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1. Introduction

Multidimensional PDE have application in a variety of applied sciences. Mentioning a few would include fi-
nancial engineering [10,19], quantum mechanics [2,20] and molecular life-sciences [6]. In the context of their
numerical approximation there are two main limiting factors on computing speed; one is the phenomenon
of temporal-march of successive solutions and the other is the high-spatial-dimensionality of the problem
which renders an exponential computational complexity on regular tensor product grids. Tradionally, this
exponential growth in the number of discrete unknowns is known as the curse of dimensionality [1], and it
has continually elluded and marred solution techniques. The sparse-grid solution method [4,8,21] relieves
this so-called curse to some extent; it is based on discretizing the problem on many grids, each with lesser
number of nodes (sparse grids), solving these subproblems, and then combining the solutions to obtain a
mimic of the solution on the original dense grid. Different combination techniques can be employed; we
use the technique proposed in [8].

Efficiency of the sparse grid solution method, depends on the efficient solution of the underlying sub-
problems, each of which has the same spatial dimensionality as the original problem and which therefore
requires an efficient and robust solution approach. The method that we develop and implement in this
work, is d-multigrid preconditioned Bi-CGSTAB. In what follows d-multigrid refers to multigrid for an
arbitrary number of space dimensions, which in turn is abbreviated by the letter d.

Bi-CGSTAB [17] is a well known iterative solver. It is generally accepted that all iterative solvers based
on Krylov subspaces require preconditioning for faster convergence. Preconditioning is a process aimed
at clustering the scattered eigenvalues of the coefficient matrix. It is important to point out that the
performance of stand-alone multigrid is dependent significantly on the choice of optimal parameters and
components, especially for high-dimensional problems; this is not quite the case when multigrid is used
as a preconditioner. By choosing multigrid as a preconditioner we do not need to search for the ideal
underrelaxation, which is grid-anisotropy dependent, for example, but we can stay with a fixed parameter.
Important theoretical and experimental insights into multigrid preconditioning of Krylov subspace solvers
can be had from earlier work in this context [7, 12,18].

In Section 2 we point out that the Black-Scholes multi-asset option-pricing PDE can be reduced to a
standard d-dimensional diffusion equation, which underscores the need of an efficient solver for discrete
diffusion systems. Moreover, we give the discretization of the continuous model problem with second order
finite differences along with implementation in d-dimensions through Kronecker-tensor products. Next, in
Section 3 we present the sparse grid technique along with the computation of accuracy bounds. Section
4 deals with the preconditioner and its components which include point smoothing and grid transfer
strategies. These strategies are based on the idea of repeated partial coarsening in the direction(s) of
strong coupling. In Section 5 we present experimental results based on the full-grid solution method. This
includes results for d-multigrid employed both as a stand-alone solver as well as a preconditioner. Section
6 contains results from numerical experiments (on the model problem) based on the sparse grid technique
with d-multigrid preconditioned Bi-CGSTAB. There we demonstrate in tables and figures the results that
we get; and finally, in Section 7 we solve the same transformed Black-Scholes PDE of Section 2, exhibiting
the convergence of the proposed method in a real application. We draw some conclusions from this work
in Section 8.

2. The Application, Model Problem and Discretization

The multi-asset Black-Scholes option pricing (parabolic) PDE [10] is defined as:

∂V

∂t
+

1

2

d
∑

i=1

d
∑

j=1

ρijσiσjSiSj
∂2V

∂Si∂Sj
+

d
∑

i=1

(r − δi) Si
∂V

∂Si
− rV = 0, (1)

(0 < S1, ..., Sd < ∞, 0 6 t < T ).
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V stands for the option price; Si are the d underlying asset-prices; t, the current time; ρij , the correlation
coefficients between the ith and the jth asset-prices; σi, the volatility of the ith asset-price; r, the risk
free interest-rate and δi the continuous dividend yield for asset i. It is known [10, 19] that a simple log
transform can convert (1) into the following d-dimensional diffusion equation:

∂V

∂τ
=

1

2

d
∑

i=1

∂2V

∂xi
2
, −∞ < xi < ∞, 0 < τ 6 T, (2)

Thus we choose the d-dimensional diffusion equation, with initial conditions and Dirichlet boundary con-
ditions, to serve as our model problem.

In what follows x is a d-tuple x = (x1, x2, · · · , xd). For {ai, bi, ci, τ1, τ2} ∈ R and ci > 0 the model
problem reads:

∂

∂t
u(x, t) =

d
∑

i=1

ci
∂2

∂xi
2
u(x, t); x ∈

(

Ω =

d
∏

i=1

[ai, bi]

)

⊂ R
d; t ∈ [τ1, τ2]; (3)

u(x, t) = fΓ(x, t); x ∈ Γ = ∂Ω; xi ∈ {ai, bi}.

The spatial discretization of the model problem (3) is O(Σd
i=1(h

2
i )) finite difference (2d + 1) stencil, hi is

the mesh size along the ith space dimension. We chose the implicit (second order) Crank-Nicolson time
stepping scheme for the temporal discretization. For k being the size of the time-step with d = 2 this yields
the following iterative representation in stencil notation:
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uh,k(x1, x2, t)

(4)

We have Dirichlet boundary conditions prescribed at all boundaries of the spatial hyper domain. Inclusion
of the boundary grid coordinates in the grid-point enumeration scheme (the non-eliminated boundary
scheme) results in M grid points. The spatial discretization grid is given by N = [N1,N2, · · · ,Nd], Ni

represents the number of divisions along the ith dimension, and the total number of points in the (finest)

grid is M =
∏d

i=1(Ni + 1). We represent the index of a grid-point by a d-tuple (jd, j(d−1), · · · , j1), which
is the d-dimensional extension of the 2 dimensional lexicographic enumeration scheme. Written in terms
of matrix operators, the d-dimensional representation of (4) is:

(Lh + Dk)uh,k(x, t + k) = (−Lh + Dk)uh,k(x, t) (5)

The matrix-operators have the order (M×M). Dk is a diagonal matrix containing 1
k on the main diagonal,

and Lh is the iteration matrix obtained in the following way:

Lh = Xh + Bh (6)

Xh =

d
∑

i=1

{

d−1
⊗

j=i

I(d+i−j) ⊗ Xi ⊗
i−1
⊗

j=1

I(i−j)

}

(7)

The operator Lh is the spatial operator consisting of the interior point operator Xh and the boundary

point operator Bh. Xi is the difference operator matrix (of order Ni + 1) obtained by substituting 0 for
the boundary grid-points and applying the following Crank-Nicolson difference stencil to all the interior
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grid-points along the ith dimension:

ci

h2
i

[−1

2
1 − 1

2
] (8)

Ii is a diagonal matrix of order (Ni +1) containing 1 on the main diagonal, except at the first and the last
positions (boundary positions) where it is 0.

Finally, we represent the Crank Nicolson iteration matrix as A = Lh + Dk. Different grid realizations
of this matrix are used at every grid level during the multigrid process. Kronecker-tensor-products are
employed in this work for defining the d-dimensional operators. They are non-commutative and associative
operations (see [14]). In the formulae presented above ⊗ is the Kronecker-tensor-product of matrices
and

⊗

is the cumulative Kronecker-tensor-product in the same sense as the cumulative sum Σ, or the
cumulative product Π. The commutative order is determined by the subscripts and the associative hierarchy
is immaterial. This completes the discussion of the discretization issues that arise from the arbitrary spatial
dimensionality of the model problem.

3. The Sparse Grid Method

Consider the task of the numerical approximation of a parabolic d-dimensional problem discretized with
N = 2n points per spatial coordinate and m time steps. The grid thus formed is termed as a full-grid and
a full-grid based solution process involves (at the minimal), vectors of the size 2n.d. For 6 space dimensions
and only 32 divisions along each axis, the storage cost is around 9 gigabytes per vector, and grows worse
for increasing d. The sparse grid approach, developed by Zenger and co-workers [4,21] is a technique that
splits the full grid problem of Nd points up into layers of subgrids. Each sub-grid represents a coarsening
in several coordinates up to a minimal required number of points. In the so-called sparse grid combination

technique, the partial solutions that are computed on these grids, are combined a-posteriori by interpolation
to a certain point or region.

Definition 3.1 A multi-index Id belonging to a d−dimensional grid is a collection of numbers ni, i =
1, . . . , d, which represents a d-dimensional grid with Ni grid points in coordinate i, with Ni = 2ni . The
sum of a multi-index |Id| is defined by:

|Id| =

d
∑

i=1

ni (9)

According to Definition 3.1 the multi-index Id of a full grid with N = 2n points per coordinate reads
Id = {n, n, . . . , n}, with |Id| being the layer number.

The full grid solution will be denoted by uf
n; the sparse grid solution after the combination will be

denoted by uc
n and the exact solution by uE . Now, we can define [8]

Definition 3.2 The combined sparse grid solution uc
n corresponding to a full grid solution uf

n reads

uc
n =

n+d−1
∑

k=n

(−1)k+1

(

d − 1
k − n

)

∑

|Id|=k

uf
Id

, (10)

with uf
Id

being the solution of the problem on a grid with multi-index Id such that |Id| equals k. For
sufficiently smooth functions, the sparse grid solution (for most practical purposes) can be used instead
of the full grid solution. For a simple 2 dimensional case, the subgrids (as constructed by the sparse-grid
scheme) are depicted in Figure 1, Diagrams (a) - (g). Note that the shape of the stretch in all these grids
is different, which implies that in each of these subproblems we have a different grid induced anisotropy.
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Figure 1. Construction of a 2D sparse grid; (a)–(d): grids on layer 5, (e)–(g): grids on layer 4; (h) combined sparse grid solution

If the subgrids are simply combined without any interpolation, which means that all the evaluated points
in every sub-grid are added with the binomial coefficients (10).

The number of points in the full grid with ni = n reads Nf = (2n)d.
From equation (10) it follows that the number of problems to be solved in the sparse grid technique

reads

Zn,d =

n+d−1
∑

k=n

(

k − 1
d − 1

)

=
n

d

(

n + d − 1
d − 1

)

− n − d

d

(

n − 1
d − 1

)

(11)

Furthermore the number of points employed in a grid with |Id| = m reads

N|Id|=n = 2n. (12)

Combining (11) and (12) results in the total number of points employed in the sparse grid technique

N c
n =

n+d−1
∑

k=n

N|Id|=k

(

k − 1
d − 1

)

=
n+d−1
∑

k=n

(

k − 1
d − 1

)

2k (13)

It is known that the error of the discrete solution from a second order finite difference discretization of
the 2D Laplacian can be split [9] as

uf
n − uE = C1(x1, h1)h

2
1 + C1(x2, h2)h

2
2 + D(x1, h1, x2, h2)h

2
1h

2
2 (14)

With the combination technique as in Definition 3.2 and the splitting in (14), the dimension-dependent
absolute error (for the Laplacian), reads, [5]:

ǫn = |uc
n − uE | = O(h2

n

(

log2 h−1
n

)d−1
), (15)
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4. The d-Multigrid Preconditioner

We employ multigrid as a preconditioner for Bi-CGSTAB due to the robustness that the resulting solver
possesses. In this section we explore the preconditioner and browse through its various components.
Coarse grid correction and error smoothing are two essential components of any multigrid algorithm.
For anisotropic PDE it is well known that full coarsening along with point smoothing does not work, as
it does not sufficiently smooth the errors that have to be approximated on the coarse grid. To address
anisotropy, the standard way in 2-dimensions is either to coarsen along only 1 dimension (the one where
error components are strongly coupled) or else to do a full coarsening but to resort to line-relaxation along
the strongly coupled dimension [16].

These techniques can be extended to arbitrary higher d. A relaxation method based on hyperplane

relaxation has been proposed in [13], which is analogous to line-relaxation in 2 dimensions. Contrary to
that approach, we proposed a method based on point smoothing and partial coarsening schemes in [3].
There we treat discrete anisotropies induced by non-equidistant grids. The proposal is to employ partial
coarsening so that coarsening only takes place along those directions that have a strong coupling. We
extend this technique to the general situation, where anisotropies may stem from two different sources,
viz; the mesh size and the presence of constant anisotropic coefficients in the continuous problem.

4.1. The Relaxation Method

Point-wise Red-Black Gauss-Seidel (GSRB) is a standard method used for relaxation in the context of
multigrid [15,16]. We employ this in our multigrid preconditioner due to its excellent smoothing properties
for elliptic equations. The first step in this process is the partitioning of the grid G into the red part (GR),
and the black part (GB). Once this partition has been obtained, GSRB for a d-dimensional setting is
no different from its 2-dimensional counterpart. Let the index set containing the grid-points in GR be
represented by IR and that containing the grid-points in GB be represented by IB. In the standard
literature [15,16], the term Red refers to odd and Black to even points. The distinction of even and odd
for a grid-point (jd, j(d−1), · · · , j1) is based on the following rule:

Even if: mod(

d
∑

i=1

ji, 2) = 0; Odd if: mod(

d
∑

i=1

ji, 2) = 1;

From an implementational aspect, it is more convenient to adjust this definition, fixing Red as the category
of the first unknown in the grid, which toggles between even and odd with the increase in d (for Dirichlet
type of boundaries). Thus, we assert that we carry out a Red-Black Gauss-Seidel for all d, even if from
the point of view of the above definition, we do an even− odd in 2-dimensions, odd− even in 3, and so on.

4.2. Coarsening Strategies to Handle Anisotropies

We use two grid coarsening strategies based on partial grid transfers to handle the anisotropies in the
discretized system. Anisotropies can appear in the discrete system either through the presence of constant
anisotropic coefficients in the continuous problem or due to unequal mesh sizes along different dimensions
of the domain. These causative factors lead to a single coefficient ǫi for each dimension, viz ǫi = ci

h2
i

with

hi = bi−ai

Ni
. See (3). Fourier Analysis suggests that all coefficients within a factor < ±1.3 of the maximum

coefficient) be considered equivalent for the purpose of partial doubling, i.e. the grid may be halved all
along such dimensions together. However, as we experiment both with doubling (h → 2h) as well as with
quadrupling (h → 4h) partial transfers; we would like to point out that for partial quadrupling the rule is
much more strict. There we pick the maximum coefficient and only do a quadrupling transfer along the
dimensions having a coefficient equal to this max. Whenever we require full coarsening, we always resort
to full doubling as full quadrupling hampers multigrid convergence.

The application problem under the sparse grid solution method gives -in particular- subproblems where
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anisotropies originate from the unequal mesh-sizes along the dimensions. For clarity, we illustrate both the
doubling and the quadrupling based coarsening strategies through the following simple example; where
the anisotropy is only grid-based.

Example: Suppose that the discretization grid for a certain 5 dimensional problem is N =
[ 128 4 16 16 64 ]. ci = c for i = {1, 2, · · · , d} and Ω = [a, b]d. Then the grid is coarsened in the fol-
lowing way;

Strategy 1, doubling (h → 2h) Strategy 2, quadrupling (h → 4h)
Ω6 = [ 128 4 16 16 64 ]
Ω5 = [ 64 4 16 16 64 ]
Ω4 = [ 32 4 16 16 32 ]
Ω3 = [ 16 4 16 16 16 ]
Ω2 = [ 8 4 8 8 8 ]
Ω1 = [ 4 4 4 4 4 ]
Ω0 = [ 2 2 2 2 2 ]

Ω4 = [ 128 4 16 16 64 ]
Ω3 = [ 64 4 16 16 64 ]
Ω2 = [ 16 4 16 16 16 ]
Ω1 = [ 4 4 4 4 4 ]
Ω0 = [ 2 2 2 2 2 ]

(16)

4.3. Coarse-grid Discretization

An important component in the coarse grid correction process is the choice of the coarse-grid operator
LH . We use the coarse-grid analog of the discrete operator on the fine-grid. Once the next coarser-grid is
decided we build the operator using the same scheme as in Section 2.

Another option is to use the Galerkin operator. Some especial transfer operators (in 1 and 2 dimensions)
can be employed to generate a relatively sparse Galerkin operator [15] but as of yet it is unknown how
this kind of transfer might be extended to abstract d-dimensions. A significant disadvantage of employing
the Galerkin operator (constructed with the usual transfer operators) is its being much more dense than
the coarse-grid analog of the fine-grid operator. This issue becomes more serious with increasing d.

4.4. The Transfer Operators

We employ the d-dimensional analogs of the Full-Weighting (FW) restriction operator and of the bilinear
interpolation operator in two dimensions for the intergrid transfers of the grid functions. In this section
we present a tensor formulation to generate the restriction and prolongation operator matrices. For com-
pleteness we first mention [16] that a 2d FW restriction operator is the Kronecker tensor product of the
following x1 and x2 directional 1-dimensional FW operators:

(I2h
h )x1

,
1

4

[

1 2 1
]

, (I2h
h )x2

,
1

4





1
2
1



 .

The following formula -based on Kronecker tensor products- gives a FW restriction operator matrix R

(for the non-eliminated boundary scheme). It unifies doubling and quadrupling transfers into the following
compact form:

R =
d
∏

i=1

(Ri)
ti , (17)

(Ri)
ti =

ti−1
∏

l=0

[

d−1
⊗

j=i

IN(d+i−j)
⊗ O[

Ni/2(ti−l−1)
] ⊗

i−1
⊗

j=1

I[
N(i−j)/2t(i−j)

]

]

.

We now define the quantities involved in (17) for the dummy subscript a. Ia is a diagonal matrix of order
(a + 1) × (a + 1). The diagonal entry is 1, except at the first and the last positions where it is 0. Oa is
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the 1d FW restriction operator matrix, order =
(

a
2 + 1

)

× (a + 1), obtained by applying the 1d transfer
stencil at the interior points and taking 0 at the boundaries. N = [N1,N2, · · · ,Nd], is the grid description.
T = [t1, t2, · · · , td] is the coarsening request, ti is the count of (h → 2h) transfers along the ith dimension.
We say that quadrupling takes place along the ith dimension if ti = 2. It is trivial to verify this formula
with a matrix manipulation software package. Once the FW restriction operator matrix in d-dimensions
is set, the prolongation (d-linear interpolation) operator matrix can be obtained by the following relation:

P = 2
Pd

i=1ti(RT ). (18)

RT is the transpose of the restriction operator matrix R. With this general transfer operator we can
experiment with different transfers based on doubling and quadrupling, depending on the anisotropy
of the discrete system. This FW restriction operator provides the required matrix for any number of
coarsenings along any number of dimensions for an abstract d-dimensional problem. The stage is all set
now to experiment with the preconditioner and check out its utility and efficiency.

5. Numerical Experiments Based on the Full-grid Solution Method

In this work full-grid solution refers to a solution on a regular tensor-product grid (where the sparse grid
technique is not used). As described in the previous section, we have quite a strong and robust multigrid
preconditioner. Before we actually use it in the sparse-grid setting, we would like to test its performance
as a stand-alone solver versus as a preconditioner for Bi-CGSTAB in a full-grid solution process.

5.1. d-Multigrid Performance in Stationary Cases

A useful numerical insight for time-marching solution processes (our ultimate aim in this work) comes
from an insight into the stationary process per time-step. Through the numerical solution of the PDE we
approximate the following test function:

u(x) =

∑d
i=1 sin(dπ2xi)

dπ +
∑d

i=1 xi

(19)

We have conducted a number of numerical experiments -isotropic and anisotropic- and have included
the convergence graphs for them. These graphs show the residual reduction against iteration and cputime
for d-multigrid used in these two contexts (solver and preconditioner). A word of caution while examining
these graphs is just in place. Multigrid is an O(M) solver (where M is the number of unknowns on the
finest grid) when optimal relaxation and ideal coarse grid correction are available. In such a situation
multigrid is extremely efficient. Some of the graphs here show a tough competition between multigrid as a
solver against multigrid as a Bi-CGSTAB preconditioner. This happens due to the fact that for the model-
problem the employed relaxation method and the coarse grid correction form near-optimal d-multigrid
attributes. Evidently, in any situation where tuning multigrid with optimal attributes is not a choice,
multigrid works better as a Krylov-preconditioner than as a stand-alone solver.

First of all, we check out d-multigrid performance for a 5-dimensional isotropic case, with 32 divisions
along all dimensions of the domain. The number of unknowns in the system is 39, 135, 393. In this case
the V(1,1) multigrid (multigrid method based on V cycles with 1 pre and 1 post smoothing steps) pre-
conditioned Bi-CGSTAB far out-performs the V(1,1) multigrid solver; Figure 2, (here we choose ω = 1
in ω-GSRB) Diagrams (a) and (b). However, with ωopt = 1.24 included in the game (a possibility for the
model problem) the comparison is not as bright; Figure 2 Diagrams (c) and (d). This confirms that no
great Krylov induced enhancement should be expected when multigrid (as a solver) approaches optimality.

Next we present some experiments based on problems with discrete anisotropies that result from dis-
cretization on a non-equidistant grid, i.e. a grid where the number of divisions is different along different
dimensions of the hyper domain. We have selected 3 high dimensional problems, each with a different
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Figure 2. Convergence diagram for a 5 dimensional isotropic problem, 32 divisions along each dimension.
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Figure 3. Convergence diagram for a 6 dimensional anisotropic problem, grid stretched along d/2 dimensions and given by
N = [32, 8, 32, 8, 32, 8]. # of unknowns is 26,198,073. Diagram (a) shows a comparison between multigrid as a solver and multigrid as a

preconditioner, on the iteration scale, Diagram(b) on the cputime scale.

discrete anisotropy. The problems have been chosen with the aim of harvesting experimental results for
grids highly stretched along 1 dimension as well as grids highly stretched along multiple dimensions. The
anisotropies are handled with the partial coarsening schemes as illustrated by the example in Section
4.2. The results appear in Figures 3, 4 and 5. Here, we find that the F(1,1) MG cycles are more suited
than V(1,1), both for the stand-alone multigrid solver as well as a preconditioner for Bi-CGSTAB, if the
coarsening strategy is based on doubling. Quadrupling suits the situation more when the grid is stretched
along only a few dimensions, (preferably < d/2) and when optimal relaxation parameters are available.
However, with quadrupling, V(2,2) and F(1,1) cycles seem to yield better results than V(1,1).

In [3] we pointed out that for grids stretched along a single dimension, a method based on partial
quadrupling as the coarsening strategy has an O(M) complexity even with W cycles; achieving this is
not possible with methods based on partial doubling along 1 dimension. This fact makes it a strategy of
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Figure 4. Convergence diagram for a 7 dimensional anisotropic problem, grid stretched along 1 dimension, and given by
N = [8, 8, 8, 64, 8, 8, 8], # of unknowns is 34,543,665.
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Figure 5. Convergence diagram for a 4 dimensional anisotropic problem, grid stretched along (d − 1) dimensions, and given by
N = [128, 128, 128, 8], # of unknowns is 19,320,201

choice for such grids, Figure 6. We have only chosen the cputime scale (for presenting results) because
with different transfer operators, the number of cycles are not comparable. Quadrupling -in contrast with
doubling- relies on optimal relaxation to quite some extent; in fact, the better the relaxation process
the shorter the cputime. This points us to the fact that if optimization in the relaxation process is an
impossibility we might be better off with doubling for all kinds of grid-based discrete anisotropies.

The multigrid convergence factors in all these experiments are quite low (around an average of 0.1),
implying that a full multigrid algorithm starting on the coarsest grid is expected to reach an approximate
solution up to the discretization accuracy in just one or two cycles.

6. Numerical Experiments Based on the Sparse-grid Solution

6.1. d-Multigrid as a Preconditioner in the Time-independent Case

As the solver works for every kind of grid that might arise within the sparse grid setting (as described in
section 4), the aim is now to reach a reasonable number of dimensions. The test function for the sparse
grid stationary experiment reads:

u(x) =

d
∏

i=1

ex2
i = exp

(

d
∑

i=1

x2
i

)

, (20)

with Ω = [0, 1]d, ci = 1. The approximation is done for 2 6 d 6 8 with a mimic of the grid with 1024
cells per coordinate. In a full grid setting the maximum problem would have a size of 10248 = 280, i.e., 253
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Figure 6. Convergence diagrams comparing d-multigrid based on doubling transfers against quadrupling transfers for V(2,2) -Diagram
(a)- and F(1,1) -Diagram(b)- multigrid cycles. This 5 dimensional problem is discretized on N = [8, 8, 2048, 8, 8], # of unknowns is

13,443,489.

GB of memory, which is - of course - immensely huge. The maximum size of an 8D problem in the sparse
grid setting chosen here is 1024 × 27 = 217, which is only 1 MB. The solution at the central point in the
domain xi = 0.5 is computed here. The results are described in detail for d = 2 and d = 8 in Table 1 and
the error and convergence for all values of d are plotted in Figure 7. In the table, the time indicated is the
total computational time for the sparse grid solution including the interpolation. The number of problems
#probl is as in equation (11) and the theoretical convergence Th.Conv from equation (15).

Table 1. Time-independent experiments of problem (20) using sparse grids. TOP: is the two-dimensional case. BOTTOM: eight dimensional

case. Column one gives nmax, the largest number of cells in one coordinate.

nmax Value Error Conv Time #probl Th. Conv
d=2

16 1.65 5.52 · 10−3 3.05 0.04 7 3.00
32 1.65 1.72 · 10−3 3.21 0.07 9 3.20
64 1.65 5.16 · 10−4 3.34 0.10 11 3.33
128 1.65 1.50 · 10−4 3.43 0.12 13 3.43
256 1.65 4.30 · 10−5 3.50 0.16 15 3.50
512 1.65 1.21 · 10−5 3.55 0.25 17 3.56
1024 1.65 3.36 · 10−6 3.60 0.33 19 3.60

d=8
16 7.63 2.43 · 10−1 1.50 18.51 165 0.53
32 7.54 1.48 · 10−1 1.64 111.07 495 0.84
64 7.47 8.33 · 10−2 1.77 578.55 1287 1.12
128 7.43 4.40 · 10−2 1.89 2404.47 3003 1.36
256 7.41 2.20 · 10−2 2.00 9067.30 6435 1.57
512 7.40 1.04 · 10−2 2.10 32925.66 12869 1.75
1024 7.39 4.76 · 10−3 2.19 106826.59 24301 1.91

The table and figures show the dependence of the number of dimensions in the convergence according
to the theoretical convergence ratio in equation (15). Although the theoretical convergence of the sparse
grid method is low when d is high at small numbers of nmax (the largest number of cells in one direction),
the convergence in this test experiment is reasonable. A possible reason may be the smoothness of the
analytic solution.

Table 2 presents a comparison of the total number of multigrid cycles when multigrid is employed both
as a solver as well as a preconditioner for Bi-CGSTAB for solving all sparse grid subproblems on a layer of
a d-dimensional problem, with d increasing. Presented are the maximum, the minimum and the average
numbers of iterations, as well as the total number of subproblems solved on which these numbers are
based. The stopping criterion is the residual being smaller than 10−14, which is severe but gives a good
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Figure 7. LEFT: Decay of the error |uc
n − uE |, with uE the exact solution (20). RIGHT: Convergence of the error in the left picture.

Table 2. Comparison of the total number of pure multigrid and multigrid preconditioned Bi-CGSTAB iterations (maximum, minimum and

average number), for all the subgrids on the finest layer of a d-dimensional problem, for increasing d, # grids is the number of subgrids solved

d Max Min Average # grids
Bi-CGSTAB with MG

2 12.0 4.0 9.400 10
3 14.0 6.0 10.691 55
4 14.0 6.0 10.982 220
5 16.0 6.0 10.999 715
6 16.0 6.0 10.928 2002
7 16.0 6.0 10.791 5005
8 14.0 6.0 10.488 11440

Max Min Average # grids
Pure Multigrid

13.0 5.0 10.000 10
20.0 6.0 12.436 55
21.0 7.0 13.155 220
24.0 8.0 13.221 715
22.0 8.0 13.185 2002
21.0 8.0 12.997 5005
20.0 8.0 12.762 11440

insight in the comparison. For both solvers we choose smoothing relaxation parameter ω = 1. We see that
the average number of multigrid cycles -when multigrid is used as a precondioner instead of being used as
a solver- does not reduce significantly for low values of d. However the cycle difference in the two usages
do become significant for higher d because then the total number of subproblems also increase binomially.
As the number of subproblems to be solved is more than 5000 for the 7D problem a gain in average of
about 2 multigrid iterations is still interesting.

The time for the highest level in the case d = 8 over 105 seconds which is 28 hours. However, the number
of subproblems is 24300, so the average computational time per grid is only 5 seconds. If the sparse grid
method is parallelized over 10 machines, the time would be 2.8 hours in total, because the sparse grid is
only a combination technique of subproblems. Parallelization is a future task in our project.

6.2. d-Multigrid as a Preconditioner in the Time-dependent Case

For the time-dependent case, we choose as the test problem solution,

u(x, t) = et
d
∏

i=1

e
xi
√

d = exp

(

t +
1√
d

d
∑

i=1

xi

)

, (21)

with Ω = [0, 1]d, t > 0 and ci = 1. The approximation is done for 2 6 d 6 5 with 1024 cells as the
maximum number per coordinate in the sparse grid technique. The solution of the central point in the
domain xi = 0.5 is computed at time t = 0.1. The number of time steps used is fixed at 100.

The grid convergence results are described in detail for d = 2 and d = 5 in Table 3 and the errors and
convergence for all values of d are plotted in Figure 8. In the table, again “time” is the total computation
time for the complete sparse grid solution including the interpolation and time integration. The number
of problems is as in (11) and the theoretical convergence from equation (15).
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Table 3. Time-dependent experiments with solution (21) using sparse grids. TOP: is the two-dimensional case. BOTTOM: five dimensional case.

Column one gives the maximum number of cells per coordinate.

nmax Value Error Conv Time #probl Th. Conv
d=2

16 2.24 4.36 · 10−5 3.14 1.80 7 3.00
32 2.24 1.33 · 10−5 3.28 3.68 9 3.20
64 2.24 3.95 · 10−6 3.38 6.53 11 3.33
128 2.24 1.15 · 10−6 3.44 10.41 13 3.43
256 2.24 3.33 · 10−7 3.44 15.23 15 3.50
512 2.24 1.01 · 10−7 3.29 21.27 17 3.56
1024 2.24 2.74 · 10−8 3.70 28.76 19 3.60

d=5
16 3.38 4.46 · 10−5 2.17 15.33 56 1.64
32 3.38 1.92 · 10−5 2.32 55.03 126 1.93
64 3.38 7.85 · 10−6 2.44 184.47 251 2.16
128 3.38 3.07 · 10−6 2.55 583.54 456 2.34
256 3.38 1.17 · 10−6 2.64 1799.46 771 2.50
512 3.38 4.19 · 10−7 2.79 5742.56 1231 2.62
1024 3.38 1.38 · 10−7 3.03 17483.05 1876 2.73
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Figure 8. LEFT: Decay of the error |uc
n − uE |, uE from (21). RIGHT: Convergence of the error in the left picture.

Again, the results in the table and figures shows the dependence of the number of dimensions in the
error. The total time for the 5D computation is again relatively small per grid and the accuracy results are
satisfactory for the time-dependent case. The multigrid convergence remains excellent, as in the stationary
test case above.

7. Multi-Asset Option

The last experiment is the computation of the price of a basket option by solving equation (2) with the
sparse grid technique. The corresponding initial condition reads:

u(x, 0) = max

(

d
∑

i=1

wie
σixi − K, 0

)

, (22)

with wi percentages of the assets in the underlying basket, σi the volatility in asset i and K the exercise
price. This payoff function has a non-differentiability in the hyperplane when the basket sum equals the
strike price. This will be problematic for the sparse grid solution of this problem, as one requirement
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for sparse grid convergence is that numerical solutions have bounded mixed derivatives [4]. Still we are
interested in the convergence of sparse grids for this option pricing problem.

The remaining problem parameters are set for each asset as

• wi = 1/d, 1 ≤ i ≤ d

• K =e 40,

• r = 6%,

• T = one year,

• σi = 20%, 1 ≤ i ≤ d

• δi = 4%, 1 ≤ i ≤ d

• ρij = 0.25, i 6= j.

The price of the option is computed for 2 6 d 6 5 where d represents the number of assets in the basket.
The outer domain boundaries are placed at S = 5K to mimic infinity in (1). In the x−domain, this means
that Ω = [−σ−1

i log 5, σ−1
i log 5]d. The sparse grid approximation contains grids with at maximum 1024

cells in a coordinate and with 128 time steps. The results of the experiments are summarized in Table 4.

Table 4. Option prices of basket calls. TOP: Sparse grid option prices for d = 2 and d = 3. BOTTOM: Option prices for the higher dimensions.

n represents the maximum number of point in one dimension

d=2 d=3
n Value Error Value Error
8 2.291 5.11 · 10−1 2.102 4.51 · 10−1

16 2.727 7.60 · 10−2 2.498 5.46 · 10−2

32 2.801 1.10 · 10−3 2.562 1.00 · 10−2

64 2.807 4.23 · 10−3 2.563 9.04 · 10−3

128 2.811 8.56 · 10−3 2.562 9.87 · 10−3

256 2.807 4.65 · 10−3 2.555 3.28 · 10−3

512 2.803 7.72 · 10−4 2.554 1.39 · 10−3

1024 2.803 6.52 · 10−4 2.553 3.61 · 10−4

d=4 d=5
8 1.983 4.32 · 10−1 1.896 4.32 · 10−1

16 2.364 5.05 · 10−2 2.273 5.42 · 10−2

32 2.429 1.45 · 10−2 2.343 1.57 · 10−2

64 2.427 1.19 · 10−2 2.341 1.36 · 10−2

128 2.422 7.02 · 10−3 2.331 3.97 · 10−3

256 2.420 5.35 · 10−3 2.335 7.88 · 10−3

512 2.417 2.69 · 10−3 2.330 2.28 · 10−3

1024 2.413 1.29 · 10−3 2.326 1.77 · 10−3

In the table, satisfactory grid convergence is observed for the lower dimensional cases, but it is no longer
regular. In particular when d is increasing, the convergence becomes irregular. The reason may lie in the
fact that in higher dimensions a large number of subgrids is included with only a very small number of grid
points in many dimensions (ni = 2 in this test). An alternative is to use the sparse grid technique based
on a larger number of points in each dimension (ni at least 4 or 8) see, for example, [11]. Furthermore, the
accuracy is hampered by the fact that the initial condition is non-differentiable.

The multigrid convergence, however, remains excellent, of course.

8. Conclusions

A promising technique to handle high dimensional PDE problems numerically is the sparse grid method;
which gives rise to an abundant number of smaller sized problems on equidistant and non-equidistant grids.
The non-equidistant grids generate a discrete anisotropy in the system. In the context of developing a d-
multigrid method for these problems we have shown in this paper how these anisotropies can be treated by
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a suitable combination of partial coarsening strategies and point based relaxation. The partial coarsening
schemes are based on doubling and quadrupling transfers. It turns out that for isotropic systems, an F(1,1)
cycle with/without an optimal relaxation parameters is a very nice combination for a multigrid method.
For anisotropic problems, a V(1,1) method without an optimal parameter proves excellent. A speed-up
can be had by employing partial quadrupling as the coarsening strategy for anisotropic problems provided
that optimal relaxation parameters are accessible. For partial quadrupling, the V(2,2) and F(1,1) cycles
with optimal relaxation parameters seem good.

Although it is well known that multigrid methods are amongst the fastest solvers for elliptic equations,
the throughput of a multigrid solver usually depends on how best it could be tuned with optimal attributes
which include optimal relaxation and an ideal coarse grid correction. It is often difficult to reach this
optimality in a practical situation. To quite some extent this could be substituted by having multigrid as
a preconditioner of a suitable Krylov subspace method, such as Bi-CGSTAB. We have shown in this paper
how such a d-multigrid method may be set up and employed as a preconditioner, and supplemented the
development with numerical experiments and convergence diagrams.

The resulting solver is quite robust and generally applicable to a wide class of discrete parabolic and
elliptic problems. We demonstrate its utility by solving the Black-Scholes equation of pricing options
dependent on multiple underlying assets. However, we also show that the grid convergence of the sparse
grid solution is irregular due to a non-differentiable payoff. This needs to be analyzed in more detail.
Further, we also plan to exploit the parallel features of this solver by automating this parallelism.
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