ANM MATLAB introduction 9th ${ }^{\text {th }}$ September 2016

Exercise 1:

If we list all the natural numbers below 10 that are multiples of 3 or 5 , we get $3,5,6$ and 9 . The sum of these multiples is 23 .

Write a code that solves this for you
Tip: Make use of the following commands: while, sum

Exercise 2:

Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2 , the first 10 terms will be:
$1,2,3,5,8,13,21,34,55,89, \ldots$
2a.
Write a code that creates a vector with the first 15 elements of the Fibonacci sequence
Tip: Make use of the following commands:for
2b.
Continue with the code from 2a:
Write a code that changes all the numbers above 100 into 0

Exercise 3:

Write a script that calculates the sum of a geometric series with $\mathrm{N}+1$ terms, create a function that has both N and r as inputs, and finally gives S as output:

$$
S=\sum_{i=0}^{N} r^{i}=1+r+r^{2}+\ldots+r^{N}
$$

There are 2 ways to do this:
3a.
Find the sum of this geometric series using a for loop, for $\mathrm{N}=10$ and $\mathrm{r}=0.5$

3b.
Find the sum of this geometric series without using any for or while loops

Tip: Start by creating a vector of size $\mathrm{N}+1$ (for example with ones or zeros)

Exercise 4.

Write a script to do the following: On a single figure, plot the following functions:

1. $\sinh (x)$
2. $\cosh (x)$
3. $\tanh (x)$
4. e^{x}
for $-1 \leq x \leq 1$, with point spacing $\Delta x=1 / 10$.
Make sinh a red line, cosh a black dotted line, tanh a blue line with circles at each point, and e^{x} just green \times 's with no line. Make a legend. Label your axes and give the figure a title.

Then, with the same script, create a second figure where you plot the functions in 4 different subplots.
Tip: If you want to open a second window without closing the first one, type figure(2) to open a new window for your plot.

