutral valuation formula by
means of Fast Fourier Transform (FFT) techniques. We will use the follow-
ing notation for the continuous Fourier transform:

F{F (x)} =

∫ ∞

−∞
e−iuxF (x)dx , F̂ (u) (38)

and its inverse:

F−1{F̂ (u)} =
1

2π

∫ ∞

−∞
eixuF̂ (u)du (39)

The transform methods use log-transformed asset prices:

s = log(ST ), k = log(E) (40)

and the risk-neutral density function f(s) of the transformed stock price s.
The CONV method derives a pricing formula from the risk-neutral val-

uation formula by assuming

f(y|x) = f(y − x) (41)

This assumption is full-filled for all processes with independent incre-
ments, such as Lévy processes.

For simplicity of notation we will use x = St and y = ST throughout the
derivation. This way (34) is written as

V (t, x) = e−r(T−t)E
Q
t,St

[V (T, y)] (42)

Using the definition of expectation we arrive at

V (t, x) = e−r(T−t)

∫ ∞

−∞
V (T, y)f(y|x)dy (43)
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At this point we use the assumption (41) and introduce a change of
variables z = y − x:

er(T−t)V (t, x) =

∫ ∞

−∞
V (T, x + z)f(z)dz (44)

Equation (44) is represented as a convolution integral here, a form suit-
able for a fast Fourier transform. The problem is that the Fourier transform
may not exist. We dampen V (t, x) by eβx to have

∫ ∞
−∞ |eβxV (t, x)|dx < ∞.

This way the existence of the transform is ensured.
The CONV method is now defined by

er(T−t)F{eβxV (t, x)}

=er(T−t)

∫ ∞

−∞
eiuxeβxV (t, x)dx

=

∫ ∞

−∞
eiux

[
∫ ∞

−∞
eβxV (T, x + z)f(z)dz

]

dx

=

∫ ∞

−∞

∫ ∞

−∞
eiux+βxV (T, x + z)f(z)dzdx

=

∫ ∞

−∞

[
∫ ∞

−∞
ei(u−iβ)xV (T, x + z)dx

]

f(z)dz

=

∫ ∞

−∞

[∫ ∞

−∞
ei(u−iβ)(y−z)V (T, y)dy

]

f(z)dz

=

∫ ∞

−∞
ei(u−iβ)yV (T, y)dy

∫ ∞

−∞
ei(−u+iβ)zf(z)dz

=V̂T (u − iβ)φ(−u + iβ)

(45)

where φ(u) is the characteristic function of the density f(x):

φ(u) =

∫ ∞

−∞
eiuxf(x)dx (46)

For Lévy processes this form can also be obtained via the Lévy-Khinchine
formula.

To calculate the option price we apply the inverse Fourier transform:

er(T−t)V (t, x) = e−βxF−1{V̂T (u − iβ)φ(−u + iβ)} (47)

Again, this can be done efficiently by a fast Fourier transform due to the
convolution in the expression.

This way we can efficiently calculate European option prices if we know
the characteristic function of the risk-neutral density of the log-transformed
stock price. For many stochastic processes the characteristic function is
known in explicit form, while in some cases no explicit form for the density
can be given.
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4.1.4 Pricing American options

For the purpose of calibration, the only option types we consider are simple
call and put options. The CONV method gives us a way to calculate Eu-
ropean options. However, the bulk of the options traded in the market are
American options. In this section we will show how the prices of Bermudan
and American options can be derived using the algorithm for the European
option price.

To price Bermudan options, the algorithm for European options is used
repeatedly for each exercise point backwards in time. If there are M exercise
times, we indicate them as T1, . . . , TM .

Given the final pay-off function V (t, x) and a given value of STM−1
, we

can calculate VHOLD(TM−1, STM−1
). This is the value of the contract if we

choose not to exercise it at time TM−1 given the asset price STM−1
. However,

as we have the option of exercising the contract at this time, the real price
of the contract must be the maximum of holding the option and exercising
it.

VREAL(Ti, STi
) = max{VHOLD(Ti, STi

), V (Ti, STi
)} (48)

By calculating VREAL for a range of values of STi
, we can approximate

VREAL(Ti, x) and use this approximation to calculate VHOLD(Ti−1, STi−1) for
a given value of STi−1 by applying the CONV method.

From VREAL(T1, x) we can eventually calculate the option price V (t, St),
for a given t < T1 and St using the CONV method.

We can approximate the American option price (which has unlimited
exercise points) by a Bermudan option with many exercise points. As the
number of exercise points increases, the Bermudan option price will approx-
imate the American option price with increasing accuracy. However, this
may become very costly as numerical integration should take place for each
exercise point. To speed up this process, we use Richardson interpolation
applied to the Bermudan approximation with 64, 32 and 16 exercise points.

4.2 Asset price models

As stated in section 4.1.3, we can evaluate option prices based on models of
asset prices as long as we know the characteristic function of the risk-neutral
density of the log-transformed stock price.

In this section we will review some asset price models and their char-
acteristic functions. The parameters we want to estimate are written as
θ1, . . . , θk in each of these models.

4.2.1 Black-Scholes model

A well known model for asset prices is the Black-Scholes model [2]. The
relative change in the asset price is modeled by a linear rate of return com-
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bined with Brownian motion with a fixed standard deviation. In formula
form this looks like

dS

S
= mdt + θdW, (49)

where S is the asset price, m is the average rate of growth and θ is a
measure for the standard deviation of the returns called the volatility. W (t)
is a Wiener process.

When we transform this process to a risk-neutral measure the trans-
formed price should be a martingale compared to the bank-account mod-
eled by exp{rt}, under the no-arbitrage assumption. This forces the drift to
become equal to the instantaneous interest rate r. The risk-neutral model
then reads

dSRN

SRN
= rdt + θdWRN , (50)

where SRN is the risk-neutral asset price and dWRN a Wiener process.
If we denote X = ln SRN we can apply Itô’s formula to derive

dX = (r − 1

2
θ2)dt + θdWRN (51)

The characteristic function of X is now given by

φBS(u, t) = E[eiuXt ] = exp{iu(r − 1

2
θ2)t − θ2u2t} (52)

4.2.2 Variance Gamma model

The Variance Gamma (VG) [3] model adds more density to the tails of the
normal distribution by replacing the deterministic time in the Black-Scholes
model by a stochastic process based on a Gamma process. It causes the
process to have infinitely many jumps in any time interval. The Variance
Gamma process can be formulated as

XV G(t; θ1, θ2, θ3) = θ1G(t; θ3) + θ2W [G(t; θ3)], (53)

where θ1 is the average rate of growth, θ2 is the standard deviation, G(t; θ3)
is a Gamma process with mean rate unity and variance θ3 and W is a Wiener
process.

The characteristic function of the VG process is given by

φV G(u, t, θ1, θ2, θ3) = E{exp[iuXV G(t)]} =

(

1

1 − iθ1θ3u + θ2
2θ3u2/2

)t/θ3

(54)
To model the asset price we use the process

S = S0 exp{mt + PV G}, (55)
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where m is a growth rate.
When we change the measure to a risk-neutral measure it changes to

SRN = S0 exp{(r + ω)t + PV G,RN} (56)

where ω is chosen so that e−ωt = φV G(−i, t), ensuring that the discounted
risk-neutral process is a martingale.

To find the characteristic function we need, we denote X = ln SRN and
calculate its characteristic function as

φ(u, t) = exp{iu(r + ω)t}φV G(u, t) (57)

4.2.3 CGMY model

The CGMY process [4] is a generalization of the VG process. It is derived
from a different way of representing the VG model, i.e., as the difference of
two Gamma processes:

XV G(t; θ1, θ2, θ3)
law
= Gp(t;µp, νp) − Gn(t;µn, νn) (58)

Here we need the concept of the Lévy measure.

Definition 2 (Lévy measure). Let (Pt)t≥0 be a Lévy process on Rd. The

measure k on Rd defined by:

k(A) = E[#{t ∈ [0, 1] : ∆Pt 6= 0,∆Pt ∈ A}], A ∈ B(Rd) (59)

is called the Lévy measure of P : k(A) is the expected number, per unit time,

of jumps whose size belongs to A.

From this representation the density of the Lévy measure of the VG
process it can be shown to be

kV G(x) =







µ2
n

νn

exp(−µn
νn

|x|)
|x| for x < 0

µ2
p

νp

exp(−µp
νp

|x|)
|x| for x > 0

(60)

The density of the Lévy measure of the CGMY process now is specified
as

kCGMY (x, θ1, θ2, θ3, θ4) =

{

θ1
exp(−θ2|x|)

|x|1+θ4
for x < 0

θ1
exp(−θ3|x|)

|x|1+θ4
fox x > 0

(61)

with θ1 > 0, θ2 ≥ 0, θ3 ≥ 0 and θ4 < 2.
The CGMY process XCGMY (t; θ1, θ2, θ3, θ4) is an infinitely divisible pro-

cess of independent increments with a Lévy measure with density given by
(61).
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Its characteristic function is given by

φCGMY (u, t, θ1, θ2, θ3, θ4) =

exp{tθ1Γ(−θ4)[(θ3 − iu)θ4 − θθ4
3 + (θ2 + iu)θ4 − θθ4

2 ]} (62)

We model the asset price similar to the VG asset price:

S = S0 exp{µt + XCGMY } (63)

with the risk-neutral process given by

SRN = S0 exp{(r + ω)t + XCGMY,RN (64)

where ω is chosen so that e−ωt = φCGMY (−i, t), again ensuring the
discounted risk-neutral price process to be a martingale.

The characteristic function of the risk-neutral log-price X = ln SRN is
now given by

φ(u, t) = exp{iu(r + ω)t}φCGMY (u, t) (65)

4.2.4 Evaluation of the models

The main advantage of the Black-Scholes model is its simplicity. The entire
option price is characterized basically by one parameter.

Under the model assumptions the market is complete: it is possible to
replicate the option by constantly re-balancing a self-financing portfolio such
that its value replicates the value of the option. This way there is no residual
risk in writing a contract.

The main disadvantage of the model is its lack of realism. In the risk-
neutral form, there is only one parameter that determines the whole behavior
of the model. This would imply that if we would estimate the θ for various
maturities and strike values we’d expect it to be constant. However, even
when looking at the market prices for various strike prices with the same
time to maturity, θ is not constant. It shows a curve that is known as the
volatility smile or skew.

Additionally, the continuous sample paths may be satisfactory on a small
scale, but if we look at real market data on a larger scale we see discontinu-
ities that cannot be modeled.

Another weakness in models driven by Brownian motion concerns the
tails of the distribution. Markets show jumps of multiple standard deviations
too often for the distribution to be Gaussian and this excess kurtosis cannot
be modeled in the Black-Scholes model.

Due to the jumps the VG and the CGMY models are better able to
model the volatility smile for a given time to maturity. CGMY can capture
it better since it has more parameters.
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The main drawback of processes with discontinuities is the lack of the
assumption of a complete market in these models. The change to the risk-
neutral measure is not uniquely defined and corresponds to a different way
of hedging. There is no way to construct a self-financing portfolio that will
perfectly match a contingent claim at the time of maturity.

Though it is possible to “superhedge”, that is, create a self-financing
strategy that will almost always exceed the claim, even the cheapest possible
superhedging strategy will be too expensive. To reduce the hedging cost to
a realistic level, the option writer will have to take on some risk.

On the other hand, if such residual risk is the nature of the market,
ignoring it by adapting a continuous model won’t make it go away and it
may be better to address the risk properly.

A second drawback is that the models don’t perform as well for different
maturities. The changes of time in the volatility smile are not reflected well
in the model. This seems to originate from the assumption of independent
increments in the stock price. Market data suggests a dependency in these
increments.

4.3 Dividend payments

Twice a year, a company will pay out a certain amount of money to the
shareholders as a share of the profits. As this will certainly affect the price
of the asset, the option prices will be affected by this as well. The dividend
payment will add a parameter δ to the model which is the percentage of the
stock-price which will be payed out.

To model option prices with dividends, we use the Korn and Rogers
model [5] without dividend announcements. While announcements are clearly
more realistic, incorporating this approach in the CONV method is not fea-
sible.

In this model, we do not model the stock price directly, but we model
the stock price as the discounted expected values of all future dividend
payments.

St = ertE





∞
∑

{tm>t}
e−rtmDm



 (66)

where Dm is the dividend paid at time tm.
The dividend payments are modeled as the outcomes of an exponential

Lévy process X multiplied by a constant λ:

Dj = λX(tj) (67)

The Lévy process should satisfy

EXt/X0 = eγt (68)
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for some γ < r. An additional assumption is that we have dividend payments
at intervals di > 0.

tm = mdi, m = 1, 2, . . . (69)

If we now write Td(t) as the first dividend payment from time t and
Tm

d (t) as the m-th payment after the first, we can write

St =

∞
∑

m=0

e−r(T m
d

(t)−t)λEtXT m
d

(t)

=

∞
∑

m=0

e−r(T m
d

(t)−t)λXte
γ(T m

d
(t)−t)

=
λXte

−(r−γ)(Td(t)−t)

1 − e−(r−γ)di
(70)

This means that as a consequence of the model, the sizes of the dividend
payments are random, but they are proportional to the price of the asset:

S(Td) = λX(Td)

(

1

1 − e−(r−γ)di
− 1

)

= S(Td−)−λX(Td) = S(Td−)e−(r−γ)di

(71)
We will call this dividend percentage

δ = 1 − e−(r−γ)di (72)

Here we see that λ does not influence the dividend payments, and we
will choose its value to be λ ≡ δ.

We can now compute the time-t price of a call option with strike K and
expiry T by

e−r(T−t)E

[

(e−(r−γ)(Td(T )−T )XT − K)+
]

(73)

with Xt = Ste
(r−γ)(Td(t)−t).

This means we can calculate the price by the CONV method if we apply
it to

V (t, x) = (e−(r−γ)(Td(t)−t)+x − K)+ (74)

and characteristic function

φ(u, t) = φLévy(u, t) exp{iu(γ + ω)t} (75)

where ω satisfies e−ωt = φLévy(−i, t) and φLévy(u, t) is the characteristic
function of a Lévy process, such as (54) or (62).
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To estimate the first dividend that will be payed out we can write

EtD(Td(t)) = EtλXTd(t)

= EtδXTd(t)

= δXte
γ(Td(t)−t)

= δSte
(r−γ)(Td(t)−t)eγ(Td(t)−t)

= δSte
r(Td(t)−t) (76)
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5 Implementation

In this chapter we will first discuss the implementation of the Kriging al-
gorithm. We will then examine the option pricing method in some detail.
Finally we will look at the market data and propose an objective function.

5.1 Kriging

For the Kriging algorithm to work, we have to make a design decision for
a stopping criterion in the genetic algorithm. A reasonable criterion seems
to be to stop once the algorithm converges to the same optimum in 10
restarts in a row, with a maximum of 20000 function evaluations. This latter
constraint prevents the algorithm to continue indefinitely in case there are
several optimal points. In practice, the number of evaluations is usually
smaller than 5000.

Using these values we will evaluate the effectiveness of adding the Maxi-
mum Variance Distance stopping criterion and the difference between using
Latin Hypercube Sampling and Kriging Sampling.

We apply the algorithm to three different test problems: the 1-dimensional
Rastrigin function, the 2-dimensional Schwefel function and the 2-dimensional
Rosenbrock function. In all these problems we also examine the effect of hav-
ing too few sample points to get a good initial impression of the function.

We will run the Kriging algorithm 100 times and check if it converged
to the optimal point. We consider the algorithm to have converged if it is
within 5% of the optimal point.

Based on these results we will then explain our design decisions.

5.1.1 1-dimensional Rastrigin function

The 1-dimensional Rastrigin function (Figure 5) is given by

f(x) = 10 + x2 − 10 cos(2πx) x ∈ [−5.12, 5.12] (77)

which has a minimum of 0 for x = 0.

33



−6 −4 −2 0 2 4 6
0

5

10

15

20

25

30

35

40

45

Figure 5: 1D Rastrigin function
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Num. start points Sampler MVD? Num. converged Av. num. steps

10 LHS
No 94 35.77
Yes 98 35.02

KS
No 82 27.00
Yes 92 28.50

30 LHS
No 73 36.24
Yes 57 40.61

KS
No 100 39.37
Yes 100 41.08

Table 1: 1D Rastrigin results

A surprising result in Table 1 is using LHS with 30 points which clearly
leads to the worst results. The clustering of the LHS algorithm sometimes
leads to a near singular R here and causes the resulting matrix multipli-
cations with R−1 to produce some strange results for the predicted means
and standard deviations, causing the algorithm to fail. Other than that, the
algorithm seems to perform well, even with too few points to get a good
starting approximation of the function. The differences between KS and
LHS seem to arise partly from how many times a point was chosen close to
the optimum. On the whole, adding MVD seems to be an improvement.

5.1.2 2-dimensional Schwefel function

The 2-dimensional Schwefel function (Figure 6) is given by

f(x, y) = −x sin(
√

|x|) − y sin(
√

|y|) x, y ∈ [−500, 500] (78)

which has a minimum of −837.9658 for x = y = 420.9687.
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Figure 6: 2D Schwefel function
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Num. start points Sampler MVD? Num. converged Av. num. steps

60 LHS
No 93 133.05
Yes 95 129.21

KS
No 82 133.10
Yes 90 219.63

100 LHS
No 97 126.97
Yes 100 128.88

KS
No 82 201.16
Yes 90 219.63

Table 2: 2D Schwefel results

In the runs in Table 2, LHS outperforms KS and MVD seems to add
significantly to the number of times the optimum is found. However, it
seems that in the LHS runs more often a point close to the optimum has
been chosen as one of the start points which can be seen by the low average
number of sample points before the algorithm considered itself converged.

5.1.3 2-dimensional Rosenbrock function

The 2-dimensional Rosenbrock function (Figure 7) is given by

f(x, y) = (1 − x)2 + 100(y − x2)2 x, y ∈ [−2.048, 2.048] (79)

which has a minimum of 0 for x = y = 1.
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Figure 7: 2D Rosenbrock function
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Num. start points Sampler MVD? Num. converged Av. num. steps

60 LHS
No 30 72.54
Yes 77 80.10

KS
No 62 96.06
Yes 93 103.57

100 LHS
No 18 100.80
Yes 21 101.69

KS
No 60 126.76
Yes 95 136.97

Table 3: 2D Rosenbrock results

For the Rosenbrock function the results in Table 3 are very clear: KS
outperforms LHS and adding the MVD criterion adds a lot of accuracy
for a small rise in the average number of steps needed. In the case of
100 start points we can see that how much the sampler affects the results.
Sampling with LHS results in the algorithm considering itself converged
almost immediately while the true optimum has not been reached yet. This
is caused by the large valley where all the points have values close to the
optimum. 100 start points are probably too many for this rather smooth
function since only a small number of extra points are added in these tests.

5.1.4 Design decisions

Since we expect our market data objective to be a rather smooth function as
well, we will use KS with the MVD criterion with 50 start points. To limit
the duration of the algorithm we will stop the Kriging steps when we have
400 sample points and the MVD steps when we have 440 sample points.

5.2 Option pricing method

To implement the CONV method, we have to transform the problem to a
discrete grid. This introduces the size of the grid 2N on which to perform
the Fourier transform. In the discrete model there is a trade off between the
detail of the characteristic function (basically how many standard deviations
to consider) and the step size in the payoff function both of which affect the
accuracy of the algorithm. We choose a range of 8 standard deviations and
estimate the maximal standard deviation to be 0.5. We use N as the sole
parameter for the accuracy. Choosing specific values for each of the models
will probably result in a lower value of N and thus faster calculations, but
we will not go in to that in this thesis.

To get an indication which value of N to use for the various models we
choose a parameter set for each model and calculate the call and put prices
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of simple American options for 100 evenly spaced strikes between K = 21
and K = 25 for N = 10, . . . , 15.

The parameter sets we use are shown in Table 4 are be reasonable ap-
proximations for the last data point from March 1th 2005 for ING options
which expired in May 2005. We use a fixed interest rate of 2.3%.

Model (θ1, . . . , θn, δ)

BS (0.1474, 0.0245)
VG (-0.6374, 0.0584, 0.0468, 0.0268)

CGMY (19.2618, 55.1580, 88.0093, 0.2328, 0.0244)

Table 4: Parameters used to assess the effect for N

To assess the error we compare the ℓ∞-difference between the results for
N = 15 with the others for each model.

Model N ℓ∞ difference

BS

14 0.00001
13 0.00002
12 0.00009
11 0.00031
10 0.00099

VG

14 0.00370
13 0.00110
12 0.00680
11 0.04770
10 0.02600

CGMY

14 0.00001
13 0.00004
12 0.00040
11 0.00087
10 0.00730

Table 5: ℓ∞ difference to N = 15

The results in Table 5 show a steady decline in ℓ∞ error for Black-Scholes
and CGMY. The results for Variance Gamma fluctuate but a downward
trend is clearly visible.

Based on these results we choose N = 13.

5.3 Objective function

To compare different parameters in a model, we need an objective function
which reflects how well a certain parameter set fits the market data.
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S K V bid
call V ask

call V bid
put V ask

put

23.460

21.000 2.500 2.600 0.100 0.200
22.000 1.600 1.700 0.300 0.350
23.000 0.850 0.900 0.600 0.700
24.000 0.300 0.400 1.250 1.300
25.000 0.100 0.150 2.050 2.150

Table 6: Example of market data

Market data is given by (ti, Sti , Ti,Ki, ri, V
bid
i , V ask

i )i∈I and whether it
concerns a call or a put option. ti is the current date, Sti is the current
asset price, Ti is the expiry date, Ki the strike price, ri is the instantaneous
interest rate, V bid

i and V ask
i represent the bid-ask spread.

The data sets we have contain the value of the asset and the bid-ask
spread for American call and put options. If more than one data set is
available for one day, we will use the last. The data for one of these time
points is presented in Table 6.

Given a model, we would like to find a parameter set θ such that for each
V θ

i = e−ri(Ti−ti)EQθ [V (Ti, STi
,Ki)], we have V bid

i ≤ V θ
i ≤ V ask

i ∀i ∈ I
for both the call and the put options.

However, such an ideal parameter set may not exist in the model under
consideration. In that case we would like to get the best fit in some sense.

We will use a weighted least square error with respect to the mid-market

price V mm
i =

V bid
i +V ask

i

2 .

g(θ) =

√

∑

i∈I

ci|V θ
i − V mm

i |2 (80)

where the cis reflect our confidence in the individual data points ci =
4

|V bid
i

−V ask
i

|2 as suggested in chapter 13.2 of [12].

The ideal parameter set θ∗ is now defined as

θ∗ = arg min
Qθ∈Q

g(θ) (81)

The distance from the mid-market prices to the bid and ask prices is

40



now

ǫ0 =

√

∑

i∈I

ci|V bid
i − V mm

i |2

=

√

∑

i∈I

ci|V ask
i − V mm

i |2

=

√

√

√

√

∑

i∈I

4

|V bid
i − V ask

i |2

∣

∣

∣

∣

V bid
i − V ask

i

2

∣

∣

∣

∣

2

=

√

∑

i∈I

1 (82)

where we use the data for both call and put prices.
Though this distance gives preference to points close to the mid-market

prices, all solutions which fall between the bid and ask prices are equally
valid. All solutions with an error greater than ǫ0 will not have all their
predicted values between the bid and ask prices, while solutions with a
much smaller error will all be equivalent.

The main problem we now face is that the problem may be ill-defined.
There may many solutions throughout the domain which all fulfill the re-
quirement of lying between the bid and ask prices. It may be that there is
no single stable solution.

This means that if we have found a θ∗ and want to update it using new
available data we might end up with a completely different θ∗!
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6 Results

To examine the calibration algorithm, we use data sets for American options
on ING around the dividend payment at April 28th 2005. During this period,
the interest rate was approximately 2.3%. We look at those options which
expired at the end of May 2005. The dividend was announced to be e 0.58
at February 17th 2005. Since the data sets we look at are all from after this
date, we should be able to retrieve this value from our calibrations.

Instead of using the standard objective function we will use the logarithm
of it’s values as this “flattening” of the objective function helped the Kriging
algorithm obtain better results.

We will look in detail at the calibration process from the data set of
March 1st 2005. After this we will look at the stability of the optimal
parameter sets we find.

6.1 Calibration

We will look at the calibration process for each asset price model in turn.
To calibrate the models we will use the data set of March 1st 2005. This
data set contains the asset price and the bid and ask spreads of 5 American
call and put options as shown in Table 7.

S K V bid
call V ask

call V bid
put V ask

put

23.460

21.000 2.500 2.600 0.100 0.200
22.000 1.600 1.700 0.300 0.350
23.000 0.850 0.900 0.600 0.700
24.000 0.300 0.400 1.250 1.300
25.000 0.100 0.150 2.050 2.150

Table 7: Data set of March 1st 2005

This number of options translates in a log(ǫ0) = 1.1512.
Since we know the height of the dividend payment (e 0.58) we would

expect to find this value reflected in our calibrated model.
We will first examine the Black-Scholes driven model, then Variance

Gamma and finally CGMY. Since each subsequent model has more param-
eters than the last, we would expect the errors to get smaller.

6.2 Black-Scholes

To examine our calibration method we will first use the Black-Scholes driven
model. Since we have no extra information we will first use very broad ranges
for the variables (θ ∈ [0.00, 0.50] and δ ∈ [0.00, 0.20] to see how the method
responds.
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Solution log(error) Num. points

(0.1470,0.0243) 1.1511 144

(0.1470,0.0203) 1.5733 55

(0.1470,0.0250) 1.1523 222

(0.1529,0.0203) 1.4369 146

(0.1509,0.0235) 1.1549 57

(0.1470,0.0250) 1.1523 164

(0.1490,0.0243) 1.1348 238

(0.1431,0.0235) 1.3442 70

(0.1490,0.0243) 1.1348 224

(0.1509,0.0235) 1.1549 157

(0.1431,0.0235) 1.3442 109

(0.1549,0.0211) 1.3489 71

(0.1509,0.0211) 1.3637 154

(0.1490,0.0258) 1.2248 195

(0.1490,0.0258) 1.2248 181

(0.1568,0.0219) 1.3396 171

(0.1450,0.0235) 1.2600 76

(0.1529,0.0219) 1.2632 65

(0.1529,0.0227) 1.2090 83

(0.1549,0.0219) 1.2877 184

Table 8: Calibration using BS with θ ∈ [0.00, 0.50] and δ ∈ [0.00, 0.20]

As we can see in Table 8, the optima found lie in the same region, but
the results still vary alot and there are only a couple of solutions with a
log(error) smaller than log(ǫ0).

To gain more precise results we use the same method to investigate a
smaller region, θ ∈ [0.10, 0.20] and δ ∈ [0.015, 0.030].

As we can see in Table 9 using this more reasonable search region im-
mediately results in stable solutions. However, though the optimal solution
has an error smaller than ǫ0, it is still close to it, indicating that this model
is not flexible enough to capture the curves of the call and the put prices
with only these two parameters.

The optimal point for the Black-Scholes driven model is (0.1490, 0.0242),
corresponding to an estimated dividend payment of e 0.572. In Figure 8 we
show the prices for American options with various strike prices and add the
bid and ask prices as dots to give an impression of the fit.

A common approach to get better results with Black-Scholes is to use
different values of θ for different strikes. This would estimate the so-called
volatility smile.

In an attempt to get a better fit with Black-Scholes, we tried to use
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Solution log(error) Num. points

(0.1490,0.0242) 1.1348 54

(0.1486,0.0243) 1.1348 54

(0.1490,0.0242) 1.1347 53

(0.1490,0.0242) 1.1348 53

(0.1490,0.0242) 1.1348 53

(0.1486,0.0243) 1.1348 54

(0.1490,0.0243) 1.1348 54

(0.1486,0.0242) 1.1350 53

(0.1490,0.0243) 1.1348 53

(0.1490,0.0242) 1.1347 54

(0.1486,0.0242) 1.1350 53

(0.1486,0.0244) 1.1349 53

(0.1490,0.0242) 1.1347 53

(0.1490,0.0242) 1.1348 55

(0.1486,0.0242) 1.1355 53

(0.1490,0.0242) 1.1348 54

(0.1486,0.0244) 1.1349 52

(0.1486,0.0242) 1.1355 53

(0.1490,0.0244) 1.1352 53

(0.1490,0.0242) 1.1347 54

Table 9: Calibration using BS with θ ∈ [0.10, 0.20] and δ ∈ [0.015, 0.030]

different values of θ for each of the strike prices for both call and put option
and one value for δ. Unfortunately this did not improve the fit much as an
improvement of the value of the call option made the fit for the put option
worse and the other way around.
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Figure 8: Predicted option values for various strikes for Black-Scholes
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6.3 Variance Gamma

As we have seen in the Black-Scholes driven model, it is important to have
a good initial parameter range to get stable results from the calibration
method. Since the Variance Gamma driven model has two more parameters
(and therefore a much bigger search space) this is even more important here.

Since two of the variables in the Variance Gamma driven model have a
link with the Black-Scholes driven model (θ2 and δ), we will use those ranges
from the Black-Scholes model.

Our initial search space will be (θ1, θ2, θ3, δ) ∈ [−0.50, 0.00]×[0.10, 0.20]×
[0.01, 0.20] × [0.015, 0.030].

Solution log(error) Num. points

(-0.1098,0.1521,0.1277,0.0249) 0.4346 86

(-0.1058,0.1521,0.1538,0.0252) 0.3587 441

(-0.1098,0.1501,0.1269,0.0257) 0.4309 441

(-0.1137,0.1509,0.1240,0.0253) 0.4270 441

(-0.1764,0.1380,0.1105,0.0269) 0.5134 73

(-0.3274,0.1380,0.0353,0.0255) 0.6396 96

(-0.1843,0.1384,0.1143,0.0271) 0.4550 441

(-0.1078,0.1509,0.1508,0.0254) 0.3531 441

(-0.1098,0.1517,0.1508,0.0255) 0.3601 441

(-0.2058,0.1447,0.0792,0.0244) 0.4901 86

(-0.1117,0.1505,0.1374,0.0257) 0.3982 441

(-0.1058,0.1529,0.1813,0.0252) 0.3257 441

(-0.1098,0.1509,0.1396,0.0256) 0.3828 441

(-0.1098,0.1525,0.1590,0.0253) 0.3549 441

(-0.1098,0.1509,0.1366,0.0254) 0.3850 419

(-0.1058,0.1521,0.1642,0.0253) 0.3325 441

(-0.1098,0.1509,0.1389,0.0257) 0.3881 441

(-0.1058,0.1533,0.1828,0.0248) 0.4020 114

(-0.1098,0.1509,0.1314,0.0254) 0.4013 441

(-0.1098,0.1509,0.1389,0.0255) 0.3805 441

Table 10: Calibration using VG with (θ1, θ2, θ3, δ) ∈ [−0.50, 0.00] ×
[0.10, 0.20] × [0.01, 0.20] × [0.015, 0.030]

As we can see in Table 10 the errors here are a lot smaller than in the
Black-Scholes driven model. θ2 and δ are reasonably stable. Most solutions
have θ1 around −0.11 and θ3 around 0.15, though there are some solutions
with a larger θ1 and a smaller θ3 but these solutions have a larger error.

To get more stable results we shrink our search space to (θ1, θ2, θ3, δ) ∈
[−0.15,−0.10] × [0.12, 0.17] × [0.12, 0.18] × [0.024, 0.026]

In Table 11 all the parameters are stable except θ3 which varies between
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Solution log(error) Num. points

(-0.1072,0.1519,0.1665,0.0254) 0.3227 441

(-0.1070,0.1521,0.1760,0.0253) 0.3147 441

(-0.1072,0.1521,0.1682,0.0253) 0.3197 441

(-0.1068,0.1521,0.1764,0.0254) 0.3142 441

(-0.1072,0.1521,0.1734,0.0254) 0.3155 441

(-0.1080,0.1517,0.1609,0.0254) 0.3287 441

(-0.1068,0.1523,0.1755,0.0253) 0.3151 441

(-0.1076,0.1517,0.1776,0.0257) 0.3292 441

(-0.1072,0.1519,0.1694,0.0254) 0.3185 441

(-0.1066,0.1521,0.1755,0.0254) 0.3148 441

(-0.1068,0.1521,0.1760,0.0254) 0.3147 441

(-0.1068,0.1521,0.1790,0.0254) 0.3142 441

(-0.1066,0.1521,0.1727,0.0254) 0.3166 441

(-0.1070,0.1521,0.1750,0.0254) 0.3146 441

(-0.1078,0.1519,0.1590,0.0254) 0.3299 441

(-0.1068,0.1523,0.1792,0.0253) 0.3143 441

(-0.1068,0.1523,0.1778,0.0254) 0.3141 441

(-0.1068,0.1521,0.1727,0.0254) 0.3160 441

(-0.1068,0.1521,0.1778,0.0254) 0.3141 441

(-0.1070,0.1523,0.1781,0.0254) 0.3142 441

Table 11: Calibration using VG with (θ1, θ2, θ3, δ) ∈ [−0.15,−0.10] ×
[0.12, 0.17] × [0.12, 0.18] × [0.024, 0.026]

0.1590 and 0.1790 but all those solutions give approximately the same error.
Unfortunately the method has broken off before convergence has been

reached according to stopping criterion (23). To get some idea of how the
method converges to the values in Table 11 we plot the running minimum
and the value of the evaluated points in Figure 9 for all 20 runs.

We can see clearly the effect of adding some points by Maximum Vari-
ance Distance (which occurs after 400 points). There is a clear drop in the
minimum errors of the evaluated points.

The optimal point found for the Variance Gamma driven model is (−0.1068,
0.1521, 0.1778, 0.0254). This corresponds to an estimated dividend payment
of e 0.598. Using these parameters we can calculate the values of American
options for a range of strikes. This is shown in Figure 10 where the bid and
ask prices are added as dots to give an impression of the fit.
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Figure 9: Analysis of the sample paths for VG
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Figure 10: Predicted option values for various strikes for Variance Gamma
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6.4 CGMY

To choose a search region for the CGMY driven model we use the solution
from the Variance Gamma driven model. The CGMY model is the same
as the Variance Gamma model for θ1 = 1

θ̃3
, θ2 = 1

r

θ̃2
1

θ̃2
3

4
+

θ̃2
2

θ̃3
2

− θ̃1 θ̃3
2

, θ3 =

1
r

θ̃2
1

θ̃2
3

4
+

θ̃2
2

θ̃3
2

+
θ̃1 θ̃3

2

and θ4 = 0, where the θ̃s are the parameters from the

Variance Gamma model (for more details see [4]).
Using this method we choose are initial search region as (θ1, θ2, θ3, θ4, δ) ∈

[5, 10] × [10, 30] × [20, 40] × [−0.50, 0.50], [0.015, 0.030].

Solution log(error) Num. points

(8.0196,14.8627,24.1568,-0.3039,0.0287) 0.6380 441

(6.5294,24.9803,39.4509, 0.1745,0.0247) 0.4769 441

(7.9803,18.3921,27.7647,-0.1235,0.0255) 0.3182 441

(5.4117,21.5294,39.4509, 0.1588,0.0267) 0.4836 441

(6.9411,21.4509,38.4313, 0.0764,0.0271) 0.4681 441

(6.8823,22.5490,33.0980, 0.0803,0.0262) 0.5403 441

(5.8627,14.7058,23.2941,-0.1509,0.0251) 0.5497 441

(5.5686,21.8431,36.3137, 0.1588,0.0253) 0.4572 441

(9.1764,16.2745,25.8039,-0.2921,0.0285) 0.5779 441

(7.3137,18.5490,27.9215,-0.0882,0.0254) 0.3222 441

(6.5294,16.9803,32.1568,-0.0882,0.0271) 0.7339 441

(7.6470,17.5294,26.7450,-0.1352,0.0252) 0.3491 332

(5.3725,19.3333,29.3333, 0.0843,0.0251) 0.3992 295

(8.3921,23.6470,35.2156,-0.0254,0.0252) 0.6032 441

(9.7058,23.2549,34.3529,-0.0529,0.0248) 0.6134 441

(9.0980,21.3725,30.5098,-0.0843,0.0253) 0.3882 441

(6.0196,21.1372,31.1372, 0.0921,0.0252) 0.4073 441

(8.5294,15.5686,24.3137,-0.2568,0.0256) 0.5969 441

(6.3137,20.9019,36.7058, 0.0882,0.0270) 0.4684 441

(5.7450,24.8235,35.8431, 0.1980,0.0239) 0.6397 441

Table 12: Calibration using CGMY with (θ1, θ2, θ3, θ4, δ) ∈ [5, 10]×[10, 30]×
[20, 40] × [−0.50, 0.50] × [0.015, 0.030]

As we can see in Table 12, the solutions are very unstable. All solutions
are much smaller than ǫ0, but they are all larger than the minimal error we
got for Variance Gamma.

Using the solutions with the smallest errors (log(error) < 0.41), we
shrink our search region to (θ1, θ2, θ3, θ4, δ) ∈ [5, 10] × [19, 22] × [26, 32] ×
[−0.15, 0.10] × [0.025, 0.026].

The results in Table 13 show a big improvement in the errors. They are
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Solution log(error) Num. points

(9.4705,20.6000,29.8117,-0.1156,0.0252) 0.3301 441

(8.3137,19.3176,28.7058,-0.1107,0.0256) 0.3200 441

(8.8823,19.5411,28.8470,-0.1254,0.0257) 0.3177 441

(8.8235,19.4823,28.5411,-0.1254,0.0251) 0.3079 441

(5.9803,19.1764,28.5176,-0.0294,0.0254) 0.3257 441

(9.1568,19.1647,28.4705,-0.1490,0.0258) 0.3124 441

(8.4705,19.0823,28.2117,-0.1235,0.0252) 0.2910 441

(8.9607,19.1058,28.3764,-0.1431,0.0255) 0.3062 441

(9.5686,20.0470,29.3176,-0.1352,0.0254) 0.3012 441

(9.2549,19.2941,28.5411,-0.1470,0.0255) 0.2985 441

(8.9019,19.5294,28.7294,-0.1274,0.0254) 0.2941 441

(8.6862,19.2117,28.4941,-0.1284,0.0254) 0.2956 441

(8.6862,19.3411,28.6588,-0.1254,0.0257) 0.3155 441

(8.2352,19.2823,28.3058,-0.1078,0.0251) 0.3174 441

(9.5294,20.8235,30.3529,-0.1107,0.0255) 0.3499 441

(8.2549,20.0470,29.3647,-0.0862,0.0254) 0.3242 441

(8.8039,19.0705,28.2588,-0.1372,0.0254) 0.2856 441

(8.7254,19.1529,28.3764,-0.1303,0.0254) 0.2955 441

(8.2156,19.2588,28.4235,-0.1058,0.0251) 0.3263 441

(9.4901,19.2823,28.4235,-0.1500,0.0252) 0.3497 441

Table 13: Calibration using CGMY with (θ1, θ2, θ3, θ4, δ) ∈ [5, 10]×[19, 22]×
[26, 32] × [−0.15, 0.10] × [0.025, 0.026]

now almost all below the level of Variance Gamma. However, the method
still produces a lot of different solutions with approximately the same error.

In an attempt to improve the results we will shrink the search space
even more to (θ1, θ2, θ3, θ4, δ) ∈ [8, 10]× [19, 21] × [28, 30] × [−0.14,−0.10] ×
[0.025, 0.026].

This last reduction of the search space gives results which are on aver-
age a bit better than the last step. The method does not yield one stable
minimum, there is still a lot of variance in the parameters.

To analyze why the method breaks off we show the running minimum
and the errors of the evaluated points for these 20 runs in Figure 11.

The effect of adding the last 40 points by Maximum Variance Distance is
less clear here than in the case of the Variance Gamma driven model. This
is probably an indication the method is further from convergence here.

The optimal point found by the method is (8.7764, 19.0235, 28.2196,
−0.1381, 0.0253). This corresponds to an estimated dividend of e 0.597. By
calculating the prices of American options for a range of strikes and showing
these in a plot with the bid and ask prices from the market data we can give
an impression of the fit in Figure 12.
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Solution log(error) Num. points

(8.7921,19.3372,28.5647,-0.1280,0.0254) 0.2930 441

(8.9411,19.3921,28.6039,-0.1326,0.0253) 0.2873 441

(8.2901,19.3764,28.6666,-0.1065,0.0254) 0.3086 441

(8.5960,19.4000,28.5647,-0.1194,0.0253) 0.2957 441

(8.1882,19.0705,28.2901,-0.1123,0.0254) 0.2944 441

(8.8313,19.3294,28.5019,-0.1298,0.0254) 0.2872 441

(9.4039,20.1529,29.3411,-0.1261,0.0254) 0.3095 441

(8.9333,20.1294,29.3803,-0.1101,0.0254) 0.3151 441

(8.4000,19.1254,28.3372,-0.1191,0.0254) 0.3026 441

(8.3450,19.1411,28.3137,-0.1160,0.0254) 0.2919 441

(8.0862,19.1882,28.2196,-0.1037,0.0252) 0.3125 441

(8.5411,19.3294,28.6745,-0.1192,0.0254) 0.3044 441

(8.9019,19.1882,28.1647,-0.1362,0.0251) 0.3021 441

(8.7764,19.0235,28.2196,-0.1381,0.0253) 0.2823 441

(8.6823,19.2274,28.4000,-0.1277,0.0253) 0.2869 441

(8.1647,19.2509,28.4156,-0.1067,0.0252) 0.3020 441

(8.9254,19.3450,28.4313,-0.1340,0.0251) 0.3000 441

(9.4745,19.9254,29.2392,-0.1365,0.0254) 0.3009 441

(9.0588,19.4235,28.5803,-0.1371,0.0252) 0.2976 441

(9.2313,19.5333,28.6901,-0.1400,0.0253) 0.2869 441

Table 14: Calibration using CGMY with (θ1, θ2, θ3, θ4, δ) ∈ [8, 10]×[19, 21]×
[28, 30] × [−0.14,−0.10] × [0.025, 0.026]
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Figure 11: Analysis of the sample paths for CGMY
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Figure 12: Predicted option values for various strikes for CGMY
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6.5 Stability

In this section we will look at the stability of the solution we find. First
we will look at how long the fit we found for the data of March 1st will
remain a good fit for the data sets of the following days. After that we will
calculate the optimal fit for the data set of March 8th and look at how much
the parameters have changed.

6.5.1 Stability of the fit

In order to check how long the solutions we found stay valid, we check them
against other data sets for put and call options for ING which expire at the
end of May 2005.

Date log(ǫ0) BS VG CGMY

01 03 05 1.1512 1.1347 0.3141 0.2823

02 03 05 1.1512 1.0554 0.3899 0.4841

03 03 05 1.1512 1.3206 0.2837 0.3630

04 03 05 1.1512 1.0605 0.6307 0.6641

07 03 05 1.1512 0.9544 0.8894 0.8996

08 03 05 1.2424 0.9008 0.5367 0.6612

09 03 05 1.2424 0.8750 1.2374 1.3195

10 03 05 1.2424 1.1517 1.2027 1.2629

11 03 05 1.2424 1.0664 0.9049 0.9445

16 03 05 1.2424 1.0834 0.8755 0.8853

17 03 05 1.2424 0.7546 1.5338 1.6165

18 03 05 1.2424 1.1106 1.0400 1.1938

21 03 05 1.2424 0.8915 1.3442 1.4808

22 03 05 1.2424 1.2547 1.2143 1.3129

23 03 05 1.2424 1.1876 1.1353 1.2452

24 03 05 1.2424 1.0228 1.4987 1.5686

25 03 05 1.2424 1.0387 1.6925 1.7806

28 03 05 1.2424 0.9370 1.5552 1.6963

29 03 05 1.2424 0.9555 1.3155 1.4233

30 03 05 1.2424 1.3745 1.6634 1.7599

31 03 05 1.2424 1.0706 1.5211 1.6456

Table 15: Stability over time

From Table 15 we can see that the fits we have found from the data of
March 1st 2005 continues to give a good fit for one week and a reasonable fit
for two weeks for Variance Gamma and CGMY. After that the fit becomes
worse.

Surprisingly, while the fit of the Black-Scholes driven model is nowhere
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really good, it declines less than the Variance Gamma and CGMY driven
models.

6.5.2 Stability of the parameters

To check how much the parameters change over time, we calibrate Variance
Gamma and the CGMY driven model to the data set of March 8th 2005 for
American call and put options on the ING stock which expire at the end of
May 2005. The value of the asset is e 23.730.

Using the same multi-level approach we start the search in the Vari-
ance Gamma driven model for (θ1, θ2, θ3, δ) ∈ [−0.50, 0.00] × [0.10, 0.20] ×
[0.01, 0.20]×[0.015, 0.030]. This results in a range of log(error) from −0.0904
to 0.3249. Shrinking the ranges to [−0.20,−0.15]×[0.14, 0.16]×[0.08, 0.10]×
[0.024, 0.025] results in solutions which all lie closely around (−0.1762, 0.1472,
0.0841, 0.0246) with a log(error) of −0.0939. This gives an estimated divi-
dend payment of e 0.586.

Compared to the optimal solution for the data from March 1st (−0.1068,
0.1521, 0.1778, 0.0254) we can see that only the second and the last param-
eter have stayed approximately the same.

For CGMY we start out with the search region (θ1, θ2, θ3, θ4, δ) ∈ [10, 15]×
[10, 30] × [20, 40] × [0.015, 0.030]. This results in log(error) values ranging
from −0.0860 to 0.4595. Zooming in on the best solution we examine the
search space [9, 11]× [23.5, 25.5]× [38, 40]× [0.00, 0.05]× [0.024, 0.026]. This
region yields a reasonably stable set of solutions around the optimal set of
(9.8078, 24.1231, 39.1607, 0.0476, 0.0246) with a log(error) of −0.0973. This
also gives an estimated dividend payment of e 0.586.

Compared to the optimal set of March 1st (8.7764, 19.0235, 28.2196,
−0.1381, 0.0253) we can see that only the first and the last parameter stay
relatively close to the former solution. Most notable is the change of sign
of parameter θ4 which changes the characterization of the CGMY process
from finite activity for −1 < θ4 < 0 to infinite activity with finite variation
for 0 < θ4 < 1 (see [4]).
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7 Conclusions

In this section we will discuss our experiences with the Kriging model in gen-
eral, the different models and conclude with some thoughts on the estimated
dividends.

7.1 Kriging

While Kriging seems to be a good method to find a minimum of an arbi-
trary function, it takes a large amount of time to determine which points to
sample. This is mainly due to the many matrix multiplications (see (17 and
18)) needed in the genetic algorithm in the search for the next point to add.
While there are few sample points this process is reasonably fast, but once
there are a couple of hundred sample points the thousands of multiplications
need a significant amount of time, and this increase is quadratic.

This increase in time forces us to limit the number of sample points
after which we will break off the algorithm. In order to get good results, we
have to make sure the initial Kriging approximation surface is reasonably
close to the real surface. If the initial sample points do not give a good
impression of the surface, the weights in the Kriging model will be off. This
will in turn cause the model to have a bad guess at uncertainty between
the sample points. If this uncertainty is too low, the model will stop the
convergence too soon, maybe before the true optimum is found. If it is too
high, the model will search too much in areas with few sample points instead
of zooming in on the area where the points with low errors lie.

This first behavior can be seen in Table 8 where the Black-Scholes driven
model is calibrated using a large range. The model considers itself converged
on points near the optimum, but it does not converge to the optimum com-
pletely in most cases.

Finding a good initial guess for the parameter ranges is clearly very
important. Using a multi-step approach to this problem works well enough,
but is not time efficient.

7.2 Models

The Black-Scholes driven model is easy to calibrate since the space to be
searched is small due to the small number of parameters. Unfortunately,
the model does not fit the market data well enough.

The Variance Gamma driven model performs far better. If we use the
multi-step approach we get good fits when we use one shrinking step to zoom
in on the optimum of the first step.

The CGMY driven model also gives us good fits, even a little better than
the Variance Gamma fits, but it is much harder to get consistent results. The
initial sample points do not give a good enough fit when we use parameter
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ranges that are too broad and the convergence is too slow to get good optima
before the search is cut off. To get the results we did, we had to start out from
a reasonable approximation using the Variance Gamma results. Though the
fits we got were a bit better than the Variance Gamma fits, they showed
comparable results over time.

The Variance Gamma driven model is the only model with good enough
fits to be reliable and with few enough parameters to converge within the
limits of our method if we use a multi-step approach.

7.3 Estimated dividend

If we look at the estimated dividends from the models, the predictions are
close to, but not exactly on the mark. The thing to consider here is that
the optimal solutions we found are not the best and only solutions to our
problem. Every solution that produces option values between the bid and
ask prices are equally valid, even though our error function gives preference
to values closer to the mid-market price.

For instance, when we look at the values in the first step of the Variance
Gamma driven model for the data set of March 1st (Table 10) we see that
all these solutions will lie between the bid and ask prices, but have values
of δ ranging from 0.0244 to 0.0271. This translates to range of estimated
dividends from e 0.574 to e 0.638. This indicates that the bid-ask spread
leaves too much room to estimate the dividend payment from just one data
set.
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