next up previous
Next: About this document Up: Finite volume computation of Previous: Conclusions

References

1
R. Aris. Vectors, tensors and the basic equations of fluid mechanics. Prentice-Hall Inc., Englewood Cliffs, N.J., 1962.

2
W.D. Baines and D.J. Knapp. Wind driven water currents. J. Hydraulics Division ASCE, 91:295--321, 1965.

3
T. Bo and H. Iacovides. The discretization of the turbulence transport equations in the prediction of flow and heat transfer through a sharp U-bend. In C. Taylor, editor, Proc. Eighth Int. Conf. on Numer. Meth. Laminar and Turbulent Flow, pages 351--362, Pineridge Press, Swansea, U.K., 1993.

4
M. Braaten and W. Shyy. A study of recirculating flow computation using body-fitted coordinates: consistency aspects and mesh skewness. Numer. Heat Transfer, 9:559--574, 1986.

5
E. Brakkee and P. Wilders. A domain decomposition method for the advection-diffusion equation. Report 94-08, Delft University of Technology, Delft, The Netherlands, 1994.

6
H.C. Chen and V.C. Patel. The flow around wing-body junctions. In T. Cebeci, editor, Proc. Fourth Symp. on Numer. and Phys. Aspects of Aerod. Fl., pages 1--15, California State University, Long Beach, USA, 1989.

7
H.C. Chen, V.C. Patel, and S. Ju. Solutions of Reynolds-averaged Navier-Stokes equations for three-dimensional incompressible flows. J. Comput. Phys., 88:305--336, 1990.

8
N-H. Cho and C.A.J. Fletcher. Computation of turbulent conical diffuser flows using a non-orthogonal grid system. Comput. Fluids, 19:347--361, 1991.

9
Y.D. Choi, H. Iacovides, and B.E. Launder. Numerical computation of turbulent flow in a square-sectioned 180 deg bend. ASME J. Fluids Engng., 111:59--68, 1989.

10
P.J. Coelho and J.C.F. Pereira. Finite volume computation of the turbulent flow over a hill employing 2D or 3D non-orthogonal collocated grid systems. Int. J. Numer. Meth. Fluids, 14:423--441, 1992.

11
I. Demirdzic, A.D. Gosman, R.I. Issa, and M. Peric. A calculation procedure for turbulent flow in complex geometries. Comput. Fluids, 15:251--273, 1987.

12
I.A. Demirdzic. A finite volume method for computation of fluid flow in complex geometries. Ph.D. thesis, University of London, 1982.

13
G.B. Deng. Numerical simulation of incompressible turbulent appendage-flat plate junction flows. In C. Taylor, W.G. Habashi, and M.M. Hafez, editors, Proc. Sixth Int. Conf. on Numer. Meth. Laminar and Turbulent Flow, pages 793--803, Pineridge Press, Swansea, U.K., 1989.

14
M.D. Deshpande and D.P. Giddens. Turbulence measurements in a constricted tube. J. Fluid Mech., 97:65--89, 1980.

15
M.A. Habib and J.H. Whitelaw. The calculation of turbulent flow in wide-angle diffusers. Numer. Heat Transfer, 5:145--164, 1982.

16
R.I. Issa and P.J. Oliveira. Numerical prediction of phase separation in two-phase flow through T-junctions. Comput. Fluids, 23:347--372, 1994.

17
J. Kim, S.J. Kline, and J.P. Johnston. Investigation of a reattaching turbulent shear layer: flow over a backward-facing step. ASME J. Fluids Engng., 102:302--308, 1980.

18
S. Koshizuka and Y. Oka. A calculation procedure of coordinate-free Navier-Stokes equations on boundary-fitted grids. In C. Taylor, J.H. Chin, and G.M. Homsy, editors, Proc. Seventh Int. Conf. on Numer. Meth. Laminar and Turbulent Flow, pages 1474--1484, Pineridge Press, Swansea, U.K., 1991.

19
D. Kwak, J.L.C. Chang, S.P. Shanks, and S.R. Chakravarthy. A three-dimensional incompressible Navier-Stokes flow solver using primitive variables. AIAA J., 24:390--396, 1986.

20
B.E. Launder and D.B. Spalding. The numerical computation of turbulent flows. Comput. Meth. Appl. Mech. Engng., 3:269--289, 1974.

21
F-S. Lien and M.A. Leschziner. Multigrid convergence acceleration for complex flow including turbulence. In W. Hackbush and U. Trottenberg, editors, Multigrid Methods III, volume 98, pages 277--288, Birkhäuser, Basel, 1991.

22
S. Majumdar and W. Rodi. Three-dimensional computation of flow past cylindrical structures and model cooling towers. Building and Environment, 24:3--22, 1989.

23
M.C. Melaaen. Analysis of fluid flow in constricted tubes and ducts using body-fitted non-staggered grids. Int. J. Numer. Meth. Fluids, 15:895--923, 1991.

24
V. Michelassi and F. Martelli. Efficient solution of turbulent incompressible separated flows. In P. Wesseling, editor, Proc. Eighth GAMM Conf. on Numer. Meth. Fluid Mech., pages 373--390, Vieweg, Braunschweig/Wiesbaden, 1990. Notes on Numerical Fluid Mechanics 29.

25
A.E. Mynett, P. Wesseling, A. Segal, and C.G.M. Kassels. The ISNaS incompressible Navier-Stokes solver: invariant discretization. Appl. Sci. Res., 48:175--191, 1991.

26
M. Nallasamy. Turbulence models and their applications to the prediction of internal flows: a review. Comput. Fluids, 15:151--194, 1987.

27
S.V. Patankar. Numerical heat transfer and fluid flow. McGraw-Hill, New York, 1980.

28
M. Peric. Finite volume method for the prediction of three-dimensional fluid flow in complex ducts. Ph.D. thesis, Imperial College, London, 1985.

29
J. Piquet and P. Queutey. Computation of the viscous flow past a prolate spheroid at incidence. In P. Wesseling, editor, Proc. Eighth GAMM Conf. on Numer. Meth. Fluid Mech., pages 464--473, Vieweg, Braunschweig/Wiesbaden, 1990. Notes on Numerical Fluid Mechanics 29.

30
S.B. Pope. The calculation of turbulent recirculating flows in general orthogonal coordinates. J. Comput. Phys., 26:197--217, 1978.

31
C.W. Rapley. Turbulent flow in a duct with cusped corners. Int. J. Numer. Meth. Fluids, 5:155--167, 1985.

32
A.K. Rastogi. Hydrodynamics in tubes perturbed by curvilinear obstructions. ASME J. Fluids Engng., 106:262--269, 1984.

33
C.M. Rhie and W.L. Chow. Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J., 21:1525--1532, 1983.

34
W. Rodi. Turbulence models and their application in hydraulics - A state of the art review. International Association of Hydraulic Research, Delft, The Netherlands, 1984.

35
H. Rolfes, J.A. Visser, and A. Bekker. Simulation of wind flow over arbitrary shaped buildings. In C. Taylor, editor, Proc. Eighth Int. Conf. on Numer. Meth. Laminar and Turbulent Flow, pages 643--654, Pineridge Press, Swansea, U.K., 1993.

36
Y. Saad and M.H. Schultz. GMRES: a generalized minimal residual algorithm for solving non symmetric linear systems. SIAM J. Sci. Stat. Comput., 7:856--869, 1986.

37
A. Segal, P. Wesseling, J. van Kan, C.W. Oosterlee, and K. Kassels. Invariant discretization of the incompressible Navier-Stokes equations in boundary fitted co-ordinates. Int. J. Numer. Meth. Fluids, 15:411--426, 1992.

38
G. Segal, K. Vuik, and K. Kassels. On the implementation of symmetric and antisymmetric periodic boundary conditions for incompressible flow. Int. J. Numer. Meth. Fluids, 18:1153--1165, 1994.

39
D.B. Spalding. A novel finite-difference formulation for differential expressions involving both first and second derivatives. Int. J. Numer. Meth. Engng., 4:551--559, 1972.

40
F. Stern, S.Y. Yoo, and V.C. Patel. Interactive and large-domain solutions of higher-order viscous-flow equations. AIAA J., 26:1052--1060, 1988.

41
H.L. Stone. Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM J. Numer. Anal., 5:530--558, 1968.

42
S. Thangam and C.G. Speziale. Turbulent separated flow past a backward-facing step: a critical evaluation of two-equation turbulence models. ICASE Report 91-23, Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, Virginia, 1991.

43
J.J.I.M. van Kan. A second-order accurate pressure correction method for viscous incompressible flow. SIAM J. Sci. Stat. Comput., 7:870--891, 1986.

44
C. Vuik. Solution of the discretized incompressible Navier-Stokes equations with the GMRES method. Int. J. Numer. Meth. Fluids, 16:507--523, 1993.

45
P. Wesseling, A. Segal, J.J.I.M. van Kan, C.W. Oosterlee, and C.G.M. Kassels. Finite volume discretization of the incompressible Navier-Stokes equations in general coordinates on staggered grids. Comput. Fluid Dyn. J., 1:27--33, 1992.

46
Z.G. Xu, D.H.T. Gotham, and M.W. Collins. Numerical modelling of three-dimensional turbulent flow in packaged air-conditioning units with inclined heat exchangers. In C. Taylor, editor, Proc. Eighth Int. Conf. on Numer. Meth. Laminar and Turbulent Flow, pages 328--337, Pineridge Press, Swansea, U.K., 1993.

47
C-N. Yung, T.G. Keith Jr., and K.J. de Witt. Numerical simulation of axisymmetric turbulent flow in combustors and diffusers. Int. J. Numer. Meth. Fluids, 9:167--183, 1989.

48
J. Zhu and M.A. Leschziner. A local oscillation-damping algorithm for higher order convection schemes. Comput. Meth. Appl. Mech. Engng., 67:355--366, 1988.

49
J. Zhu and W. Rodi. Computation of axisymmetric confined jets in a diffuser. Int. J. Numer. Meth. Fluids, 14:241--251, 1992.

50
M. Zijlema. Finite volume discretization of the k- turbulence model in general coordinates. Report 93-90, Delft University of Technology, Faculty of Technical Mathematics and Informatics, Delft, The Netherlands, 1993.



ISNaS ontwikkeling
Fri May 26 14:01:30 METDST 1995