Divided differences as set function

Jos van Kan

13 september 2001

1 Introduction

The usual way to define divided differences is by recursion. Given pairs (f_0, x_0) , $(f_1, x_1), \ldots, (f_n, x_n)$, such that $x_k \neq x_l$ if $k \neq l$ one constructs

$$
D(x_0, x_1) = \frac{f_1 - f_0}{x_1 - x_0} \tag{1}
$$

$$
D(x_0, x_1, x_2) = \frac{D(x_0, x_1) - D(x_1, x_2)}{x_0 - x_2}
$$
\n(2)

$$
D(x_0, x_1, \dots, x_n) = \frac{D(x_0, x_1, \dots, x_{n-1}) - D(x_1, x_2, \dots, x_n)}{x_0 - x_n}
$$
 (3)

If you do it this way, it is not so clear, that divided differences are really *set functions*, that is, the order in which the x_k appear is immaterial. Of course this is a theorem, and it can be (and has been) proved, but a more satisfactory way is to *define* the divided differences as set functions.

2 Definition

We define the divided differences on an arbitrary subset $\Sigma \subseteq \Omega = \{x_0, x_1, \ldots, x_n\}$ recursively:

$$
D(\lbrace x_q \rbrace) = f_q \quad \forall x_q \in \Omega \tag{4}
$$

$$
D(\Sigma) = \frac{D(\Sigma \setminus x_p) - D(\Sigma \setminus x_q)}{x_q - x_p} \tag{5}
$$

with $|\Sigma| > 1$, $x_p, x_q \in \Sigma$ and $x_p \neq x_q$. What remains to be shown is, that this definition does not depend on the particular choice of x_p and x_q . Clearly this is true if $|\Sigma| = 2$. We proceed with induction on the cardinality of Σ .

Theorem 1 *Let* $D(\Sigma)$ *be a set function for all sets* $\Sigma \subseteq \Omega$ *with* $|\Sigma| < k$ *. Let* $3 \leq$ $|\Sigma| \leq k$ *. Let* x_p , x_q and x_r be three different elements belonging to Σ *. Then*

$$
(x_p - x_q)D(\Sigma \setminus x_r) + (x_q - x_r)D(\Sigma \setminus x_p) + (x_r - x_p)D(\Sigma \setminus x_q) = 0
$$
 (6)

Proof. Since $|\Sigma| \leq k$ it follows that $|\Sigma \setminus x| \leq k - 1$, $\forall x \in \Sigma$ hence $D(\Sigma \setminus x)$ is a properly defined set function by 5. Hence the following equalities hold:

$$
D(\Sigma \setminus x_r) = \frac{D(\Sigma \setminus x_r \setminus x_q) - D(\Sigma \setminus x_r \setminus x_p)}{x_p - x_q}
$$
(7)

$$
D(\Sigma \setminus x_p) = \frac{D(\Sigma \setminus x_p \setminus x_r) - D(\Sigma \setminus x_p \setminus x_q)}{x_q - x_r}
$$
(8)

$$
D(\Sigma \setminus x_q) = \frac{D(\Sigma \setminus x_q \setminus x_p) - D(\Sigma \setminus x_q \setminus x_r)}{x_r - x_p} \tag{9}
$$

Substitution of these relations into the left hand side of relation 6 shows that this relation in fact is an identity.

Theorem 2 *Let* $D(\Sigma)$ *be a set function for all sets* $\Sigma \subseteq \Omega$ *with* $|\Sigma| < k$ *. Let* $|\Sigma| =$ $k \geq 3$. Then definition 5 does not depend on the particular choice of x_p and x_q .

Proof. By theorem 1 we have

$$
\frac{D(\Sigma \setminus x_p) - D(\Sigma \setminus x_q)}{x_q - x_p} = \frac{D(\Sigma \setminus x_p) - D(\Sigma \setminus x_r)}{x_r - x_p} \tag{10}
$$

and also

$$
\frac{D(\Sigma \setminus x_s) - D(\Sigma \setminus x_r)}{x_r - x_s} = \frac{D(\Sigma \setminus x_p) - D(\Sigma \setminus x_r)}{x_r - x_p} \tag{11}
$$

as one may verify by multiplying out. Hence

$$
\frac{D(\Sigma \setminus x_p) - D(\Sigma \setminus x_q)}{x_q - x_p} = \frac{D(\Sigma \setminus x_r) - D(\Sigma \setminus x_s)}{x_s - x_r} \tag{12}
$$

and the theorem is established.

Corollary Definitions 4 and 5 define a proper set function. Because if definition 5 properly defines a set function on sets with cardinality at most
$$
k - 1
$$
 it also does so for sets of cardinality k .