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Deft package
Delft Flow andTransport

• Navier Stokes equations forincompressibleflow
on general domains

• Offshoot of ISNaS (InformationSystemNavier
Stokes)

Jos van Kan (DIAM), CASA talk February 15, 2006 – p.2/??



Design decisions
• Finite Volume Method
• Rectangular blocks of curvilinear coordinates
• Staggered grid
• Time-dependentalgorithm
• Pressure correction for the incompressibility

condition
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Navier Stokes equations

∂u

∂t
+ ∇ · (uuT ) + ∇p = ∇ · T + f

∇ · u = 0

• u velocities
• p pressure
• T stress tensor
• f body forces like gravity

Variations in density are not taken into account.p and

T are scaled quantities.
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Method of lines

duh

dt
+ Gph = N(uh) + L(uh) + fh

Duh = 0
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Time Integration
Implicit time integration, like for instance
Crank-Nicolson
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Matrix Structure
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Pressure Correction
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p Matrix structure 2D
Example:n × n block,N = n2.

• Tridiagonal block matrix of tridiagonal matrices

• Bandwidth:O(
√

N)

• FlopsLU decomposition:O(N2). (One time
only on fixed domains)

• FlopsLU backsubstitution:O(N3/2)

• Flops matrix vector multiplication:O(N).
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p Matrix structure (3D)
Example:n × n × n block,N = n3.

• Tridiagonal block matrix of tridiagonal
blockmatrices of tridiagonal matrices

• BandwidthO(N2/3)

• FlopsLU decomposition:O(N7/3). (Only once
on fixed domains)

• FlopsLU backsubstitutionO(N5/3)

• Flops matrix vector multiplication:O(N)
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A Classic: Defect Correction
SolveAx = b

Presets:x0 = 0, r0 = b − Ax0 = b, k = 0
while ‖rk‖∞ > ε‖b‖∞ do

SolvePck = rk {P is preconditioner}
xk+1 = xk + ck

rk+1 = rk − Ack

k = k + 1
end while

Each iteration requiresO(N) flops.
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Preconditioners
ClassicWith A = D − L − U

• Jacobi:P = D

• Gauss-Seidel:P = D − L

• Successive overrelaxation:P = (D/ω − L)

ModernWith A = LU

• Incomplete LU (ILU):
A = L̃Ũ + E, P = L̃Ũ . L̃ andŨ sparse, usually
the same sparsity pattern asA.

• Incomplete Block LU (IBLU).
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DC Error Reduction

rk+1 = rk − Ack = (I − AP−1)rk

A−1b − xk+1 = A−1rk+1 = εk+1

εk+1 = A−1(I − AP−1)Aεk = (I − P−1A)εk

Reduction governed by spectral radius of(I −AP−1).
For the Laplacian:

• Jacobi and Gauss-Seidel:1 − O(h2)

• SOR with optimalω and a whole slew of other
conditions:1 − O(h).

.
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Effectiveness of DC
How many iterations to gain a decimal digit?

εn+k = λk
1ε

n

λk
1 = 0.1

k log λ1 = − log 10

k = − 2.3

log λ1

k = O(
1

1 − λ1

)
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Effectiveness of DC
Jacobi and Gauss-SeidelO(h−2) iterations.
SORO(h−1) iterations.
In 2D:

• Jacobi and GSO(N2) flops, worse thanLU

• SOR(O(N3/2) flops, order equal toLU

In 3D:

• Jacobi and GSO(N5/3) flops, order equal toLU

• SORO(N4/3) flops,better thanLU
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Convergence properties
Damped Jacobi, 10 iterations
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Convergence properties
Chebyshev10,λ0 = 0.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−0.3

−0.1

0.1

0.3

0.5

0.7

0.9

1.1

Jos van Kan (DIAM), CASA talk February 15, 2006 – p.15/??



Convergence properties
Chebyshev10,λ0 = 0.03
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Convergence properties
Chebyshev10,λ0 = 0.01
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Gradient Methods

0

1

• "Best" polynomial on the fine structure of the
spectrum

• Gradient Methods are always better than Defect
Correction

• Irregular convergence behaviour
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Multigrid
Defect Correction: very effective on apartof the
spectrum.
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The eigenspace of the spectral interval(0.2, 1) is vir-

tually reduced to 0 in a few iterations.
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1D example
Consider−d2u

dx2 = f, u(0) = u(1) = 0
Discretize intoN intervals):Au = f

Eigenvalues of1 − P−1A are

λk = 1 − sin2 kπ

2N
, k = 1, . . . , N − 1.

Corresponding eigenvectors

vkj = sin
kjπ

N
, k, j = 1, . . . , N − 1.

Eigenvaluesclose to 1correspond to smooth
eigenvectors,also for the Laplacian in 2 and 3D.
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Rough and smooth spectrum
• Roughpart of the spectrum: defect correction,

smootherin MG speak.
• Smoothpart of the spectrum: solve problem on

coarser grid and interpolate.Coarse grid
correctionin MG speak.
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Restriction and prolongation
Fine grid correction:Ahch = rh

Coarse grid correctionAHcH = rH

Transfer operators:
• PhH : prolongation from coarse to fine grid.

Interpolation usually.
• RHh: restriction from fine grid to coarse grid.

R = P T in symmetric problems.

The coarse grid correction becomes:
RHhAhPhHcH = RHhrh

Jos van Kan (DIAM), CASA talk February 15, 2006 – p.20/??



Two Grid Algorithm
Presets:u0

h, r0
h = fh − Au0

h

u
prs
h = S(u0

h,b, A, n0){Presmoothing}
rH = RHhrh
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Two Grid Algorithm
Presets:u0

h, r0
h = fh − Au0

h
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h + PhHcH {Coarse Grid Correction}

Jos van Kan (DIAM), CASA talk February 15, 2006 – p.21/??



Two Grid Algorithm
Presets:u0

h, r0
h = fh − Au0

h
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rH = RHhrh
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u
pos
h = S(ucgc

h ,b, A, n1){Postsmoothing}
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Multi Grid Algorithm
Require: Aℓ+1 = Rℓ+1,ℓAℓPℓ,ℓ+1 have been

calculated on all levels
MGRecursive (Aℓ, rℓ, cℓ, ℓ)
if ℓ < p then

else
SolveApcp = rp{Direct solution on coarsest
level}

end if
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Multi Grid Algorithm
Require: Aℓ+1 = Rℓ+1,ℓAℓPℓ,ℓ+1 have been

calculated on all levels
MGRecursive (Aℓ, rℓ, cℓ, ℓ)
if ℓ < p then

cℓ = S(0, rℓ, Aℓ, n0){Presmoothing}
rℓ+1 = Rℓ+1,ℓ(rℓ − Aℓcℓ) {Calculate coarse grid
residual}
call MGRecursive(Aℓ+1, rℓ+1, cℓ+1, ℓ + 1)
cℓ = cℓ + Pℓ,ℓ+1cℓ+1 {Coarse grid correction}

else
SolveApcp = rp{Direct solution on coarsest
level}

end if
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Multi Grid Algorithm
Require: Aℓ+1 = Rℓ+1,ℓAℓPℓ,ℓ+1 have been

calculated on all levels
MGRecursive (Aℓ, rℓ, cℓ, ℓ)
if ℓ < p then

cℓ = S(0, rℓ, Aℓ, n0){Presmoothing}
rℓ+1 = Rℓ+1,ℓ(rℓ − Aℓcℓ) {Calculate coarse grid
residual}
call MGRecursive(Aℓ+1, rℓ+1, cℓ+1, ℓ + 1)
cℓ = cℓ + Pℓ,ℓ+1cℓ+1 {Coarse grid correction}
cℓ = S(cℓ, rℓ, Aℓ, n1) {Postsmoothing}

else
SolveApcp = rp{Direct solution on coarsest
level}

end if
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The MG miracle
• Spectrum ofI − P−1A bounded away from1

uniformly in h.
• Number of iterations does not depend onh.
• The workload is theoreticallyO(N) flops.

But how big is the multiplicative constant going to be?
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Robust Blackbox
Wishlist:

• Good smoother under various circumstances
(anisotropy, stretched and skew cells)

• Arbitrary number of points in either direction
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Smoothers tested
• (Alternating) damped line Jacobi, 1 or 2

postsmoothing steps, no presmoothing
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Smoothers tested
• (Alternating) damped line Jacobi, 1 or 2

postsmoothing steps, no presmoothing
• Incomplete BlockLU decomposition, 1

postsmoothing step, no presmoothing
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Comparison
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Recursion
• Line Jacobi is recursiveper lineand can be

massively parallelized, especially in 3D.
• What about IBLU? Classic IBLU is fully

recursive.
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Divide and Conquer
The inversion of ann × n tridiagonal matrix can be
executed in2 log n non recursive steps.

(I + LD−1 + UD−1)(D − L − U) =

D − LD−1U − UD−1L − LD−1L − UD−1U

= D1 − L1 − U1

Bandwith is doubled in this operation.
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Incomplete Block Div and Conq
• Use the same formula,interpreted als blocks

• Use incomplete versions ofLD−1U etc.
• D, L andU are (block)diagonals, consisting of

tridiagonal blocks.

• We need 7 diagonals ofD−1

• Calculate from the productform of the inverse,
keeping only 7 diagonals in2 log n steps

Recursion usesO(2 log n) steps as claimed.
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