Under pressure!

Fast pressure calculations in the Deft package

Jos van Kan

j.vankan@math.tudelft.nl

Delft Institute of Applied mathematics (DIAM)

Deft package

Delft Flow and Transport

- Navier Stokes equations for incompressible flow on general domains
- Offshoot of ISNaS (Information System Navier Stokes)

Design decisions

- Finite Volume Method
- Rectangular blocks of curvilinear coordinates
- Staggered grid
- Time-dependent algorithm
- Pressure correction for the incompressibility condition

Navier Stokes equations

$$\frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot (\mathbf{u}\mathbf{u}^T) + \nabla p = \nabla \cdot T + \mathbf{f}$$
$$\nabla \cdot \mathbf{u} = 0$$

- u velocities
- *p* pressure
- T stress tensor
- f body forces like gravity

Variations in density are not taken into account. p and T are scaled quantities.

Method of lines

$$\frac{d\mathbf{u}_h}{dt} + G\mathbf{p}_h = N(\mathbf{u}_h) + L(\mathbf{u}_h) + \mathbf{f}_h$$
$$D\mathbf{u}_h = 0$$

Time Integration

Implicit time integration, like for instance Crank-Nicolson

$$\mathbf{u}_{h}^{n+1} + \Delta t G \mathbf{p}_{h}^{n+1/2} =$$

$$\mathbf{u}_{h}^{n} + \frac{1}{2} \Delta t \left(N(\mathbf{u}_{h}^{n+1}) + L(\mathbf{u}_{h}^{n+1}) + \mathbf{f}_{h}^{n+1} \right) +$$

$$\frac{1}{2} \Delta t \left(N(\mathbf{u}_{h}^{n}) + L(\mathbf{u}_{h}^{n}) + \mathbf{f}_{h}^{n} \right)$$

$$D \mathbf{u}_{h}^{n+1} = 0$$

Matrix Structure

Pressure Correction

$$\begin{split} \mathbf{u}_{h}^{*} + \Delta t G \mathbf{p}_{h}^{n-1/2} &= \\ \mathbf{u}_{h}^{n} + \frac{1}{2} \Delta t \left(N(\mathbf{u}_{h}^{*}) + L(\mathbf{u}_{h}^{*}) + \mathbf{f}_{h}^{n+1} \right) + \\ \frac{1}{2} \Delta t \left(N(\mathbf{u}_{h}^{n}) + L(\mathbf{u}_{h}^{n}) + \mathbf{f}_{h}^{n} \right) \\ \mathbf{u}_{h}^{n+1} - \mathbf{u}_{h}^{*} + \Delta t G \Delta \mathbf{p} &= 0 \\ - D \mathbf{u}_{h}^{*} + \Delta t D G \Delta \mathbf{p} &= 0 \\ \mathbf{p}^{n+1/2} &= \mathbf{p}^{n-1/2} + \Delta \mathbf{p} \end{split}$$

1

Pressure Correction

$$\begin{split} \mathbf{u}_{h}^{*} + \Delta t G \mathbf{p}_{h}^{n-1/2} &= \\ \mathbf{u}_{h}^{n} + \frac{1}{2} \Delta t \left(N(\mathbf{u}_{h}^{*}) + L(\mathbf{u}_{h}^{*}) + \mathbf{f}_{h}^{n+1} \right) + \\ \frac{1}{2} \Delta t \left(N(\mathbf{u}_{h}^{n}) + L(\mathbf{u}_{h}^{n}) + \mathbf{f}_{h}^{n} \right) \\ \mathbf{u}_{h}^{n+1} - \mathbf{u}_{h}^{*} + \Delta t G \Delta \mathbf{p} &= 0 \\ - D \mathbf{u}_{h}^{*} + \Delta t D G \Delta \mathbf{p} &= 0 \\ \mathbf{p}^{n+1/2} &= \mathbf{p}^{n-1/2} + \Delta \mathbf{p} \end{split}$$

1

p Matrix structure 2D

Example: $n \times n$ block, $N = n^2$.

- Tridiagonal block matrix of tridiagonal matrices
- Bandwidth: $O(\sqrt{N})$
- Flops LU decomposition: $O(N^2)$. (One time only on fixed domains)
- Flops LU backsubstitution: $O(N^{3/2})$
- Flops matrix vector multiplication: O(N).

p Matrix structure (3D)

Example: $n \times n \times n$ block, $N = n^3$.

- Tridiagonal block matrix of tridiagonal blockmatrices of tridiagonal matrices
- Bandwidth $O(N^{2/3})$
- Flops LU decomposition: $O(N^{7/3})$. (Only once on fixed domains)
- Flops LU backsubstitution $O(N^{5/3})$
- Flops matrix vector multiplication: O(N)

A Classic: Defect Correction Solve $A\mathbf{x} = \mathbf{b}$ Presets: $x^0 = 0, r^0 = b - Ax^0 = b, k = 0$ while $||r^k||_{\infty} > \varepsilon ||b||_{\infty}$ do Solve $P\mathbf{c}^k = \mathbf{r}^k$ {P is preconditioner} $\mathbf{x}^{k+1} = \mathbf{x}^k + \mathbf{c}^k$ $\mathbf{r}^{k+1} = \mathbf{r}^k - A\mathbf{c}^k$ k = k + 1end while

Each iteration requires O(N) flops.

Preconditioners

Classic With A = D - L - U

- Jacobi: P = D
- Gauss-Seidel: P = D L
- Successive overrelaxation: $P = (D/\omega L)$ Modern With A = LU
 - Incomplete LU (ILU):
 A = *L̃Ũ* + E, P = *L̃Ũ*. *L̃* and *Ũ* sparse, usually the same sparsity pattern as A.
 - Incomplete Block LU (IBLU).

DC Error Reduction

$$\mathbf{r}^{k+1} = \mathbf{r}^k - A\mathbf{c}^k = (I - AP^{-1})\mathbf{r}^k$$
$$\mathbf{A}^{-1}\mathbf{b} - \mathbf{x}^{k+1} = A^{-1}\mathbf{r}^{k+1} = \varepsilon^{k+1}$$
$$\varepsilon^{k+1} = A^{-1}(I - AP^{-1})A\varepsilon^k = (I - P^{-1}A)\varepsilon^k$$

Reduction governed by spectral radius of $(I - AP^{-1})$. For the Laplacian:

- Jacobi and Gauss-Seidel: $1 O(h^2)$
- SOR with optimal ω and a whole slew of other conditions: 1 O(h).

Effectiveness of DC

How many iterations to gain a decimal digit?

Effectiveness of DC

Jacobi and Gauss-Seidel $O(h^{-2})$ iterations. SOR $O(h^{-1})$ iterations. In 2D:

- Jacobi and GS $O(N^2)$ flops, worse than LU
- SOR $(O(N^{3/2})$ flops, order equal to LU

In 3D:

- Jacobi and GS $O(N^{5/3})$ flops, order equal to LU
- SOR $O(N^{4/3})$ flops, better than LU

Convergence properties Damped Jacobi, 10 iterations

Convergence properties Chebyshev10, $\lambda_0 = 0.1$

Convergence properties Chebyshev10, $\lambda_0 = 0.03$

Convergence properties Chebyshev10, $\lambda_0 = 0.01$

Gradient Methods

- "Best" polynomial on the fine structure of the spectrum
- Gradient Methods are always better than Defect Correction

• Irregular convergence behaviour UDelft

Multigrid

Defect Correction: very effective on a part of the spectrum.

The eigenspace of the spectral interval (0.2, 1) is virtually reduced to 0 in a few iterations.

1D example

Consider $-\frac{d^2u}{dx^2} = f$, u(0) = u(1) = 0Discretize into N intervals): $A\mathbf{u} = \mathbf{f}$ Eigenvalues of $1 - P^{-1}A$ are

$$\lambda_k = 1 - \sin^2 \frac{k\pi}{2N}, k = 1, \dots, N - 1.$$

Corresponding eigenvectors

$$v_{kj} = \sin \frac{kj\pi}{N}, k, j = 1, \dots, N-1.$$

Eigenvalues close to 1 correspond to smooth eigenvectors, also for the Laplacian in 2 and 3D.

ŤUDelft

Rough and smooth spectrum

- Rough part of the spectrum: defect correction, smoother in MG speak.
- Smooth part of the spectrum: solve problem on coarser grid and interpolate. Coarse grid correction in MG speak.

Restriction and prolongation

Fine grid correction: $A_h \mathbf{c}_h = \mathbf{r}_h$ Coarse grid correction $A_H \mathbf{c}_H = \mathbf{r}_H$ Transfer operators:

- P_{hH} : prolongation from coarse to fine grid. Interpolation usually.
- R_{Hh} : restriction from fine grid to coarse grid. $R = P^T$ in symmetric problems.

The coarse grid correction becomes: $R_{Hh}A_hP_{hH}\mathbf{c}_H = R_{Hh}\mathbf{r}_h$

Two Grid Algorithm

Presets: $\mathbf{u}_{h}^{0}, \mathbf{r}_{h}^{0} = \mathbf{f}_{h} - A\mathbf{u}_{h}^{0}$ $\mathbf{u}_{h}^{\text{prs}} = S(\mathbf{u}_{h}^{0}, \mathbf{b}, A, n_{0})$ {Presmoothing} $\mathbf{r}_{H} = R_{Hh}\mathbf{r}_{h}$

Two Grid Algorithm

Presets: \mathbf{u}_{h}^{0} , $\mathbf{r}_{h}^{0} = \mathbf{f}_{h} - A\mathbf{u}_{h}^{0}$ $\mathbf{u}_{h}^{\text{prs}} = S(\mathbf{u}_{h}^{0}, \mathbf{b}, A, n_{0})$ {Presmoothing} $\mathbf{r}_{H} = R_{Hh}\mathbf{r}_{h}$ Solve $A_{H}\mathbf{c}_{H} = \mathbf{r}_{H}$ $\mathbf{u}_{h}^{\text{cgc}} = \mathbf{u}_{h}^{\text{prs}} + P_{hH}\mathbf{c}_{H}$ {Coarse Grid Correction}

Two Grid Algorithm

Presets: $\mathbf{u}_{h}^{0}, \mathbf{r}_{h}^{0} = \mathbf{f}_{h} - A\mathbf{u}_{h}^{0}$ $\mathbf{u}_{h}^{\text{prs}} = S(\mathbf{u}_{h}^{0}, \mathbf{b}, A, n_{0}) \{\text{Presmoothing}\}$ $\mathbf{r}_{H} = R_{Hh}\mathbf{r}_{h}$ Solve $A_{H}\mathbf{c}_{H} = \mathbf{r}_{H}$ $\mathbf{u}_{h}^{\text{cgc}} = \mathbf{u}_{h}^{\text{prs}} + P_{hH}\mathbf{c}_{H} \{\text{Coarse Grid Correction}\}$ $\mathbf{u}_{h}^{\text{pos}} = S(\mathbf{u}_{h}^{\text{cgc}}, \mathbf{b}, A, n_{1}) \{\text{Postsmoothing}\}$

Require: $A_{\ell+1} = R_{\ell+1,\ell}A_{\ell}P_{\ell,\ell+1}$ have been calculated on all levels **MGRecursive** $(A_{\ell}, \mathbf{r}_{\ell}, \mathbf{c}_{\ell}, \ell)$ **if** $\ell < p$ **then**

else Solve $A_p \mathbf{c}_p = \mathbf{r}_p$ {Direct solution on coarsest level} end if

Require: $A_{\ell+1} = R_{\ell+1,\ell}A_{\ell}P_{\ell,\ell+1}$ have been calculated on all levels **MGRecursive** $(A_{\ell}, \mathbf{r}_{\ell}, \mathbf{c}_{\ell}, \ell)$ **if** $\ell < p$ **then** $\mathbf{c}_{\ell} = S(\mathbf{0}, \mathbf{r}_{\ell}, A_{\ell}, n_0)$ {Presmoothing} $\mathbf{r}_{\ell+1} = R_{\ell+1,\ell}(\mathbf{r}_{\ell} - A_{\ell}\mathbf{c}_{\ell})$ {Calculate coarse grid residual}

else

Solve $A_p \mathbf{c}_p = \mathbf{r}_p \{ \text{Direct solution on coarsest} \\ \text{level} \}$ end if

Require: $A_{\ell+1} = R_{\ell+1,\ell}A_{\ell}P_{\ell,\ell+1}$ have been calculated on all levels **MGRecursive** $(A_{\ell}, \mathbf{r}_{\ell}, \mathbf{c}_{\ell}, \ell)$ if $\ell < p$ then $\mathbf{c}_{\ell} = S(\mathbf{0}, \mathbf{r}_{\ell}, A_{\ell}, n_0) \{ \text{Presmoothing} \}$ $\mathbf{r}_{\ell+1} = R_{\ell+1,\ell}(\mathbf{r}_{\ell} - A_{\ell}\mathbf{c}_{\ell})$ {Calculate coarse grid residual} call MGRecursive $(A_{\ell+1}, \mathbf{r}_{\ell+1}, \mathbf{c}_{\ell+1}, \ell+1)$ $\mathbf{c}_{\ell} = \mathbf{c}_{\ell} + P_{\ell,\ell+1}\mathbf{c}_{\ell+1}$ {Coarse grid correction}

else

Solve $A_p c_p = r_p \{ \text{Direct solution on coarsest} \\ \text{level} \}$ end if Delft

Require: $A_{\ell+1} = R_{\ell+1,\ell}A_{\ell}P_{\ell,\ell+1}$ have been calculated on all levels **MGRecursive** $(A_{\ell}, \mathbf{r}_{\ell}, \mathbf{c}_{\ell}, \ell)$ if $\ell < p$ then $\mathbf{c}_{\ell} = S(\mathbf{0}, \mathbf{r}_{\ell}, A_{\ell}, n_0) \{ \text{Presmoothing} \}$ $\mathbf{r}_{\ell+1} = R_{\ell+1,\ell}(\mathbf{r}_{\ell} - A_{\ell}\mathbf{c}_{\ell})$ {Calculate coarse grid residual} call MGRecursive $(A_{\ell+1}, \mathbf{r}_{\ell+1}, \mathbf{c}_{\ell+1}, \ell+1)$ $\mathbf{c}_{\ell} = \mathbf{c}_{\ell} + P_{\ell,\ell+1}\mathbf{c}_{\ell+1}$ {Coarse grid correction} $\mathbf{c}_{\ell} = S(\mathbf{c}_{\ell}, \mathbf{r}_{\ell}, A_{\ell}, n_1) \{ Postsmoothing \} \}$ else Solve $A_p \mathbf{c}_p = \mathbf{r}_p$ {Direct solution on coarsest level} end if Jos van Kan (DIAM), CASA talk February 15, 2006 – p.22/?

The MG miracle

- Spectrum of $I P^{-1}A$ bounded away from 1 uniformly in h.
- Number of iterations does not depend on h.
- The workload is theoretically O(N) flops.

But how big is the multiplicative constant going to be?

Robust Blackbox

Wishlist:

- Good smoother under various circumstances (anisotropy, stretched and skew cells)
- Arbitrary number of points in either direction

Smoothers tested

• (Alternating) damped line Jacobi, 1 or 2 postsmoothing steps, no presmoothing

Smoothers tested

- (Alternating) damped line Jacobi, 1 or 2 postsmoothing steps, no presmoothing
- Incomplete Block *LU* decomposition, 1 postsmoothing step, no presmoothing

Comparison

Jos van Kan (DIAM), CASA talk February 15, 2006 - p.26/?

Recursion

- Line Jacobi is recursive per line and can be massively parallelized, especially in 3D.
- What about IBLU? Classic IBLU is fully recursive.

Divide and Conquer

The inversion of an $n \times n$ tridiagonal matrix can be executed in $2 \log n$ non recursive steps.

 $(I + LD^{-1} + UD^{-1})(D - L - U) =$ D - LD^{-1}U - UD^{-1}L - LD^{-1}L - UD^{-1}U

$$= D_1 - L_1 - U_1$$

Bandwith is doubled in this operation.

Incomplete Block Div and Conq

- Use the same formula, interpreted als blocks
- Use incomplete versions of $LD^{-1}U$ etc.
- *D*, *L* and *U* are (block)diagonals, consisting of tridiagonal blocks.
- We need 7 diagonals of D^{-1}
- Calculate from the productform of the inverse, keeping only 7 diagonals in ² log n steps

Recursion uses $O(2 \log n)$ steps as claimed.

