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According to the theory proposed by Acerbi and Scandolo (2008), an asset is described by the
so-called Marginal Supply-Demand Curve (MSDC), which is a collection of bid and ask prices
according to its trading volumes, and the value of a portfolio is defined in terms of commonly
available market data and idiosyncratic portfolio constraints imposed by an investor holding
the portfolio. Depending on the constraints, one and the same portfolio could have different
values for different investors. As it turns out, within the Acerbi-Scandolo theory, portfolio
valuation can be framed as a convex optimization problem. We provide useful MSDC models
and show that portfolio valuation can be solved with remarkable accuracy and efficiency.
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1. Introduction

According to the theory developed by Acerbi and Scandolo (2008) the value of a portfolio is
determined by market data and a set of portfolio constraints. The market data is assumed to
be publicly available and is the same for all investors. The market data consists of price quotes
corresponding to different trading volumes. These quotes for an asset are represented in terms
of a mathematical function referred to as a Marginal Supply-Demand Curve (MSDC).
The portfolio constraints may vary across different players. These idiosyncratic constraints—

collectively referred to as a liquidity policy—refer to restrictions that any portfolio held by the
investor should be prepared to satisfy. Examples of such portfolio constraints are:

• minimum cash amounts to meet short term liquidity needs;

• market or credit risk management limits;
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• capital limits.

We introduce fundamental concepts of Acerbi-Scandolo theory in Section 2. To value her
portfolio, the investor will mark all the positions she could possibly unwind to satisfy the liquidity
policy to the best price according to an MSDC function. As it turns out, within Acerbi and
Scandolo’s theory, the valuation of a portfolio of assets can be framed as a convex optimization
problem. The associated constraint set is represented by a liquidity policy. Although this was
already pointed out by Acerbi and Scandolo themselves, the practical implications of the theory
have as yet not been well investigated. Such is the aim of the present paper.
We will study portfolio valuation under the Acerbi-Scandolo theory extensively, assuming

different forms of the MSDC function. We first consider a very general setting where the MSDC
is shaped as a non-increasing step function (referred to as a ladder MSDC ) in Section 3. This
corresponds to normal market situations for relatively actively traded products such as listed
equities. We will present an algorithm for portfolio valuation assuming ladder MSDCs and a
cash portfolio constraint. In Section 4, we will look at MSDCs which are shaped as decreasing
exponential functions, which can be used to describe less liquid over-the-counter (OTC) traded
products. We will also see how the exponential functions can be used as approximations of ladder
MSDCs.
All numerical results are collected in Section 5. We will find that in a wide range of cases, the

approximation of ladder MSDCs by exponential MSDCs appears to be accurate, suggesting that
not all market price information represented in ladder MSDCs is necessary for accurate portfolio
valuation. We present our conclusions in Section 6.

2. The Portfolio Theory

This section presents relevant concepts and results from Acerbi and Scandolo (2008) that will
be used throughout this paper.

2.1. Asset

An asset is an object traded in a market and will be characterized by a Marginal Supply-
Demand Curve (MSDC). This codifies available bid and ask prices corresponding to different
trading volumes.

Definition 2.1: An MSDC is a map m : R \ {0} → R satisfying the following two conditions:

(i) m(s) is non-increasing, i.e., m(s1) ≥ m(s2) if s1 < s2;
(ii) m(s) is càdlàg (i.e., right-continuous with left limits) for s < 0 and làdcàg (i.e., left-

continuous with right limits) for s > 0.

The variable s represents the trading volume of the asset.
Condition 1 represents a no-arbitrage assumption. Condition 2 ensures that MSDCs have

elegant mathematical properties. We will not heavily use this condition and we only mention it
for the sake of completeness. Instead, what we will need most of the time is that an MSDC is
(Riemann) integrable on its domain.
We call the limit m+ := limh↓0m(h) the best bid and m− := limh↑0m(h) the best ask. The

bid-ask spread, denoted by δm, is defined as δm := m− −m+.

Definition 2.2: Cash is the asset representing the currency paid or received when trading any
asset. It is characterized by a constant MSDC, m0(s) = 1 (i.e., one unit) for every s ∈ R \ {0}.
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Cash is referred to as a perfectly liquid asset if the associated MSDC is constant. We call a
security any asset whose MSDC is a positive function (e.g., a stock, a bond, a commodity) and
a swap any asset whose MSDC can take both positive and negative values (e.g., an interest rate
swap, a CDS, a repo transaction). A negative MSDC can be converted into a security by defining
a new MSDC as m∗(s) := −m(−s).
We presuppose one currency as the cash asset. For example, if we choose the euro as the cash

asset, relative to the euro, the US dollar will be considered as an illiquid asset.

2.2. Portfolio

A portfolio is characterized by listing the holding volumes of different assets in the portfolio.
Given are N + 1 assets labeled 0, 1, . . . , N . We let asset 0 label the cash asset.

Definition 2.3: A portfolio is a vector of real numbers, p = (p0, p1, . . . , pN ) ∈ RN+1, where
pi represents the holding volume of asset i. In particular, p0 denotes the amount of cash in the
portfolio.

When we specifically want to highlight the portfolio cash we tend to write a portfolio as
p = (p0,

−→p ). We henceforth presuppose a set of portfolios referred to as the portfolio space
P. We will assume that P is a vector space so that it becomes meaningful to add portfolios
together and to multiply portfolios by scalar numbers. Let p = (p0,

−→p ) ∈ P and suppose we
have an additional amount a of cash. We write p+ a = (p0 + a,−→p ).

Definition 2.4: The liquidation Mark-to-Market (MtM) value L(p) of a portfolio p is
defined as:

L(p) :=

N∑
i=0

∫ pi

0
mi(x)dx = p0 +

N∑
i=1

∫ pi

0
mi(x)dx. (1)

The liquidation MtM value can be viewed as the value of a portfolio p for an investor who
should be able to liquidate all her positions in exchange for cash.

Definition 2.5: The uppermost Mark-to-Market (MtM) value U(p) of p is given by

U(p) :=
N∑
i=0

m±
i pi = p0 +

N∑
i=1

m±
i pi, (2)

where

m±
i =

{
m+

i , if pi > 0;
m−

i , if pi < 0.
(3)

The uppermost MtM value can be viewed as the value of a portfolio for an investor who has
no cash demands. In this sense, the portfolio is unconstrained.
As MSDCs are non-increasing, U(p) ≥ L(p). The difference between U(p) and L(p) is termed

the uppermost liquidation cost and is defined as C(p) := U(p)− L(p).
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2.3. Liquidity policy

The definitions of the liquidation MtM value L(p) and the uppermost MtM value U(p) suggest
that the value of a portfolio p is subject to certain cash constraints an investor should be able to
meet by wholly or partly liquidating positions she has taken. These constraints are represented
as a liquidity policy.
There could be other types of constraints besides. For example, an investor might want to

impose market risk VaR limits on her positions, or credit limits, or capital constraints. All the
constraints that an investor imposes can be represented as a subset of the underlying portfolio
space P. These constraints are collectively referred to as a liquidity policy. We refer to Acerbi
and Finger (2010) and Weber et al. (2013).

Definition 2.6: A liquidity policy L is a closed and convex subset of P satisfying the
following conditions:

(i) if p = (p0, p⃗) ∈ L and a ≥ 0, then p+ a = (p0 + a, p⃗) ∈ L;
(ii) if p ∈ L, then (p0, 0⃗) ∈ L.

Example 2.7 : A liquidity policy setting a minimum cash requirement, c, is a cash liquidity
policy :

L(c) := {p ∈ P|p0 ≥ c ≥ 0}. (4)

An investor endorsing a cash liquidity policy should be prepared to liquidate her positions to
such an extent that minimum cash level c is obtained. We will extensively use cash liquidity
policies in Sections 3 and 4. We refer to Acerbi (2008) and Weber et al. (2013) for additional
examples of liquidity policies.

2.4. Portfolio value

This section presents Acerbi and Scandolo’s definition of the portfolio value function. We first
need the following definition.

Definition 2.8: Let p,q ∈ P be portfolios. We say that q is attainable from p if q =
p− r+ L(r) for some r ∈ P. The set of all portfolios attainable from p is written as Att(p).

The following definition is key:

Definition 2.9: The Mark-to-Market (MtM) value (or the value, for short) of a portfolio
p subject to a liquidity policy L is the value of the function V L : P → R ∪ {−∞} defined by

V L(p) := sup{U(q)|q ∈ Att(p) ∩ L}. (5)

If Att(p)∩L = ∅, meaning that no portfolio attainable from p satisfies L, then we stipulate the
portfolio value to be −∞.

Acerbi and Scandolo (2008) give the following proposition of the new portfolio value:

Proposition 2.10: The portfolio value function V L from Definition 2.9 can be alternatively
defined as

V L(p) = sup{U(p− r) + L(r)|r ∈ P,p− r+ L(r) ∈ L}. (6)
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To prove this is not very difficult; we refer to Acerbi and Scandolo (2008).
Proposition 2.10 allows us to frame the determination of the value of a portfolio as an opti-

mization problem with explicit constraints, namely:maximize U(p− r) + L(r);
subject to: p− r+ L(r) ∈ L;

r ∈ P.
(7)

(We ignore the case V L(p) = −∞.) This optimization problem is convex as L is a convex set.
Since L is also closed, this problem has a unique optimal value (which could be −∞).

3. Portfolio Valuation Using Ladder MSDCs

In the previous section we have outlined the main concepts of Acerbi and Scandolo’s portfolio
theory. We discussed that portfolio valuation could be framed as a convex optimization problem
(7). Convex optimization problems can often be numerically solved, see Boyd and Vandenberghe
(2004).
In the present section we will provide an algorithm providing an exact global solution for

problem (7) under the assumption that the MSDC for illiquid assets is piecewise constant, as
such we will name them ladder MSDCs.
Within the Acerbi-Scandolo theory, ladder MSDCs will play a key role to model the liquidity

of the assets. Equipped with the fast and accurate algorithm discussed in this section, one could
solve the convex optimization problem incurred in portfolio valuation more efficiently than using
conventional optimization techniques.

3.1. The optimization problem

Generally we assume a market wherein we can quote a price for each volume we wish to trade,
i.e., a market of “unlimited depth”. However, in a real-world market context, we will typically
only be able to trade volumes within certain bounds. The upper and the lower bound of this
domain represent the market depth: the upper bound represents the maximum volume we will
be able to sell against prices we can quote from the market and the lower bound represents the
maximum we will be able to buy against prices we will be able to quote from the market. In
Weber et al. (2013), this set of constraints on the portfolio space is referred to as a portfolio
constraint. In the context of limited market depth, we will need to restrict the domain to a subset
of the portfolio space to solve the optimization problem of portfolio valuation.
In what follows, we still assume unlimited market depth so that we can search for the optimal

solution in the whole portfolio space for simplicity, whereas the method we state below also
works with limited market depth.
Reconsider problem (7). Using a cash liquidity policy L(c) this becomesmaximize U(p− r) + L(r);

subject to: p0 − r0 + L(r) ≥ c;
r ∈ P.

(8)

The inequality constraint can be replaced by the equality constraint p0 − r0 +L(r) = c without
affecting the optimal value of the original problem. Furthermore, we may assume that the cash
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component r0 equals 0 as it does not play a role in the optimization problem. To find the optimal
solution we hence might as well solvemaximize U(p− r) + L(r);

subject to: L(r) = c− p0;
r ∈ P.

(9)

Note that without loss of generality we may assume that p0 = 0; otherwise use the cash liquidity
policy L(c− p0).

3.2. A calculation scheme for portfolio valuation with ladder MSDCs

In case of portfolio valuation based on ladder MSDCs we can solve the associated optimization
problem (9) numerically, for example, by an interior point algorithm (see Boyd and Vandenberghe
(2004)). However, the implementation of the algorithm could be computationally inefficient in
the sense that several iterations might be required to bring the solution within reasonable bounds
in high dimensions. In addition, the non-smoothness of the ladder MSDCs increases the difficulty
of implementing conventional convex optimization algorithms.1 Hence, the aim of this section is
to provide an algorithm for problem (9) yielding an exact global optimal solution r∗.
Unless otherwise stated, throughout the remainder of this section we use the following as-

sumption.

Assumption 3.1: Any investor holds a portfolio p consisting of long positions only and uses
a cash liquidity policy L(c) (c > 0).

Proposition 3.2: Under Assumption 3.1, the maximization problem (9) has the same optimal
solution as the following minimization problemminimize C(r);

subject to L(r) = c− p0;
r ∈ P.

(10)

Proof: Since we are prepared to liquidate our portfolio for cash under a cash policy, the port-
folios p and r should have the same sign componentwise. It follows that U(p−r) = U(p)−U(r)
by the definition of the uppermost MtM value. Consequently, the objective function of problem
(7) can be rewritten as

U(p)− U(r) + L(r).

Since, given p, we can always determine U(p), maximizing this function under the given con-
straints will yield the same optimal solution r∗ as maximizing the following function under the
same constraints:

−U(r) + L(r).

1For example, the optimality conditions in the interior point algorithm will not apply at non-smooth points of the ladder
MSDC. See Boyd and Vandenberghe (2004) for more information.
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Obviously, minimizing

U(r)− L(r)

again yields the same optimal solution r∗. Noting that C(r) = U(r)− L(r) proves the result. �

Remark 1 : The following inequality holds in general:

U(p− r) ≤ U(p)− U(r).

For example, we may be prepared to increase our share in several risky assets or reduce the
purchase of risky assets. In situations like these, components of the original portfolio p and
corresponding components of to-be-liquidated portfolio r may have different signs. Equality
holds under Assumption 3.1.

Informally, Proposition 3.2 implies that to determine the value of a portfolio under a cash
liquidity policy is to determine a portfolio r∗ such that liquidating r∗ in exchange for cash
minimizes the uppermost liquidation cost C(r∗). This result will prove useful at a later stage.
Given that all assets are assumed to be characterized by ladder MSDCs, we can conveniently

break up each and every position in our portfolio into a finite number of volumes. To each of
these volumes there corresponds a definite market quote as represented by the MSDC.
The idea of the algorithm is to consider all of these portfolio bits together and to liquidate them

in a systematic and orderly manner, starting with the portions which will be liquidated with the
smallest cost relative to the best bid, and subsequently to the ones that can be liquidated with
second smallest cost, and so on, until the cash constraint is met.
If the minimum cash requirement that the portfolio should be prepared to satisfy exceeds

the liquidation MtM value of the entire portfolio, then we will never be able to meet the cash
constraint; by definition, we set the portfolio value to be −∞.
Alternatively, suppose that we sell off a fraction of each position against the best bid price

and that the total cash we subsequently receive in return exceeds the cash constraint. Then the
value of the portfolio equals the uppermost MtM value and there exist infinitely many optimal
solutions.
We will now make this formal, starting with the following definition.

Definition 3.3: Given is an asset i, characterized by MSDC mi. The liquidity deviation of
a volume s of asset i is defined as:

Si(s) :=
m+

i −mi(s)

m+
i

for s > 0. (11)

The liquidity deviation is the relative difference between the best bid price and the last market
quote mi(s) hit for a volume s. In this sense, it measures the liquidity of asset i at si units traded
relative to the best bid.
Given any asset, the liquidity deviation is a non-decreasing function, as the MSDC correspond-

ing to that asset is non-increasing. For a security, the values of the liquidity deviation are in
[0, 1], as the lower bound of the corresponding MSDC is 0. For a swap, the values are in [0,+∞).
Since the MSDC of an asset is assumed to be piecewise constant, each value of liquidity deviation
corresponds to a maximum bid size.
Using the previously defined liquidity deviation, positions are liquidated in a definite order, as

follows. Given a portfolio r = (r0, r1, . . . , rN ), assume that we want to liquidate all the ri, i > 0.
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(a) Asset 1

Maximum Bid Size Bid Price
200 11.65
200 11.55
200 11.45

(b) Asset 2

Maximum Bid Size Bid Price
200 19.58
600 19.5
200 19.2

Table 1. Bid price information of assets 1 and 2

Each non-cash position ri can be written as a sum

ri =

Ji∑
j=1

rij , i = 1, . . . , N, (12)

where rij is called a liquidation size.
To define the liquidation size rij , consider the bid part of a ladder MSDC mi, which is con-

structed by a finite number of bid prices with maximum bid sizes. For each ri in asset i, we can
identify a finite number Ji of bid prices mij with liquidation sizes rij , j = 1, . . . , Ji.
For the first Ji − 1 liquidation sizes rij (j = 1, . . . , Ji − 1), they are equal to the first Ji − 1

maximum bid sizes recognized from the market. For the Ji-th liquidation size rij , it is less than
or equal to the Ji-th maximum bid size. Moreover, each liquidation size rij corresponds to each
bid price mij . In particular, the first liquidation size of each asset ri1 corresponds to the best
bid m+

i = mi1.
Afterwards, the liquidity deviation for each liquidation size can be written as

Sij =
m+

i −mij

m+
i

=
mi1 −mij

mi1
. (13)

Now we put the liquidity deviations Sij in ascending order indexed by k, and we generically
refer to any term of this sequence as Sk(r) (the addition of r as an extra parameter will prove
convenient later on). Note that the length of the liquidation sequence equals K = J1+ · · ·+ JN .
In addition, we observe that there exists a natural one-one correspondence between the se-

quence {Sk(r)}, the sequence of liquidation size {rij} and the sequence of bid prices {mij}.
Hence, while preserving these one-one correspondences, we relabel the sequences {rij} and {mij}
as {rk} and {mk}, respectively. We call the sorted index k the liquidation sequence, which is a
permutation of the index (i, j).
Note that the first N terms of the sequence {mk} are the best bids m+

i , i = 1, . . . , N .
To illustrate the above concepts, consider an example as follows. Given two illiquid assets, the

bid part of which can be read from the market are shown in Table 1. Assume that we hold a
portfolio which contains 600 units in asset 1 and 900 in asset 2. Then the liquidation sizes for
the two assets are shown in Table 2 and the sorted liquidity deviations as well as the liquidation
sequence are presented in Table 3.
To meet the cash constraint embodied in the cash liquidity policy we start liquidating the

portfolio from S1(r), then S2(r), and so on, until we have met the cash requirement.
The liquidation sequence effectively directs the search process throughout the constraint set

towards the global solution, and exactly so. This is summarized in the following theorem, which
we will prove subsequently.

Proposition 3.4: Given is a portfolio p such that each asset is characterized by a ladder
MSDC. Under Assumption 3.1, the optimization problem (9) has the same optimal solution as



February 19, 2013 9:53 Quantitative Finance RQUF-2010-0469

Efficient Portfolio Valuation Incorporating Liquidity Risk 9

(a) Asset 1

Liquidation Size Bid Price
r11 200 m11 11.65
r12 200 m12 11.55
r13 200 m13 11.45

(b) Asset 2

Liquidation Size Liquidation Size
r21 200 m21 19.58
r22 600 m22 19.5
r23 100 m23 19.2

Table 2. Liquidation size of our portfolio r = (0, 600, 900)

Liquidation Sequence Index (i, j) Asset Liquidation Size Bid Price Liquidity Deviation
1 (1, 1) 1 200 11.65 0
2 (2, 1) 2 200 19.58 0
3 (2, 2) 2 600 19.5 0.004085802
4 (1, 2) 1 200 11.55 0.008583691
5 (1, 3) 1 200 11.45 0.017167382
6 (2, 3) 2 100 19.2 0.019407559

Table 3. Liquidity deviation and liquidation sequence

the following: minimize
∑K

k=1 Sk(r);
subject to: L(r) = c− p0;

r ∈ P.
(14)

Loosely put, the optimal solution is the one yielding the minimum total sum of liquidity
deviation. Intuitively, the proposition implies that, to meet cash demands, we should liquidate
the most liquid assets as they are easier to sell off and their liquidation will incur less losses
compared to more illiquid assets.

Proof: Let a portfolio p = (p0, p1, . . . , pN ) be given and suppose we liquidate a portfolio
r = (r0, r1, . . . , rN ) to meet a liquidity policy L. Asset i has a corresponding MSDC mi,
i = 0, 1, . . . , N . For simplicity, r0 is set to be 0.
From Proposition 3.2, the optimal solution of (9) minimizes the uppermost liquidation cost.

Using that all assets are characterized by ladder MSDCs, the objective function C(r) can be
rewritten as follows:

C(r) = U(r)− L(r)

=
N∑
i=1

Ji∑
j=1

(
m+

i rij −mijrij
)
.

Note that for each asset i, m+
i ≥ mij for all j. It follows that the minimum of the sum of the

absolute differences between the m+
i rij and mijrij is the same as the minimum of the sum of

the relative differences. Hence, to find the optimal solution we might as well minimize

N∑
i=1

Ji∑
j=1

m+
i rij −mijrij

m+
i rij

=

N∑
i=1

Ji∑
j=1

m+
i −mij

m+
i

=

N∑
i=1

Ji∑
j=1

Sij(r)

=

K∑
k=1

Sk(r).
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On the last line, note that K = J1 + · · ·+ JN . �

Based on this result, we now state the algorithm for portfolio valuation assuming only ladder
MSDCs under Assumption 3.1. For the sake of clarity we recall that the optimal solution r∗ of
problem (9) should satisfy L(r∗) = c− p0. Also, we assume that p0 = 0 and r0 = 0. (Otherwise,
we can set the cash requirement c = c− p0.) The pseudocode is summarized in Algorithm 1.

Algorithm 1 Algorithm for portfolio valuation assuming ladder MSDCs and a cash liquidity
policy L(c)

Calculate:
U(p) =

∑N
i=1m

+
i · pi;

L(p) =
∑N

i=1

∑Ji

j=1mij · pij ;
V1(p) =

∑N
i=1m

+
i · pi1;

Sij =
mi1−mij

mi1
;

Sort the Sij as an ascending sequence with index k. {With k running from 1 to J1+ · · ·+JN}
if c > L(p) then

return V L(c)(p) = −∞; {There is no optimal solution satisfying the cash constraint.}
else

if c = L(p) then
return V L(c)(p) = L(p); {The optimal solution r∗ = p.}

else
if c ≤ V1(p) then {Liquidating pi1 to the respective best bids meets the cash constraint.}

return V L(c)(p) = U(p); {There are infinitely many optimal solutions.}
else

U(r) = V1(p);
c = c− V1(p);
k = N + 1; {Start loop from the first part with non-zero liquidity deviation until c
becomes 0.}
while c > 0 do

if c
mk

> pk then

U(r) = U(r) +m+
k · pk;

c = c−mk · pk;
k = k + 1;

else
U(r) = U(r) +m+

k · c
mk

;
c = 0;

end if
end while
return V L(c)(p) = U(p)− U(r) + c {Here we have L(r) = c.}

end if
end if

end if

There are generally four cases stated in Algorithm 1:

(i) if the cash requirement c is higher than the liquidation MtM value L(p) such that the
cash liquidity policy cannot be met, then we assign −∞ to the portfolio value V L(c)(p)
and conclude that there is no optimal solution;

(ii) if the cash requirement c is equal to the liquidation MtM value L(p) such that we have to
liquidate all parts of the portfolio, then the portfolio value V L(c)(p) equals the liquidation
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MtM value L(p) and the unique optimal solution r∗ = p;
(iii) if the cash requirement c is less than or equal to V1(p), the liquidation value of all parts

of the portfolio corresponding to the best bids, then the portfolio value V L(c)(p) equals
V1(p) and there exist infinite many optimal solutions;

(iv) if the cash requirement c is higher than V1(p) but less than L(p), we have to liquidate the
portfolio along the liquidation sequence until the cash requirement is met and the unique
optimal solution r∗ can be found by recording the liquidation parts of corresponding
assets in the calculation procedure of the algorithm.

The piecewise constant MSDCs in the convex optimization problem generally increase the
difficulty of the search for the global optimal solution with standard software. With the afore-
mentioned calculation scheme listed in Algorithm 1, instead, we can solve the optimization
problem accurately and efficiently via the liquidation sequence.

4. Portfolio Valuation Using Continuous MSDCs

There typically is no analytic solution to the convex optimization problem (9). However, it can
be shown that if we model the MSDC as a continuous function we can obtain simple analytic
solutions from the method of Lagrange multipliers. In Section 4.1 we will first look at continuous
MSDCs without imposing any specific form for them. We will subsequently look at MSDCs
shaped as exponential functions in Sections 4.2 and 4.3. Empirically, we find that exponential
MSDCs can be used to model MSDCs for security-type equity assets with different caps. We
then propose to use exponential MSDCs to approximate ladder MSDCs in order to improve the
efficiency of portfolio valuation in Section 4.4. We will assume the cash liquidity policy in this
section.

4.1. The general case

Assume N illiquid assets labeled 1, . . . , N with MSDCs mi, i = 1, 2, . . . , N . Each mi is assumed
to be continuous on R. This implies that mi(0) exists. We will exclude the point mi(0) later
in this section. In addition, each mi is assumed to be strictly decreasing. Adopting a cash
liquidity policy, valuing a portfolio consisting of positions in these assets comes down to solving
the optimization problem (9). The solution to this optimization problem can be analytically
derived, as is shown by the following proposition proposed by Acerbi and Scandolo (2008).

Proposition 4.1: Assuming continuous strictly decreasing MSDCs and the cash liquidity policy
L(c), the optimal solution r∗ = (0, r⃗∗) to optimization problem (9) is unique and given by

r∗i =

{
m−1

i (mi(0)
1+λ ), if p0 < c;

0, if p0 ≥ c,
(15)

where m−1
i (·) denotes the inverse of the MSDC function mi(·), and the Lagrange multiplier λ,

representing the marginal liquidation cost, can be determined from the equation L(r∗) = c− p0.

We refer to Acerbi and Scandolo (2008) for a proof.

Remark 2 : Note that we can extend the above to the case where the MSDCs are not contin-
uous at the point 0, i.e., the case where there is a positive bid-ask spread. We have to change
the definition of the value at mi(0) to the limit m+

i in the case of long positions or to m−
i in the

case of short positions.
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Obviously, by using the Lagrange multiplier method, we can generalize the case to any liquidity
policy giving rise to equality constraints. When using a general liquidity policy which results in
inequality constraints, we can solve the optimization problem (7) by checking the Karush-Kuhn-
Tucker (KKT) conditions. In addition, the Lagrange dual method may be useful as well.

4.2. Exponential MSDCs for large- and medium-cap equities

We continue the discussion by looking at a particular example of a MSDC, i.e., the exponential
MSDC. As it turns out, the exponential MSDCs form an effective model to characterize a
security-type asset and to determine the portfolio value by convex optimization. We will discuss
this in Section 4.4.
Many researches have shown that there is a relation between the price change and the trading

volume in the market during a short time period. Cont et al. (2011) propose that there is a
“square-root” relation between the price change and the trading volume for S&P 500 equities.
A similar result can be found in Almgren et al. (2005), where the authors proposed a “3/5”-
relation between the temporary price impact and the trade size for large-cap US equites. These
parameters correspond to a medium-size price impact.
In our paper, we interpret the price change as log(m(s)/m+), i.e., the relative change between

the bid (or ask) price m(s) and the best bid m+ (or best ask m−) over a short time period,
during which an MSDC can be formed and denote trading volume to be s.
Large-and medium-cap equities listed on stock exchanges such as the London Stock Exchange

and Euronext are actively traded and thus relatively liquid. From available data we observe a
“square-root” relation between the bid price change and the volume over a short time, as follows.

log

(
m(s)

m+

)
= −k

√
s+ ϵ, (16)

where m+, k > 0 and ϵ is the noise term.
For the ask price part, where s < 0, then we have the following model

log

(
m(s)

m−

)
= k

√
|s|+ ϵ, (17)

where m−, k > 0 and ϵ is the noise term.
When skipping the noise term, we use the following exponential MSDC models to approximate

the bid part of the ladder MSDC for a large- or medium-cap equity as

m(s) = m+ · e−k
√
s, (18)

and to approximate the ask part as

m(s) = m− · ek
√

|s|. (19)

We give two examples of the ladder MSDCs and the above approximated exponential MSDCs
by least squares regression for large- and medium-cap equities in Figure 1.
Suppose there are N (large- or medium-cap) security-type assets 1, 2, . . . , N , the bid parts of

which are characterized by

mi(s) = m+
i · e−ki

√
s. (20)
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(b) Medium-cap equity

Figure 1. Exponential MSDCs versus ladder MSDCs for large- and medium-cap equities

We call ki the liquidity risk factor for the corresponding asset i (i = 1, . . . , N), which measures
the general liquidity condition of the asset i. From Proposition 4.1 and Remark 2, we can
approximate portfolio values under different liquidity policies.
As an example, assuming a portfolio with only long positions, then we have the liquidation

MtM value

L(p) = p0 +
N∑
i=1

∫ pi

0
mi(x)dx = p0 +

N∑
i=1

2m+
i

k2i

(
1− ki

√
pie

−ki
√
pi − e−ki

√
pi

)
, (21)

and under a cash liquidity policy L(c) with p0 < c, from Proposition 4.1, we have

r∗i =

(
log(1 + λ)

ki

)2

, i = 1, . . . , N,

with λ = ex − 1, x > 0,

and

(
1− c− p0∑N

i=1
2m+

i

k2
i

)
ex − x− 1 = 0.

(22)

The last equation can be solved numerically by using the Newton-Raphson iteration method or
the Taylor’s expansion. Hence, the portfolio value under the cash liquidity L(c) reads

V L(c)(p) = U(p− r∗) + L(r∗) =

N∑
i=1

m+
i ·

(
pi −

(
log(1 + λ)

ki

)2)
+ c. (23)

For large- and medium-cap assets, since they are generally very liquid to trade, the uppermost
liquidation cost is usually very small.
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Figure 2. Exponential MSDCs versus ladder MSDCs for a small-cap equity

4.3. Exponential MSDCs for small-cap equities

On the other hand, for small-cap equities, we find there is a “square” relation between the bid
price change and the volume over a short time, which implies a large price impact, as

log

(
m(s)

m+

)
= −ks2 + ϵ, (24)

where m+, k > 0 and ϵ is the noise term.
Similarly, for the ask price change we have

log

(
m(s)

m−

)
= k|s|2 + ϵ, (25)

where m−, k > 0 and ϵ is the noise term.
When skipping the noise term, we have the following exponential MSDC model to approximate

the bid part of a ladder MSDC of a small-cap equity as

m(s) = m+ · e−ks2 , (26)

and for the ask part we have the exponential MSDC

m(s) = m− · ek|s|2 . (27)

Here we give an example of a ladder MSDC and the approximated exponential MSDC for a
small-cap equity in Figure 2.
Suppose that there are N (small-cap) security-type assets 1, 2, . . . , N , whose bid parts are

characterized by the following exponential MSDCs

mi(s) = m+
i · e−kis2 , (28)
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with m+
i , ki > 0 for all i = 1, . . . , N . By using a least squares approximation, we could fit the

value of m+
i and ki from the real data. See Section 4.4.

To illustrate this type of exponential MSDC function, we assume a portfolio with only long
positions. Then the liquidation MtM value reads

L(p) = p0 +

N∑
i=1

∫ pi

0
mi(x)dx = p0 +

√
π

2

N∑
i=1

m+
i√
ki

· erf(
√

kipi), (29)

where erf(·) is the Gauss error function, which can be numerically obtained.
For a cash liquidity policy L(c) with p0 < c, from Proposition 4.1, we have

r∗i =

√
log(1 + λ)

ki
, i = 1, . . . , N,

with λ = ez
2 − 1,

z = erf−1

(
c− p0

√
π
2

∑N
i=1

m+
i√
ki

)
,

(30)

where erf−1(·) is the inverse error function, which can also be numerically obtained. Hence,

V L(c)(p) = U(p− r∗) + L(r∗) =

N∑
i=1

m+
i ·

(
pi −

√
log(1 + λ)

ki

)
+ c. (31)

4.4. Approximating ladder MSDCs by exponential MSDCs

In Section 3 we have defined a fast calculation scheme for portfolio valuation with ladder MSDCs.
In the real world, however, we may face a situation where to collect the price information to
form a ladder MSDC is too costly, or where the information is incomplete or not available, e.g.,
in an over-the-counter (OTC) market.
As an order book records the trading volume, which forms the basis of MSDCs, one could

model ladder MSDCs from the modeling of order book dynamics. For example, in Bouchaud
et al. (2002), the trading volume at each bid (or ask) price in the stock order book followed a
Gamma distribution. In Cont et al. (2010), a continuous Markov chain was used to model the
evolution of the order book dynamics.
In our paper, we aim to use the basic continuous MSDC models to approximate ladder MSDCs

directly, as we can then apply the Lagrange multiplier method and other convex optimization
techniques to obtain analytic solutions and thus improve the efficiency.
For actively traded large- or medium-cap security-type assets, a portfolio valuation based on

exponential MSDCs (20) with their analytic solutions, is significantly faster than with ladder
MSDCs. For less actively traded small-cap assets, we can use the exponential MSDC model (26)
to obtain portfolio values. For OTC traded assets, lacking price information, the exponential
MSDC (28) for small-cap security-type asset with a large liquidity risk factor can be a first
modeling attempt.
Generally, when using exponential MSDC models (28) for small-cap security-type assets, we

need to estimate or model the parameters m+
i and ki. The dynamics of the best bid m+

i can be
read from market data, or modeled by asset price models (e.g., geometric Brownian motion).
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If we assume that the liquidity risk factor ki is independent of m+
i , we can employ time series

or stochastic processes to model ki. If ki is assumed to be correlated with m+
i , we also need

to model the correlation. Furthermore, for security-type assets traded in an OTC market, we
may use the mere price information of the asset to estimate liquidity risk factors in the MSDC
models (28). In particular, the liquidity risk factor may be set at a high level to represent the
illiquidity of the asset.
For the approximation of ladder MSDCs of illiquid security-type assets by using small-cap

exponential MSDCs (28), we assume that the portfolio consists of only long positions inN illiquid
security-type assets. If we assume that the liquidity risk factor of asset i, ki, is independent of
the best bid m+

i , then parameter ki can be estimated from the ladder MSDC of asset i by
the method of least squares as follows. Provided that m+

i has already been determined, we

transform the exponential function as − log(mi(s)

m+
i

) = s2ki, and estimate ki by n discrete pairs

(sn,− log(mi(sn)

m+
i

)) to minimize the merit function:

n∑
j=1

(− log(
mi(sj)

m+
i

)− s2jki)
2. (32)

The least squares estimate of parameter ki then reads

k̂i =
−
∑n

j=1 s
2
j log(

mi(sj)

m+
i

)∑n
j=1 s

4
j

. (33)

5. Numerical Results

In this section we give examples for the various concepts discussed in this paper. In particular,
we explain the calculation scheme for efficient portfolio valuation by means of an example. Since,
for large- or medium-cap security assets, the uppermost liquidation cost is usually quite small,
we will focus on relatively illiquid small-cap security assets and valuate portfolios using ladder
MSDCs and exponential MSDCs.

5.1. Portfolio with four illiquid assets

The example here is based on four illiquid small-cap security-type assets. We deal with a portfolio
p = (0, 3400, 2400, 3200, 2800) with zero cash asset and long positions in all four illiquid assets.
The bid prices with liquidation sizes for the portfolio are chosen at a given time as presented in
Table 4.
It is easy to calculate the uppermost MtM value U(p) and the liquidation MtM value L(p)

from the tables, that is, U(p) = 3.01042× 105 and L(p) = 2.73720× 105. Hence, the uppermost
liquidation cost equals C(p) = 0.27322 × 105. If the true portfolio value is equal to the liqui-
dation MtM value, but if we would use however the uppermost MtM value instead, we would
overestimate the portfolio value by as much as 10%.
For different cash requirements, we use the sorted liquidity deviations (see Table 5) to find the

liquidation sequence and then calculate the portfolio values (see Figure 3). From the last row of
Table 5, we can see that the liquidity deviation can be as large as 44.5% for the most illiquid
part of the MSDC for asset 1, which indicates a high level of liquidity risk.
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(a) Asset 1

Liquidation Size Bid Price
200 11.65
200 11.55
200 11.45
200 11.1
200 11.05
200 11
200 10.3
500 9.3
500 6.5
1000 6.46

(b) Asset 2

Liquidation Size Bid Price
200 19.58
600 19.5
200 19.2
200 19.15
200 19.1
200 18.6
200 18.5
200 16.85
200 16.1
200 16.05

(c) Asset 3

Liquidation Size Bid Price
400 29.3
200 29.16
400 29.15
400 28.9
200 28
600 27.8
200 27.15
200 27
400 26
200 22

(d) Asset 4

Liquidation Size Bid Price
200 43.1
400 42.65
200 41.9
400 41
200 40.86
200 40.4
200 39
400 37
400 36
200 35.1

Table 4. Bids of assets 1-4
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Figure 3. Portfolio value with different cash requirements

From Figure 3, we infer that the portfolio value decreases at a faster rate as we have to liquidate
positions of an increasing number of illiquid assets to meet the cash requirements, which will
definitely cause more significant losses during liquidation.
The calculation scheme in Algorithm 1 provides an efficient search direction to the optimal

value guided by the liquidation sequence. For this four-asset example, we compare our calculation
scheme with the fmincon function with an interior point algorithm in MATLAB for portfolio
valuation. The optimization is repeated for around 2.5 × 105 different cash requirements and
the total computation time is recorded.1 The averaged time for each cash liquidity policy equals

1The computer used for all experiments has an Intel Core2 Duo CPU, E8600 @3.33GHz with 3.49 GB of RAM and the
code is written in MATLAB R2009b.
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Liquidation Sequence Index (i, j) Asset Liquidation Size Bid Price Best Bid Liquidity Deviation
1 (1, 1) 1 200 11.65 11.65 0
2 (2, 1) 2 200 19.58 19.58 0
3 (3, 1) 3 400 29.3 29.3 0
4 (4, 1) 4 200 43.1 43.1 0
5 (2, 2) 2 600 19.5 19.58 0.004085802
6 (3, 2) 3 200 29.16 29.3 0.004778157
7 (3, 3) 3 400 29.15 29.3 0.005119454
8 (1, 2) 1 200 11.55 11.65 0.008583691
9 (4, 2) 4 400 42.65 43.1 0.010440835
10 (3, 4) 3 400 28.9 29.3 0.013651877
11 (1, 3) 1 200 11.45 11.65 0.017167382
12 (2, 3) 2 200 19.2 19.58 0.019407559
13 (2, 4) 2 200 19.15 19.58 0.021961185
14 (2, 5) 2 200 19.1 19.58 0.024514811
15 (4, 3) 4 200 41.9 43.1 0.027842227
16 (3, 5) 3 200 28 29.3 0.044368601
17 (1, 4) 1 200 11.1 11.65 0.0472103
18 (4, 4) 4 400 41 43.1 0.048723898
19 (2, 6) 2 200 18.6 19.58 0.050051073
20 (3, 6) 3 600 27.8 29.3 0.051194539
21 (1, 5) 1 200 11.05 11.65 0.051502146
22 (4, 5) 4 200 40.86 43.1 0.051972158
23 (2, 7) 2 200 18.5 19.58 0.055158325
24 (1, 6) 1 200 11 11.65 0.055793991
25 (4, 6) 4 200 40.4 43.1 0.062645012
26 (3, 7) 3 200 27.15 29.3 0.07337884
27 (3, 8) 3 200 27 29.3 0.078498294
28 (4, 7) 4 200 39 43.1 0.09512761
29 (3, 9) 3 400 26 29.3 0.112627986
30 (1, 7) 1 200 10.3 11.65 0.115879828
31 (2, 8) 2 200 16.85 19.58 0.139427988
32 (4, 8) 4 400 37 43.1 0.141531323
33 (4, 9) 4 400 36 43.1 0.164733179
34 (2, 9) 2 200 16.1 19.58 0.17773238
35 (2, 10) 2 200 16.05 19.58 0.180286006
36 (4, 10) 4 200 35.1 43.1 0.185614849
37 (1, 8) 1 500 9.3 11.65 0.201716738
38 (3, 10) 3 200 22 29.3 0.249146758
39 (1, 9) 1 500 6.5 11.65 0.442060086
40 (1, 10) 1 1000 6.46 11.65 0.445493562

Table 5. Liquidity deviation and liquidation sequence

0.568 millisecond for our scheme, whereas fmincon takes 202.7 milliseconds, which implies that
the time difference is a factor of 300.
Since the ascending sequence of liquidity deviations shows the illiquidity of different parts of the

corresponding asset, liquidating a portfolio along the liquidation sequence will cause minimum
loss of values compared to the other kinds of liquidation.

5.2. Using exponential MSDCs to approximate ladder MSDCs

For the four-asset example with the ladder MSDCs from Section 5.1, we use the exponential
MSDCs (28) for small-cap equities. Figure 4 illustrates the ladder MSDCs and the correspond-
ing exponential approximating MSDCs. The latter MSDCs are estimated by least squares (see
Section 4.4).
The liquidity risk factors in the exponential MSDCs are found as k1 = 7.4193 × 10−8, k2 =

3.5499× 10−8, k3 = 1.8691× 10−8 and k4 = 3.1634× 10−8. Hence, we infer that asset 1 is most
illiquid and asset 3 is most liquid in general.
In Figure 5(a), we compare the portfolio values obtained by using the exponential MSDCs

with the reference portfolio values by the ladder MSDCs under different cash requirements. The
relative difference in the portfolio values is presented in Figure 5(b).
The relative difference found is at most 1.91%, so that in this example the exponential MSDCs

are accurate approximations. The large approximation error lies in the tail part of the figure
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(b) Asset 2
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(c) Asset 3
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Figure 4. Exponential MSDCs versus ladder MSDCs for the bid prices of assets 1-4
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Figure 5. Modeling ladder MSDCs by exponential MSDCs
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which caused by the illiquidity of the tail parts of assets 1 and 3. This means the exponential
MSDCs may fail to approximate the tail parts of assets 1 and 3 if there are huge drops in price.

6. Conclusion

Within the theory proposed by Acerbi and Scandolo (2008) the valuation of a portfolio can
be framed as a convex optimization problem. We have proposed a useful and efficient algorithm
using a specific form of the market data function, i.e., all price information is represented in terms
of a ladder MSDC. We have also considered approximations of ladder MSDCs by exponential
functions.
As long as the portfolio is valuated by using the new models incorporating liquidity risk, one

can calculate Value-at-Risk and other risk measures for risk management. Another application
is in portfolio selection. Under the new portfolio theory, the procedure of portfolio selection will
become a convex optimization of the allocation based on the convex optimization of portfolio
valuation.
By way of future research, methods to estimate the liquidity risk factor in the exponential

functions may be improved and more sophisticated models to replace the exponential functions
may be considered.
Whereas in regulated markets such as stock exchanges price information is relatively easily

available, bid and ask prices for assets traded in the OTC markets may not be easily obtained.
Hence, it seems nontrivial to apply this portfolio theory to these type of markets. Extracting all
relevant price information from OTC markets is however a challenge for all researchers.

Acknowledgements

The authors would like to thank Dr Carlo Acerbi (MSCI) for his kind help and fruitful discussions
on the theory and the MSDC models. We also thank the anonymous referees for providing us
with insightful comments on our first version.

References

Acerbi, C., Portfolio theory in illiquid markets. In Pillar II in the New Basel Accord: The Chal-
lenge of Economic Capital, 2008 (Risk Books: London).

Acerbi, C. and Finger, C., The value of liquidity: can it be measured? [online]. , 2010. Available
online at: http://www.investmentreview.com/files/2010/07/The-value-of-liquidity1.pdf (ac-
cessed June 2010).

Acerbi, C. and Scandolo, G., Liquidity risk theory and coherent measures of risk. Quantitative
Finance, 2008, 8, 681–692.

Almgren, R., Thum, C., Hauptmann, E. and Li, H., Equity market impact. Risk, 2005, July,
57–62.
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