Under pressure!

Fast pressure calculations in the Deft package

Jos van Kan

j.vankan@math.tudelft.nl

Delft Institute of Applied mathematics (DIAM)

Deft package

Delft Flow and Transport

- Navier Stokes equations for incompressible flow on general domains
- Offshoot of ISNaS (Information System Navier
Stokes) Stokes)

Design decisions

- Finite Volume Method
- Rectangular blocks of curvilinear coordinates
- Staggered grid
- Time-dependent algorithm
- Pressure correction for the incompressibilitycondition

Navier Stokes equations

$$
\frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot (\mathbf{u} \mathbf{u}^T) + \nabla p = \nabla \cdot T + \mathbf{f}
$$

$$
\nabla \cdot \mathbf{u} = 0
$$

- u velocities
- p pressure
- T stress tensor
- •f body forces like gravity

Variations in density are not taken into account. p and T are scaled quantities.

Method of lines

$$
\frac{d\mathbf{u}_h}{dt} + G\mathbf{p}_h = N(\mathbf{u}_h) + L(\mathbf{u}_h) + \mathbf{f}_h
$$

$$
D\mathbf{u}_h = 0
$$

Jos van Kan (DIAM), CASA talk February 15, 2006 – p.5/**??**

Time Integration

Implicit time integration, like for instanceCrank-Nicolson

> $\mathbf u$ $n{+}1$ $h^$ $h^{n+1}+\Delta t G \mathbf{p}$ $n{+}1$ $1/$ 2 $\mathbf{h}=\mathbf{0}$ $\mathbf u$ $\, n \,$ $\frac{h}{h}+$ 1 2 1 Δt $t\left(N\right($ $\mathbf u$ $n{+}1$ $h^ \binom{n+1}{h} + L($ $\mathbf u$ $n{+}1$ $h^ \binom{n+1}{h} + \mathbf{f}$ $n{+}1$ $\binom{n+1}{h}$ + 2 Δt $t\,($ $N($ \mathbf{u}^n_ι $\binom{n}{h}+L($ \mathbf{u}^n $\binom{n}{h} +$ \mathbf{f} $\, n$ $\binom{n}{h}$ $D\mathbf{u}$ $n{+}1$ $h^$ $n+1 \choose h} = 0$

Matrix Structure

Pressure Correction

$$
\mathbf{u}_h^* + \Delta t G \mathbf{p}_h^{n-1/2} =
$$

$$
\mathbf{u}_h^n + \frac{1}{2} \Delta t \left(N(\mathbf{u}_h^*) + L(\mathbf{u}_h^*) + \mathbf{f}_h^{n+1} \right) +
$$

$$
\frac{1}{2} \Delta t \left(N(\mathbf{u}_h^n) + L(\mathbf{u}_h^n) + \mathbf{f}_h^n \right)
$$

$$
\mathbf{u}_h^{n+1} - \mathbf{u}_h^* + \Delta t G \Delta \mathbf{p} = 0
$$

$$
-D \mathbf{u}_h^* + \Delta t D G \Delta \mathbf{p} = 0
$$

$$
\mathbf{p}^{n+1/2} = \mathbf{p}^{n-1/2} + \Delta \mathbf{p}
$$

Pressure Correction

$$
\mathbf{u}_h^* + \Delta t G \mathbf{p}_h^{n-1/2} =
$$

$$
\mathbf{u}_h^n + \frac{1}{2} \Delta t \left(N(\mathbf{u}_h^*) + L(\mathbf{u}_h^*) + \mathbf{f}_h^{n+1} \right) +
$$

$$
\frac{1}{2} \Delta t \left(N(\mathbf{u}_h^n) + L(\mathbf{u}_h^n) + \mathbf{f}_h^n \right)
$$

$$
\mathbf{u}_h^{n+1} - \mathbf{u}_h^* + \Delta t G \Delta \mathbf{p} = 0
$$

$$
-D \mathbf{u}_h^* + \Delta t D G \Delta \mathbf{p} = 0
$$

$$
\mathbf{p}^{n+1/2} = \mathbf{p}^{n-1/2} + \Delta \mathbf{p}
$$

$p \$ **Matrix structure 2D**

Example: $n \times n$ block, $N = n^2$.

- Tridiagonal block matrix of tridiagonal matrices
- Bandwidth: $O(\sqrt{N})$
- Flops LU decomposition: $O(N^2)$. (One time only on fixed domains)
- Flops LU backsubstitution: $O(N^{3/2})$
- Flops matrix vector multiplication: $O(N)$.

$p \$ **Matrix structure (3D)**

Example: $n \times n \times n$ block, $N = n^3$.

- Tridiagonal block matrix of tridiagonalblockmatrices of tridiagonal matrices
- Bandwidth $O(N^{2/3})$
- Flops LU decomposition: $O(N^{7/3})$. (Only once on fixed domains)
- Flops LU backsubstitution $O(N^{5/3})$
- Flops matrix vector multiplication: $O(N)$

A Classic: Defect CorrectionSolve $A\mathbf{x}=\mathbf{b}$ Presets: \mathbf{x}^{ι} \mathbf{A} is a set of \mathbf{A} $\rm 0$ ⁼ $\ket{0,\mathbf{r}^0}$ $^0=\mathbf{b}-A\mathbf{x}$ while $\|r^k\|_\infty > \varepsilon \|b\|_\infty$ d $\rm 0$ = $\mathbf{b}, k = 0$ Solve $P\mathbf{c}^k=\mathbf{r}^k$ { \it{k} $\frac{k}{\infty}$ $\sup_{k \to \infty} \frac{\varepsilon \|b\|_{\infty}}{k}$ **do** $\mathbb{R}^n \times \mathbb{R}^n$ \it{k} $\Gamma^{\sigma}=\mathbf{r}$ $k \{P\}$ is preconditioner } $\mathbf X$ $\mathbf{r}^{\kappa+1}=\mathbf{r}^{\kappa}-\mathbf{r}$ $^{k+1}=\mathbf{x}$ $\,k$ $+\mathbf{c}$ \it{k} $\ ^{k+1}=\mathbf{r}$ $k = k + 1$ $^{k}-A\mathbf{c}$ $\,k$ <u>л з</u> **end while**

Each iteration requires $O(N)$ flops.

Preconditioners

Classic With $A = D - L - U$

- Jacobi: $P=D$
- Gauss-Seidel: $P=D-L$

the contract of the contract of the contract of • Successive overrelaxation: $P = (D/\omega)$ $-\ L)$ $\mathbf M$ odern With $A=$ $= LU$

 • Incomplete LU (ILU): $A=\tilde{L}\tilde{U}+E,$ P the same sparsity pattern as $A.$ $=\tilde{L}\tilde{U}$. \tilde{L} and \tilde{U} sparse, usually

• Incomplete Block LU (IBLU).

DC Error Reduction

$$
\mathbf{r}^{k+1} = \mathbf{r}^k - A\mathbf{c}^k = (I - AP^{-1})\mathbf{r}^k
$$

$$
\mathbf{A}^{-1}\mathbf{b} - \mathbf{x}^{k+1} = A^{-1}\mathbf{r}^{k+1} = \varepsilon^{k+1}
$$

$$
\varepsilon^{k+1} = A^{-1}(I - AP^{-1})A\varepsilon^k = (I - P^{-1}A)\varepsilon^k
$$

Reduction governed by spectral radius of ($I-\,$ $- AP^{-1}$ $\ket{1}$. For the Laplacian:

- Jacobi and Gauss-Seidel: $1-O(h^2)$ $^2)$
- SOR with optimal ω and a whole slew of other conditions: $1-O(h).$

.

Effectiveness of DC

How many iterations to gain ^a decimal digit?

Effectiveness of DC

Jacobi and Gauss-Seidel $O(h^{-1})$ 2 2) iterations. $\mathrm{SOR}~O(h^{-1}$ ¹) iterations. In 2D:

- Jacobi and GS $O(N^2)$ $^2)$ flops, worse than LU
- SOR $(O(N^3$ $3/$ 2 $^2)$ flops, order equal to LU

In 3D:

- Jacobi and GS $O(N^5)$ $5/$ 3 $^3)$ flops, order equal to LU
- SOR $O(N^4$ $4/$ 3 $^3)$ flops, better than LU

Convergence propertiesDamped Jacobi, 10 iterations

Convergence propertiesChebyshev $10,\,\lambda_0$ $_0 = 0.1$

Convergence propertiesChebyshev $10,\,\lambda_0$ $_{0} = 0.03$

Convergence propertiesChebyshev $10,\,\lambda_0$ $_0 = 0.01$

Gradient Methods

- "Best" polynomial on the fine structure of thespectrum
- Gradient Methods are always better than Defect**Correction**

 \bullet Irregular convergence behaviour

Multigrid

Defect Correction: very effective on ^a par^t of the spectrum.

The eigenspace of the spectral interval $(0.2, 1)$ is virtually reduced to 0 in ^a few iterations. Jos van Kan (DIAM), CASA talk February 15, 2006 – p.17/**??**

1D example

Consider $\mathrm{r}-\frac{d^{2}u}{dx^{2}}=$ $f,$ $u(0) = u(1) = 0$ Discretize into N intervals): A **u** = f Eigenvalues of 1 [−] $- P^{-1}A$ are

$$
\lambda_k=1-\sin^2\frac{k\pi}{2N}, k=1,\ldots,N-1.
$$

Corresponding eigenvectors

$$
v_{kj} = \sin \frac{kj\pi}{N}, k, j = 1, \dots, N-1.
$$

Eigenvalues close to ¹ correspon^d to smooth eigenvectors, also for the Laplacian in 2 and 3D.

Rough and smooth spectrum

- Rough par^t of the spectrum: defect correction, smoother in MG speak.
- Smooth par^t of the spectrum: solve problem on coarser grid and interpolate. Coarse gridcorrection in MG speak.

Restriction and prolongation

Fine grid correction: $A_h\mathbf{c}_h=\mathbf{r}_h$ n Λ --c Coarse grid correction $A_H\mathbf{c}_H=\mathbf{r}_H$ Transfer operators:

- P_{hH} : prolongation from coarse to fine grid. Interpolation usually.
- R_{Hh} : restriction from fine grid to coarse grid. $R=P^T$ in symmetric problems.

 The coarse grid correction becomes: $R_{Hh}A_hP_{hH}$ c $_{H}=$ $R_{Hh}\mathbf{r}_{h}$

Two Grid Algorithm

Presets: \mathbf{u}_k^0 , $\mathbf{r}_k^0 = \mathbf{f}_k - A\mathbf{u}$ $\mathbf{u}_{i}^{\text{prs}} = S(\mathbf{u}_{i}^{0}, \mathbf{b}, A, n_{0})$ { Pre $\rm 0$ $\stackrel{\circ}{h}$, r $\rm 0$ \overline{h} = \mathbf{f}_h −Au $\rm 0$ $\,h$ h=S(u $\mathbf{r}_H=K_{Hh}\mathbf{r}$ $\rm 0$ $h_0^0,$ $\mathbf{b}, A, n_0)$ {Presmoothing } $R_{Hh}\mathbf{r}_{h}$

Two Grid Algorithm

Presets: \mathbf{u}_k^0 , $\mathbf{r}_k^0 = \mathbf{f}_k - A\mathbf{u}$ $\mathbf{u}_{i}^{\text{prs}} = S(\mathbf{u}_{i}^{0}, \mathbf{b}, A, n_{0})$ { Pre $\rm 0$ $\stackrel{\circ}{h}$, r $\rm 0$ \overline{h} = \mathbf{f}_h −Au $\rm 0$ $\,h$ h=S(u $\mathbf{r}_H=K_{Hh}\mathbf{r}$ $\rm 0$ $h_0^0,$ $\mathbf{b}, A, n_0)$ {Presmoothing } Solve $A_H\mathbf{c}_H=\mathbf{r}_H$ $R_{Hh}\mathbf{r}_{h}$ $- -1$ $100 - 1$ \mathbf{u}^{cgc} $\mathbf{u}_{h}^{\text{egc}}=\mathbf{u}_{h}^{\text{prs}}$ $P_h^{\rm ns}+P_{hH}\mathbf{c}_H$ $_H$ {Coarse Grid Correction}

Two Grid Algorithm

Presets: \mathbf{u}_k^0 , $\mathbf{r}_k^0 = \mathbf{f}_k - A\mathbf{u}$ $\mathbf{u}_{i}^{\text{prs}} = S(\mathbf{u}_{i}^{0}, \mathbf{b}, A, n_{0})$ { Pre $\rm 0$ $\stackrel{\circ}{h}$, r $\rm 0$ \overline{h} = \mathbf{f}_h −Au $\rm 0$ $\,h$ h=S(u $\mathbf{r}_H=K_{Hh}\mathbf{r}$ $\rm 0$ $h_0^0,$ $\mathbf{b}, A, n_0)$ {Presmoothing } Solve $A_H\mathbf{c}_H=\mathbf{r}_H$ $R_{Hh}\mathbf{r}_{h}$ $- -1$ $100 - 1$ \mathbf{u}^{cgc} $\mathbf{u}_{h}^{\text{egc}}=\mathbf{u}_{h}^{\text{prs}}$ $\mathbf{u}_{i}^{\text{pos}}=S(\mathbf{u}_{i}^{\text{cgc}},\mathbf{b}_{i})$ $P_h^{\rm ns}+P_{hH}\mathbf{c}_H$ $_H$ {Coarse Grid Correction} $\mathcal{S}_h^{\text{pos}}=S(\textbf{u}_h^{\text{cgc}})$ $h_n^{\rm cyc},$ ${\bf b},$ $A,$ $n_1)$ { ${\bf Postsmoothing}$ }

Require: $A_{\ell+1}=R_{\ell+1,\ell}A_{\ell}P_{\ell}$ ad on all $A_\ell P_{\ell,\ell+1}$ have been calculated on all levels **MGRecursive**(Aℓ, ^rℓ, ^c^ℓ, ^ℓ)**if** ^ℓ < ^p **then**

elseSolve A level} $\,p$ c $p_{p}=\mathbf{r}_{p}$ {Direct solution on coarsest **end if**Jos van Kan (DIAM), CASA talk February 15, 2006 – p.22/**??**

Require: $A_{\ell+1}=R_{\ell+1,\ell}A_{\ell}P_{\ell}$ ad on all $A_\ell P_{\ell,\ell+1}$ have been calculated on all levels **MGRecursive**(Aℓ, ^rℓ, ^c^ℓ, ^ℓ)**if** ^ℓ < ^p **then** $\mathbf{c}_{\ell}=S(\mathbf{0},\mathbf{r}_{\ell}, A_{\ell}, n_0)$ {Presmoothing } \mathbf{D} and $\mathbf{r}_{\ell+1}=R_{\ell+1,\ell}(\mathbf{r}_\ell-A_\ell\mathbf{c}_\ell)$ {Calculate coarse grid rociduol residual}

else

Solve A level} $\,p$ c $p_{p}=\mathbf{r}_{p}$ {Direct solution on coarsest **end if**Jos van Kan (DIAM), CASA talk February 15, 2006 – p.22/**??**

Require: $A_{\ell+1}=R_{\ell+1,\ell}A_{\ell}P_{\ell}$ ad on all $A_\ell P_{\ell,\ell+1}$ have been calculated on all levels **MGRecursive**(Aℓ, ^rℓ, ^c^ℓ, ^ℓ)**if** ^ℓ < ^p **then** $\mathbf{c}_{\ell}=S(\mathbf{0},\mathbf{r}_{\ell}, A_{\ell}, n_0)$ {Presmoothing } \mathbf{D} and $\mathbf{r}_{\ell+1}=R_{\ell+1,\ell}(\mathbf{r}_\ell-A_\ell\mathbf{c}_\ell)$ {Calculate coarse grid rociduol residual}call MGRecursive $(A_{\ell+1},\mathbf{r}_{\ell+1},\mathbf{c}_{\ell+1},\ell+1)$ $\mathbf{c}_{\ell}=\mathbf{c}_{\ell}+P_{\ell,\ell+1}\mathbf{c}_{\ell+1}$ {Coarse g $_1$ {Coarse grid correction}

else

Solve A level} $\,p$ c $p_{p}=\mathbf{r}_{p}$ {Direct solution on coarsest **end if**Jos van Kan (DIAM), CASA talk February 15, 2006 – p.22/**??**

Require: $A_{\ell+1}=R_{\ell+1,\ell}A_{\ell}P_{\ell}$ ad on all $A_\ell P_{\ell,\ell+1}$ have been calculated on all levels **MGRecursive**(Aℓ, ^rℓ, ^c^ℓ, ^ℓ)**if** ^ℓ < ^p **then** $\mathbf{c}_{\ell}=S(\mathbf{0},\mathbf{r}_{\ell}, A_{\ell}, n_0)$ {Presmoothing } \mathbf{D} and $\mathbf{r}_{\ell+1}=R_{\ell+1,\ell}(\mathbf{r}_\ell-A_\ell\mathbf{c}_\ell)$ {Calculate coarse grid rociduol residual}call MGRecursive $(A_{\ell+1},\mathbf{r}_{\ell+1},\mathbf{c}_{\ell+1},\ell+1)$ $\mathbf{c}_{\ell}=\mathbf{c}_{\ell}+P_{\ell,\ell+1}\mathbf{c}_{\ell+1}$ {Coarse g \overline{C} $\mathbf{c}_{\ell} = S(\mathbf{c}_{\ell}, \mathbf{r}_{\ell}, A_{\ell}, n_1)$ {Postsmoothing} $_{1}$ {Coarse grid correction} **else**Solve A level} $\,p$ c $p_{p}=\mathbf{r}_{p}$ {Direct solution on coarsest **end if**Jos van Kan (DIAM), CASA talk February 15, 2006 – p.22/**??**

The MG miracle

- Spectrum of $I-P^-$ 1 A bounded away from 1 uniformly in $h.$
- Number of iterations does not depend on h .
- The workload is theoretically $O(N)$ flops.

But how big is the multiplicative constant going to be?

Robust Blackbox

Wishlist:

- Good smoother under various circumstances(anisotropy, stretched and skew cells)
- Arbitrary number of points in either direction

Smoothers tested

• (Alternating) damped line Jacobi, 1 or 2 postsmoothing steps, no presmoothing

Smoothers tested

- (Alternating) damped line Jacobi, 1 or 2 postsmoothing steps, no presmoothing
- Incomplete Block LU decomposition, 1 postsmoothing step, no presmoothing

Comparison

Recursion

- Line Jacobi is recursive per line and can be massively parallelized, especially in 3D.
- What about IBLU? Classic IBLU is fullyrecursive.

Divide and Conquer

The inversion of an $n \times n$ tridiagonal matrix can be executed in $^2\log n$ non recursive steps.

 $(I+LD^{-})$ $D-LD^{-1}U-UD^{-1}L-LD^{-1}$ 1 $+ U D^{-}$ $^{-1})(D-L U) =$ $-LD^{-1}$ $^1U -UD^{-1}$ ${}^{\perp}L -LD^{-1}$ ${}^1L -UD^{-1}$ 1U

> $=D_1-L_1 U_{1}%$

Bandwith is doubled in this operation.

Incomplete Block Div and Conq

- Use the same formula, interpreted als blocks
- Use incomplete versions of LD^{-1} ^{1}U etc.
- *D*, *L* and *U* are (block)diagonals, consisting of tridiagonal blocks.
- We need 7 diagonals of D^{-1}
- Calculate from the productform of the inverse, keeping only 7 diagonals in $^2\log n$ steps

Recursion uses $O(^2\log n)$ steps as claimed.

