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Abstract

In this paper, we present an accurate discretization for the numerical solution of
the Black-Scholes equation for pricing European options and for the linear comple-
mentarity problem related to pricing American options. The aim is to find accurate
option prices and hedge parameters with a small number of grid points. Fourth order
finite differences are employed, as well as a grid stretching in space by means of an
analytic coordinate transformation. This transformation is made time-dependent
for pricing American options following the optimal exercise boundary. Numerical
pricing experiments including discrete dividend payment confirm the accuracy of
the methods proposed.
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1 Introduction

In option pricing an accurate representation of the Greeks or hedge parame-
ters, i.e., the derivatives of the option prices, is at least as important as the
option price itself. This is because an instantaneously risk-free portfolio typ-
ically consists of options and a number, Delta, of shares. If the value of the
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shares decreases, the option’s value should increase proportionally. Delta is
related to the first derivative of the option price with respect to the share
price. Risk neutrality of a portfolio is one of the main goals in option pricing.

The aim in this paper is to provide an efficient and accurate discretization for
obtaining option values and the Greeks for European and for American style
options. For European options the reference equation is the Black-Scholes
equation. For American options, where early exercise is allowed, it is a linear
complementarity problem, with constraints, that needs to be solved. Here the
accurate determination of the time-dependent optimal exercise share price
is another topic of research. A realistic market feature, the discrete dividend
payment once or twice a year, is included in the discussion and in the numerical
experiments. Some option pricing background is presented in Section 2. The
reader is referred to the basic literature [6,8,12,13] for detailed information.

Grid accuracy is pursued by means of grid stretching and fourth order finite
difference discretizations. In order to cluster grid points in the region of inter-
est, i.e., near the option’s exercise price and the initial share price, an analytic
grid transformation, as in [1,10] is applied. A transformation modifies all co-
efficients in the equation, but discretization can take place on an equidistant
grid. Fourth order finite differences in space and time are then chosen for
discretizing this transformed equation. The transformation is adapted in a
time-dependent way to deal with American options. The grid transformation
is described in Section 3; the discretization in Section 4. For plain vanilla
European options, closed form solutions exist [6,12]. They serve here as a ref-
erence for the numerical option prices and Greeks. Since the Greeks are often
obtained by a numerical differentiation the accuracy of these derivatives is
not obvious beforehand. Theoretically, numerical differentiation reduces the
accuracy by one order. These are, however, statements on the asymptotic be-
havior for grid size tending to zero. With the highly accurate discretizations,
however, we expect a reasonable accuracy of the hedging parameters.

In [11] a comparison of different methods for computing hedge parameters of
an American call was performed. The advanced Leisen Reimer binomial tree
method produced the most satisfactory results. The finite difference method
evaluated in [11], however, was rather basic, based on second order finite dif-
ferences in space and the Crank-Nicolson time discretization on an equidistant
grid. Oscillations were then encountered in various parameters in [11]. Here,
the hedge parameters are computed on coarse stretched grids with the fourth
order discretization. Numerical option pricing experiments are presented in
Section 5. We focus on the application of the numerical techniques. It is not
trivial to set up rigorous theory for the methods developed for the option
pricing problems on the coarse grids of interest.
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2 Option Pricing Basics

2.1 Plain Vanilla European Options

Two widely traded option contracts are European put and call options. With a
European put option, the holder of the option may sell shares at the expiration
date for the exercise price. The other party of the option contract, the writer,
must buy the shares, if the holder decides to sell them. With a European call
option, the holder has the right to purchase shares at the expiration date for
a prescribed amount. The writer is then obliged to sell the shares.

The basic equation in option pricing is the Black-Scholes partial differential
equation (PDE). The value u of a European option depends on share price
s and is influenced by exercise price K, time t to maturity T (0 ≤ t < T ),
interest rate r, and volatility σ:

∂u

∂t
+Lu :=

∂u

∂t
+

1

2
σ2s2∂

2u

∂s2
+(r−rd)s

∂u

∂s
−ru = 0, 0 ≤ s <∞, 0 ≤ t < T .

(1)
Here, a continuous dividend payment rd (modeled as some ratio of the share
price) is included. This is a satisfactory model for, e.g., index options. It is
replaced by a discrete dividend payment for options on a single share. Equa-
tion (1) is valid under the assumption of a geometric Brownian motion for
the underlying share price process {St}. More advanced models, based on
jump-diffusion processes, local or stochastic volatility are not considered here.
However, as the resulting operators for option pricing with those models may
contain a Black-Scholes part, the discretization outlined here may be of some
interest there as well.

The equation comes with boundary and final conditions distinguishing a put
from a call option. Boundary conditions arise naturally from financial argu-
ments: The boundary condition for a put, see, for example [6,12], at s = 0 is
u(0, t) = Ke−r(T−t). It represents the exponential discounting for receiving an
amount K at t = T with constant interest rate r. Furthermore, u(s, t) → 0 as
s→ ∞, because one obviously cannot gain by exercising the put option. The
payoff at maturity is known and determines the final condition at t = T . For
a European put, it reads:

u(s, T ) := Φ(s) = max(K − s, 0). (2)

The left boundary condition for a call is u(0, t) = 0 for all t, and a choice
for the right-side boundary condition for s → ∞ is u(s, t) = se−rd(T−t) −
Ke−r(T−t). These boundary conditions can also be deduced from the put-call
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parity relation [6]. For a European call, the final condition reads:

u(s, T ) := Φ(s) = max(s−K, 0). (3)

2.2 American Style Options

In contrast to European options, which can only be exercised at the maturity
date T , American options can be exercised at any time up to T . Consequently,
identifying the optimal exercise strategy is an integral part of the valuation
problem.

Let u(t, s) be the value of an American option with payoff Φ(s) (2), (3) at
exercise. The possibility of early exercise requires

u(t, s) ≥ Φ(s), ∀ t ∈ [0, T ],

otherwise an arbitrage opportunity would arise [6,12,13].

The valuation of the American option is known as a free boundary problem.
The free boundary share price sf (t), also called optimal exercise boundary or
early exercise boundary, divides the (t, s) half strip into two parts, namely the
continuation region and the stopping region. The continuation region {(t, s) ∈
[0, T ] × R+ : u(t, s) > Φ(s)} is the set of points (t, s) at which the option is
worth more alive, while in the stopping region {(t, s) ∈ [0, T ] × R+ : u(t, s) =
Φ(s)} early exercise is advisable.

Therefore under the Black-Scholes framework, the price u(t, s) satisfies either
in the continuation region

u(t, s) > Φ(s),
∂u

∂t
+

1

2
σ2s2∂

2u

∂s2
+ (r − rd)s

∂u

∂s
− ru = 0;

or in the stopping region

u(t, s) = Φ(s),
∂u

∂t
+

1

2
σ2s2∂

2u

∂s2
+ (r − rd)s

∂u

∂s
− ru < 0.

Additionally, the boundary conditions at sf (t) are that u and ∂u/∂s are con-
tinuous at sf(t):

u(t, sf(t)) = Φ(sf (t)),
∂u(t, sf(t))

∂s
= Φ′(sf (t)),

known as the smooth fit principle.

This leads to a linear complementarity problem formulated as follows
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u(t, s) ≥ Φ(s), (4)

−
(
∂u

∂t
+

1

2
σ2s2∂

2u

∂s2
+ (r − rd)s

∂u

∂s
− ru

)
≥ 0, (5)

(
∂u

∂t
+

1

2
σ2s2∂

2u

∂s2
+ (r − rd)s

∂u

∂s
− ru

)(
u(t, s) − Φ(s)

)
= 0 (6)

with final and boundary conditions. The optimal exercise boundary sf (t) is au-
tomatically captured by this formulation and can be determined a-posteriori.
Solutions of linear complementarity problems can be obtained by a variety of
iterative methods, e.g., by the projected successive overrelaxation (PSOR) [2]
method we are to use.

2.3 American Options and Discrete Dividend

We examine in this section the early exercise boundary of American puts with
discrete dividend. The case of an American call with discrete dividends is
easier than the put and we refer to [8].

Consider an American put under the Black-Scholes framework with strike K
and maturity T . Suppose a dividend is to be paid at time td and t−d , t+d
represent the times just before and after the dividend date, respectively. It
is known that in [0, t−d ) and [t+d , T ) the value u(t, s) is the solution of the
Black-Scholes equation. Therefore from time t+d to T , the optimal exercise
boundary behaves like that of a non-dividend paying American put. From the
no-arbitrage principle, the option price must be continuous across the instant
of discrete dividend, i.e.,

u(t−d , st−
d

) = u(t+d , st+
d

). (7)

Moreover the underlying share will drop by the same amount as the dividend
right after the payment, i.e., st+

d

= f(st−
d

), where f(s) = (1−ρ)s if the dividend

is paid at a fixed rate ρ, or f(s) = s − D if the dividend is paid at a fixed
amount D.

The holder of a deep in-the-money American put would tend to defer exercise
until t+d in order to benefit from the decrease in the price of the underlying
share after dividend payment. Hence, sf (t

−

d ) = 0.

Let us first consider the case of fixed dividend rate ρ. Assume we have a
portfolio consisting of a stock s and a put option u. At some time prior to
the dividend date t = td − δt, one encounters the following situation: If one
exercises the option the interest income from t to td is Kerδt; if one holds the
option and exercises immediately after the dividend payment, say at t+d , the
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gain is K + ρst−
d

, which is stochastic up to time t. The free boundary sf (t) is

determined by matching the profit in the risk neutral world (with probability
measure Q) from the two strategies. With a fixed dividend rate ρ this leads to

K[erδt − 1] = ρEQ[st−
d

|Ft] = ρerδtsf(t) = ρerδt[sf (t) − sf (t
−

d )], (8)

with E being the expectation. Taking the limit δt→ 0 one finds

lim
t→t−

d

s′f(t) = −rK/ρ. (9)

In the case of fixed dividend amount D, the gain of the above portfolio changes
to K +D if we exercise the option at t+d . Early exercise is not optimal if

Kerδt < K +D, (10)

which indicates that the early exercise boundary will disappear for a period
of

δt = ln(1 +D/K)/r (11)

before the ex-dividend date td. These general properties of options under dis-
crete dividend will be verified in the numerical experiments in Section 5.

In order to calculate option prices and the option’s derivatives we use advanced
numerical techniques, based on classical concepts.

3 Grid Transformation

With a simple transformation, τ = T − t, the equation that is backward in
time is changed into an equation forward in time. Minus signs are added at
the appropriate places in the equation. In the notation, however, we keep t
instead of τ .

3.1 Spatial Grid, Fixed Grid Stretching (FS)

The accuracy of a finite difference approximation depends on the existence of
several derivatives in the Taylor’s expansion, but in option pricing the final
condition is not differentiable (or even discontinuous in the case of a digital
option). Therefore, local grid refinement seems a logical choice to retain a
satisfactory accuracy. It is well-known that local grid refinement near sharp
corners in the domain or near singularities in an equation often improves the
overall discretization accuracy drastically. By an h-refinement in the vicinity
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of a singularity the discretization error is locally decreased, due to the smaller
h, and the global accuracy is not spoiled by the well-known pollution effect,
as it is encountered for elliptic or parabolic equations. The principle of local
refinement is simple: Place more points in the neighborhood of the grid points
where the non-differentiable condition occurs. This can be done by adaptive
grid refinement for some regions, based on an error indicator, or by an analytic
coordinate transformation, which results in an a-priori stretching of the grid.
A coordinate transformation is the most elegant way in our applications as the
region of interest is known beforehand. An equidistant grid discretization can
be used after the analytic transformation, as only the coefficients in front of
the derivatives change. We explain the principle for a general parabolic PDE
with non-constant coefficients, Dirichlet boundary conditions and an initial
condition:

∂u

∂t
= α(s)

∂2u

∂s2
+ β(s)

∂u

∂s
+ γ(s)u(s, t) (12)

u(a, t) = L(t), u(b, t) = R(t), u(s, 0) = φ(s). (13)

Consider a coordinate transformation y = ψ(s), which must be one-to-one,
with inverse s = ϕ(y) = ψ−1(y) and let û(y, t) := u(s, t) (unknowns with
“hat” live on the transformed grid). By the chain rule, the first and second
derivative with respect to s of u(s, t) will become:

∂u

∂s
=
∂û

∂y

dy

ds
=
∂û

∂y

(
ds

dy

)
−1

=
1

ϕ′(y)

∂û

∂y
, (14)

∂2u

∂s2
=

(
ds

dy

)
−1

∂

∂y



(
ds

dy

)
−1
∂û

∂y


 =

1

(ϕ′(y))2

∂2û

∂y2
−

ϕ′′(y)

(ϕ′(y))3

∂û

∂y
. (15)

Application of (14) and (15) to (12) changes the factors α, β and γ into:

α̂(y) =
α(ϕ(y))

(ϕ′(y))2
, β̂(y) =

β(ϕ(y))

ϕ′(y)
−α(ϕ(y))

ϕ′′(y)

(ϕ′(y))3
, γ̂(y) = γ(ϕ(y)). (16)

The boundary points a and b are also transformed into ψ(a) and ψ(b), re-
spectively. The equidistant grid size for the transformed equation is h =
(ψ(b)− ψ(a))/N , assuming function ψ to be a monotonically increasing func-
tion.

The spatial transformation used for Black-Scholes equation here is not new.
It originates from [1] and is also presented in [10]:

y = ψ(s) =
sinh−1 (ξ (s− κ)) − c1

c2 − c1
, (17)

with normalization constants c1 = sinh−1(ξ(a−κ)) and c2 = sinh−1(ξ(b−κ)),
so that y ∈ [0, 1]. The grid is refined around s = κ, which is typically set to K.
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Parameter ξ determines the rate of stretching. In the analytic function (17)
the combination ξκ appears. For satisfactory accuracy, especially on coarse
grids, it appears advantageous to keep this quantity constant. ξκ = 15, for
example, has proven to be an appropriate choice over a variety of option pricing
parameters. Figure 1 shows the stretching around κ = 15 for ξ = 1 (ξκ = 15)
and ξ = 12 (ξκ = 180) and a corresponding grid. The difference in the number
of points per s-interval with ξ = 1 and ξ = 12 is depicted in Figure 2. The
number of points per interval is displayed for three grid sizes of 20-, 40- and
80 points with different colors (from light to dark in Fig. 2). Thus, larger ξ
means fewer points in the outer regions. When ξ decreases the grid approaches
an equidistant one.
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Fig. 1. Left: Transformation function (17), κ = 15, (a): ξ = 1, (b): ξ = 12; Right:
Example of European call option values on the stretched grid.
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Fig. 2. Number of grid points in an interval on s-axis for ξ = 1 (left) and ξ = 12
(right). The number of points is 20, 40 and 80 for the colors from light to dark.
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For transformation (17), the inverse and the first two derivatives are:

ϕ(y) =
1

ξ
sinh (c2y + c1(1 − y)) + κ, (18)

J(y) =
c2 − c1
ξ

cosh (c2y + c1(1 − y)) , (19)

H(y) =
(c2 − c1)

2

ξ
sinh (c2y + c1(1 − y)) . (20)

Here J(y), the Jacobian, is the first derivative of ϕ(y) and H(y), the Hes-
sian, denotes its second derivative. Applying transformation (18) to the final
condition gives:

û(y, T ) = max

(
1

ξ
sinh (c2y + c1(1 − y)) + κ−K, 0

)
. (21)

The kink in the final condition of a European option does not disappear;
the condition is not differentiable. This grid transformation around a fixed
parameter κ is called “fixed grid stretching” (FS), here.

3.2 American Options, Time Dependent Grid Stretching (TS)

We now focus on the determination of the optimal exercise boundary for Amer-
ican options, sf (t). It is known that for an American call the free boundary
sf(t) is a continuous, increasing function of time to maturity t.

In order to get an accurate sf(t) the grid need not necessarily be refined at
strike K, but at max(K, rK/rd) for an American call and min(K, rK/rd) for
an American put at t = T [8]. Instead of choosing a fixed κ in transformation
(17) for the whole duration of the option, we vary κ so that the grid is refined
in the vicinity of the free boundary for all t. Notice that in option pricing
with the Black-Scholes operator only at t = T the solution (i.e., the payoff)
contains a kink and thus requires refinement. It is not necessary for accuracy
reasons to keep κ fixed at κ = K.

An accurate representation of the free boundary may be achieved by applying
a time-dependent grid stretching (hereafter called TS). This handles especially
well the case that the free boundary sf(t) runs out of the region of refinement
of a fixed grid stretching (17), which often occurs in the case of long maturities
and/or high volatilities. Since there is no tractable formula indicating how the
free boundary sf(t) evolves with respect to time to maturity t, we simply pro-
pose to extract information on the free boundary sf(t) from a predictor step.
This step is one computation with fixed grid stretching (FS) on a coarse grid.
We then obtain an improved free boundary sTS

f (t) by a predictor-corrector
type scheme:
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(1) Predictor:

Apply FS with constant κ on a coarse grid (preprocessing step). We ob-
tain sFS

f (t) and grid point s+
f (t), i.e., the point directly next to sFS

f (t)
which satisfies u(s+

f ) > Φ(s+
f ).

(2) Corrector:

Apply TS with

κ(t) =
1

2
(sFS

f (t) + s+
f (t)).

So, the time-dependent κ(t) is equal to the midpoint of sFS
f (t) and s+

f (t).

If one assumes the error of the finite difference method to be small enough
and the inaccuracy in determining the free boundary coming from the spatial
discretization, then for an American call sFS

f (t) is indeed an upper bound
for the true free boundary and s+

f (t) is a lower bound. For the put it is vice
versa. Choosing the midpoint as the center of the grid refinement is therefore
a satisfactory compromise. In the discretization a time-dependent κ(t) means
that the coefficients α̂(y), β̂(y), γ̂(y) in (16) change each time step. The grid
remains, however, equidistant.

4 Discretization in Space and Time

4.1 High Order Accuracy in Space

An equidistant y-grid remains after the transformation FS or TS, on which
we apply high order discretization in space and in time. A fourth order “long
stencil” finite difference discretization in space based on Taylor’s expansion
for (12),. . . ,(17) is given by

∂ûi

∂t
=

1

12h2
α̂i (−ûi+2 + 16ûi+1 − 30ûi + 16ûi−1 − ûi−2) +

+
1

12h
β̂i (−ûi+2 + 8ûi+1 − 8ûi−1 + ûi−2) + γ̂iûi +O(h4), 2 ≤ i ≤ N − 2.

(22)

Subscript i refers to grid point yi = ih on the transformed grid. First deriva-
tives are discretized by central differences. This is an appropriate choice as long
as the equation is not convection dominating. For the fourth order approxi-
mation, interior point y1 needs a special treatment at the left-side boundary
as well as point yN−1 at the right-side boundary.

An approach for the first (and last) grid point is to use backward or one-sided
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differences, with difference scheme:

∂û1

∂y
=

−3û0 − 10û1 + 18û2 − 6û3 + û4

12h
+ O(h4), (23)

∂2û1

∂y2
=

10û0 − 15û1 − 4û2 + 14û3 − 6û4 + û5

12h2
+ O(h4). (24)

and similarly for yN−1.

We also compute numerically two hedge parameters, Delta (∆) and Gamma
(Γ):

∆s =
∂u

∂s
, Γs =

∂2u

∂s2
. (25)

∆ is an important parameter in hedging with options (as mentioned in the
introduction). It is a measure of the rate of change in the option price with
respect to the price of the underlying share. Γ measures the rate of change in
the option’s delta with respect to the share price. With a fourth order accurate
scheme, we find

∆y
i =

∂û

∂y
=

−ûi+2 + 8ûi+1 − 8ûi−1 + ûi−2

12h
, (26)

Γy
i =

∂2û

∂y2
=

−ûi+2 + 16ûi+1 − 30ûi + 16ûi−1 − ûi−2

12h2
. (27)

On the s-grid the approximate derivatives read (14),(15):

∆s
i =

(
dϕ

dy

)
−1

i

∆y
i , Γs

i =

(
dϕ

dy

)
−2

i

Γy
i −

(
d2ϕ

dy2

)

i

(
dϕ

dy

)
−3

i

∆y
i . (28)

4.2 Time Grid

We aim for an implicit discretization of fourth order on an equidistant grid
in time with time step k. A well-known family of implicit schemes with nice
properties is the family of backward differentiation formulae, BDF, of which
the O(k2) BDF2 [3,4] is known best. The O(k4)-scheme, BDF4, is the basis
for the time discretization employed. It reads

(
25

12
I − kL

)
uj+1 = 4uj − 3uj−1 +

4

3
uj−2 +

1

4
uj−3, (29)

with k the time step, I the identity matrix, L a discrete version of L (1).
Superscript j on discrete unknown uj represents the iteration index in time.

This method needs three initialization steps. The combination of two Crank-
Nicolson and one BDF3 step (O(k3)) form the initialization for BDF4 here.
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BDF2 is known to be unconditionally stable, whereas BDF3 and BDF4 have
stability regions. For our applications so far, however, the stability constraints
are not problematic.

4.3 Grid Stretching and Discrete Dividend

We adopt the technique of modeling discrete dividend by a jump condition
at the ex-dividend date td (7). As mentioned, t−d , t

+
d represent the times just

before and after the ex-dividend date, respectively. The following numerical
procedure is applied: We first perform a Black-Scholes computation until the
ex-dividend date. This is done with the stretched grid transformation and the
fourth order discretizations in space and in time. At the ex-dividend date, (7)
is taken into account by means of interpolation. Accurate interpolation at this
date on the stretched grid is an important feature, since typically st+

d

(7) may

not be a grid point. Lagrange interpolation of 4th order has been applied,
to accurately implement the jump condition. After the ex-dividend date the
Black-Scholes computation is restarted with the initialization by two Crank-
Nicolson steps and the BDF3 step preceding the BDF4 iterations in time. In
our computations we place td exactly on a time line, t−d and t+d are assumed
to lie on the same line. In [5] a modification to avoid negative share prices
for a dividend payment of the form s−D is proposed, especially for D large.
Due to the grid stretching we have the largest mesh sizes at the boundaries
of the computational domain. Therefore, even with relatively large dividend
payments s−D will often remain positive. The modification from [5] avoiding
negative share prices after the ex-dividend date is thus not necessary here,
although it would be straightforward to implement. A reference test from [5]
is chosen to evaluate the performance of the finite difference method on coarse
grids.

In the case of American options and discrete dividend we have indicated in
Section 2.3 that the free boundary may disappear for some time. The strategy
with the time-dependent κ(t) is that we follow the free boundary, as soon as it
appears, until the ex-dividend date with the predictor-corrector scheme from
Section 3.2. At the ex-dividend date the free boundary may disappear. We then
refine around s = 0 until the free boundary reappears. After the reappearance
we continue to follow the free boundary with the predictor-corrector scheme.
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5 Numerical Results

5.1 European Vanilla Call

The first numerical experiment is related to a European option with parame-
ters: K = 15, σ = 0.3, r = 0.05, rd = 0.03, T = 0.5. The plain vanilla call is
computed to gain some insight in the properties of the numerical techniques.
The numerical solution, its first and second derivatives at initial time t0 are
compared to the analytic solution in the infinity norm 2 . Next to this, the
tables below present the error reduction factors c∞, defined as:

c∞ =
‖w2h − wex‖∞
‖wh − wex‖∞

,

for a some vector w, where wh, w2h and wex denote the solutions on mesh size
h, 2h and the exact solution, respectively. We aim for accuracy with only a
small number of grid points, therefore the grids are typically not finer than
80×80 points. The outer boundary smax has been placed at 3 times the exercise
price, according to the formula in [7].

Table 1 presents results obtained on an equidistant grid for a second order
scheme (O(h2) finite differences and Crank-Nicolson) and the fourth order
discretization (22). The second order scheme is the basis for many of the
existing Black-Scholes based software. It is shown in Table 1 that second order
accuracy is indeed achieved on these coarse equidistant grids, whereas the
fourth order method is not performing better than second order. This is due
to the lack of smoothness of the final condition. The convergence of the Greeks
is also satisfactory.

Table 2 shows results on stretched grids with the second and fourth order
discretization with ξ = 1. Stretching is fixed (FS) around κ = K (ξκ = 15).
The accuracy of the results in uh,∆h and Γh is nicely improved, especially for
the fourth order discretization. We do not observe a 4th order error reduction
on these coarse moderately stretched grids, but the error for 20 × 20 points
is already less than one cent (e 0.01) with the transformation. This is a very
satisfactory result.

The asymptotic fourth order convergence rate is observed for larger values of
ξ, i.e., with a severe stretching around the kink in the payoff. Table 3 confirms

2 The use of the relative error was suggested. However, this is not suitable for
measuring the global accuracy, as uex → 0, for s → 0. An alternative represents the
point-wise relative error |(uh − uex)/uex|, for example, at s = K. The convergence
of the price and Greeks measured in the relative error is very similar to the results
for the absolute error and thus omitted.
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Table 1
Comparison of error and accuracy in uh, ∆h and Γh (t = 0) on equidistant grids.

Scheme Grid ‖uh − uex‖∞ c∞ ‖∆h − ∆ex‖∞ c∞ ‖Γh − Γex‖∞ c∞

10 × 10 1.3 × 10−1 9.7 × 10−2 2.1 × 10−2

O(h2 + k2) 20 × 20 3.3 × 10−2 4.0 9.6 × 10−3 10.1 6.2 × 10−3 3.4

40 × 40 6.4 × 10−3 5.2 1.7 × 10−3 5.6 1.9 × 10−3 3.3

10 × 10 9.4 × 10−2 3.0 × 10−2 1.9 × 10−2

O(h4 + k4) 20 × 20 1.6 × 10−2 6.1 9.9 × 10−3 3.0 3.1 × 10−3 6.3

40 × 40 4.1 × 10−3 3.8 1.2 × 10−3 8.2 3.6 × 10−4 8.5

Table 2
Comparison of error and accuracy in uh, ∆h and Γh at t0 on the stretched grid,
ξ = 1.

Scheme Grid ‖uh − uex‖∞ c∞ ‖∆h − ∆ex‖∞ c∞ ‖Γh − Γex‖∞ c∞

10 × 10 6.6 × 10−2 1.1 × 10−1 8.5 × 10−3

O(h2 + k2) 20 × 20 1.8 × 10−2 3.8 2.6 × 10−2 4.0 3.7 × 10−3 2.3

40 × 40 4.3 × 10−3 4.1 6.5 × 10−3 4.0 8.5 × 10−4 4.3

10 × 10 1.1 × 10−2 2.4 × 10−2 6.3 × 10−3

O(h4 + k4) 20 × 20 1.1 × 10−3 10.0 3.1 × 10−3 7.6 1.3 × 10−3 4.8

40 × 40 9.4 × 10−5 11.2 2.9 × 10−4 10.8 9.7 × 10−5 13.6

this for the option value uh and ξ = 12. The convergence for ∆h and Γh is also
satisfactory. However, the error on the coarser grids with ξ = 12 is significantly
larger than that obtained for ξ = 1 in Table 2. This justifies the suggested
condition ξκ = 15. The stretched grid, the solution and Greeks for ξ = 1 and
ξ = 12 are displayed in Figure 3.

Table 3
Comparison of error and accuracy in uh, ∆h and Γh at t0 on the stretched grid,
ξ = 12.

Scheme Grid ‖uh − uex‖∞ c∞ ‖∆h − ∆ex‖∞ c∞ ‖Γh − Γex‖∞ c∞

10 × 10 2.7 × 10−1 1.7 × 10−1 4.2 × 10−2

ξ = 12 20 × 20 1.5 × 10−2 18.1 1.5 × 10−2 11.5 4.2 × 10−3 10.0

stretching 40 × 40 9.1 × 10−4 16.5 1.7 × 10−3 8.6 5.3 × 10−4 8.0

O(h4 + k4) 80 × 80 5.7 × 10−5 16.0 1.5 × 10−4 11.6 4.2 × 10−5 12.7

160 × 160 3.7 × 10−6 15.1 1.2 × 10−5 12.4 4.2 × 10−6 9.6
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5.1.1 European Option, Discrete Dividend

Next, we present a result for a European call with multiple discrete dividend
payments during the contract period, as in [5], and parameters s0 = K =
100, r = 0.06, σ = 0.25, and multiple dividends of D = 4. The ex-dividend
date is each half year. We choose again smax = 3K according to [7]; the
stretching parameter is set to ξ = 0.15 (so that ξκ = ξK = 15).

Table 4 presents numerical results for T = 1, T = 2 and T = 3, with one, two
and three dividend payments, respectively. It compares the numerical approx-
imation to the exact solution from [5] (HHL in the table). For larger values
of T the number of points in time increases proportionally. The numerical re-

Table 4
Multiple discrete dividends payments, K = 100, D = 4, ξ = 0.15.

T = 1 T = 2 T = 3

Grid uh (t = 0) Grid uh (t = 0) Grid uh (t = 0)

10 × 10 10.612 10 × 20 15.178 10 × 30 18.699

20 × 20 10.660 20 × 40 15.202 20 × 60 16.607

40 × 40 10.661 40 × 80 15.201 40 × 120 18.600

80 × 80 10.661 80 × 160 15.201 80 × 240 18.600

HHL 10.661 15.199 18.598

sults obtained with a small number of grid points are very satisfactory. They
compare very well with the reference results.

5.2 American Style Options

In this section we give three numerical examples. We consider an American
call with a continuous dividend, American puts with discrete dividend and an
American butterfly spread.

5.2.1 American Call With Continuous Dividend

An American style option test has been presented in [11]. In the test the
continuous dividend rd is set such that a free boundary appears for the Amer-
ican call. Results were obtained on extremely fine grids with 1130 grid points
in spatial and time-wise directions. The results with finite differences in [11]
were not completely convincing. The evaluation has been performed with the
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following set:

K = 0.9, r = 0.02, rd = 0.035, T = 0.25. (30)

We aim for satisfactorily accuracy in 40 - 80 grid points in both directions,
first with σ = 0.1. With K = 0.9 we set the stretching parameter ξ = 16
in (17); the outer boundary is placed at 3K. The option price converges on the
stretched grid in fewer than 32 grid points; on the equidistant grid convergence
is obtained in about 64 grid points. The convergence of the American option
price (not shown) is very similar to the European counterpart.

To assess the accuracy of the methods proposed for computing the free bound-
ary sf(t), we choose a 640 points reference grid in spatial and time-wise direc-
tions with FS, κ = K = 0.9 and ξ = 16 as our benchmark. The error measure
we report is Root Mean Square(RMS) absolute error, defined by

RMS =

√√√√ 1

m

m∆t∑

t=∆t

(sf(t) − sREF
f (t))2, where m = T/∆t

and sREF
f (t) is the free boundary from the very fine benchmark grid.

Figure 4 compares the results obtained on a fixed stretched (FS) and on a
time-dependent stretched grid (TS) to those obtained on an equidistant grid.
Although it is obvious that the stretched grid gives far better approximations
than the equidistant grid, we get only crude step functions for sf (t) with 40-80
grid points.

Remark: Unlike the computation of option prices, when the objective is to find
an accurate approximation of sf(t), we pursue local accuracy. The condition
ξκ = 15 can then be relaxed in the corrector step. By choosing a large ξ ,
we can calculate sTS

f (t) on a grid that would cluster almost all grid points
in the region of interest. Experiments show that this further improves the
determination of sf(t) in the test case considered.

We further point out that the gain of TS strongly depends on the volatility
σ. Table 5 presents the RMS in sf(t) for different σ. We again adopt the
parameters in (30) and vary σ from 0.05 to 0.4. ξ is fixed at 16. TS is more
advantageous as σ increases: the RMS errors are reduced significantly when
σ = 0.2 − 0.4. Figure 4 (lower figures) shows that when σ = 0.4 the accuracy
in sf (t) from an 80 point TS-grid is nearly comparable to that of a 320 point
FS-grid. Whereas when σ is as small as 0.05, the accuracy from 80 points FS
is already satisfactory and the improvement in accuracy from TS is negligible.
This is in accordance with our expectations.

We now consider the Greeks ∆h and Γh with the set from (30). Volatility σ is
chosen to be σ = 0.1 and σ = 0.4. For σ = 0.1 the hedge parameters obtained
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Table 5
Comparison of RMS error in sf (t) with different σ, ξ = 16.

σ 80 points FS 80 points TS 320 points FS

0.05 2.3 × 10−3 2.2 × 10−3 5.4 × 10−4

0.1 2.8 × 10−3 2.0 × 10−3 7.0 × 10−4

0.2 5.0 × 10−3 1.9 × 10−3 1.3 × 10−3

0.3 7.7 × 10−3 2.4 × 10−3 2.0 × 10−3

0.4 1.1 × 10−2 4.1 × 10−3 2.8 × 10−3

on equidistant grids with 402 to 3202 points (in space and time) are presented
in Figure 5. ∆h is not accurate for 40 equidistant points, so Γh with 40 points
is not displayed. Γh is not yet resolved well with 80 equidistant grid points.
For σ = 0.4 similar results are found.

The results on a fixed stretched grid, FS, are more favorable especially for the
small volatility σ = 0.1, see figure 6. We focus on Γh, which is well captured
on an 80 point grid with a fixed stretching. On the 40 point grid both Greeks
are well resolved except maybe at the free boundary.

Improved accuracy in the hedge parameters near the early exercise boundary
sf(T ), especially in Γh, which is discontinuous at sf (T ), is achieved by the
application of the time-dependent stretching TS. Again, TS is more powerful
when σ is large (here, when σ = 0.4). The improvements in the accuracy of
Γh on an 80 point grid with σ = 0.1 and σ = 0.4 are shown in Figure 6.

Another issue for the accurate representation of Γh near the early exercise
boundary is to use one-sided and backward differences, as in (23),(24), that
do not need values across the free boundary. This way one can avoid local
overshoots in Γh at the free boundary.

We finally mention that also the other Greeks, Rho (∂u/∂r), Vega (∂u/∂σ),
Volga (∂2u/∂σ2) and Vanna (∂2u/∂s∂σ) have been computed on stretched
grids varying from 402 to 3202 points. In [11] uneconomical oscillations were
observed in these Greeks for second order finite differences on coarse equidis-
tant grids. Here, we did not observe any uneconomical oscillation in either of
these Greeks, not even on grids with only 40 points.

5.2.2 American Put With Discrete Dividend

Now, we consider an American put option pricing problem with discrete divi-
dend. The numerical results obtained with a fixed dividend payment D = 0.02
are in accordance with the analytic results from (11): The period that the free
boundary disappears δt ≈ 0.2475 with parameters K = 1, r = 0.08, rd =
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0, T = 0.5, td = 0.3, σ = 0.4 and this period remains constant for varying σ.
Figure 7a presents the free boundary for a fixed dividend payment, and com-
pares a reference boundary obtained on a fine 320 points mesh with results
obtained by 80 point grids with FS and TS. The 80 point TS-grid solution
coincides with the fine reference grid. The result with FS is also satisfactory.
Figure 7b compares the numerical results for a dividend rate ρ = 0.02 with FS
and TS 80 point grids with a fine reference grid. As shown in Figure 7b, FS
gives stairs as a representation of the free boundary when the free boundary
drops to 0 at td and remains outside of the region of its refinement, while TS
generates a curve with exactly the slope as given by (9). TS is certainly the
better choice in this situation. In either case, the discrete dividend payment
does not pose any specific problems and TS improves the accuracy of the free
boundary well. We further show how the s-grid evolves in time under TS in
Figure 7c and 7d. Each dot in the graph represents a time-spatial grid point.

5.2.3 American Butterfly Spread

A butterfly option has the payoff (S−K1)
+ +(S−K2)

+ − 2(S−K3)
+, which

can be thought of as a portfolio consisting of a long position in two calls
with strikes K1 and K2 respectively and a short position in two calls with the
middle strike K3 = (K1 +K2)/2.

For the numerical solution of an American butterfly, we stretch the grid at the
three strike prices, where the payoff is not smooth. This is achieved by defining
a global Jacobian that combines the individual Jacobians for each strike price.
Following [10], we use the harmonic squared average for the combination,
which yields a smooth transformation:

J(y) = A

[
n∑

k=1

Jk(y)
−2

]
−

1

2

, where Jk(y) =

[
(

1

ξk
)2 + (ϕk(y) − κk)

2

] 1

2

. (31)

Here, A is a normalization constant that must be calculated iteratively. At each
stretching position, the global Jacobian J(y) is dominated by the behavior
of the local Jk(y). The global transformation s = ϕ(y) is then obtained by
numerically integrating the global Jacobian.

The position that needs extra care during discretization is the vicinity of K3.
To avoid any interference between the numerical solutions on grid points that
lie at different sides of K3, we choose second order three-point discretization
stencils for the direct neighboring grid points of K3:

∂ûi

∂y
=
ûi+1 − ûi−1

2h
+ O(h2),

∂2ûi

∂y2
=
ûi+1 − 2ûi + ûi−1

h2
+ O(h2). (32)
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Figure 8 shows the option prices at t = 0 and the corresponding grid with
parameters K1 = 0.5, K2 = 1.5, σ = 0.1, r = 0.02, rd = 0.015, T = 3. The
grid has now three refinement positions: K1, K2 and K3. With this set of
parameters we observe the occurrence of two free boundaries, one lies left of
K3 and one right, see Figure 8.

We note that it is possible to employ TS to improve the accuracy of the two
free boundaries as demonstrated in Figure 8. However, if with TS a new nu-
merically transformed grid is generated at each time step, it is time-consuming
compared to the analytic transformation and significantly degrades the speed
of the program. This is due to the iterative solver for A and the numerical
integration for the s-grid. However, it may not be necessary to update the grid
each time step. After the predictor step, it can be decided whether or not to
update the grid at a time step.

6 Conclusions

In this paper we have solved European and American option pricing problems
with a small number of grid points. Fourth order accurate space and time
discretizations have been employed, using spatial grid stretching by means of
an analytical coordinate transformation. With parameters that give a severe
grid stretching, fourth order accuracy can be obtained for European options.
Important for our applications is, however, a small discretization error with
only a few grid points. This is achieved by the techniques proposed and a mod-
erate grid stretching. For the European reference problem, 20 to 40 space- and
time-steps are sufficient to get an accuracy of less than one cent (e 0.01). Fur-
thermore, we have observed a satisfactory accuracy of the hedge parameters.

For pricing American options we proposed a time-dependent grid stretching
in a predictor-corrector type scheme. The predictor step finds a crude approx-
imation of the free boundary on a coarse (fixed) stretched grid; The corrector
step applies the time-dependent stretching based on the results in the pre-
dictor step. The Greeks can then be accurately resolved by 80 grid points.
The optimal exercise boundary is also well captured by 80 grid points. Op-
tions on shares paying discrete dividends are handled very satisfactorily by
the stretched grid discretization and a 4th order Lagrange interpolation at
the ex-dividend date. The time-dependent stretching refines at share price 0 if
the free boundary disappears. A more complicated strategy, like an American
butterfly option, can also be handled well within this framework.

The scheme proposed can be generalized to higher dimensional problems. In
summary, we do not see any reason for not recommending finite differencing
on stretched grids for solving option pricing problems numerically.
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Fig. 3. Plots of numerical option price uh, ∆h and Γh of a European call,
K = 15, σ = 0.3, rd = 0.03, r = 0.05, T = 0.5, versus the analytic solution with
the 20 points stretched grids.
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Fig. 4. The discrete free boundary sf as a function of time to maturity
t for different volatilities on equidistant and stretched grids. Parameters are
K = 0.9, r = 0.02, rd = 0.035, T = 0.25.
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Fig. 5. ∆h and Γh for an American call on equidistant grids of different res-
olution (in the right figure the 40 points curve is omitted). Parameters are
K = 0.9, σ = 0.1, r = 0.02, rd = 0.035, T = 0.25.
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Fig. 6. Comparison of Γh near the early exercise boundary for an American call
obtained with FS and TS for different σ. ξ = 16 for both schemes. Other parameters
are K = 0.9, r = 0.02, rd = 0.035, T = 0.25.
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Fig. 7. The free boundary sf of an American put with a discrete and a proportional
dividend payment plus the corresponding time-dependent grids. Parameters are
K = 1, σ = 0.4, r = 0.08, T = 0.5, td = 0.3.
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Fig. 8. American butterfly spread price (left) and free boundaries sf

as functions of time to maturity t (right picture). Parameters are
K1 = 0.5,K2 = 1.5, σ = 0.1, r = 0.02, rd = 0.015, T = 3.
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