Computer Assignment EE4550: Block 3

Finite Element Simulation of the Magnetic Field in a C-Shaped Core

The objective of this assignment is to guide the student through the finite simulation of the magnetic field excited by a multiple turn winding in a C -shaped ferromagnetic core.

Let the computational geometry Ω consist of the following four part: the ferromagnetic core domain $\Omega_{\text {core }}$, the left part of the winding $\Omega_{\text {winding-left }}$, the right part of the winding $\Omega_{\text {winding-right }}$ and the air domain $\Omega_{\text {air }}$. We thus have that

$$
\begin{equation*}
\Omega=\Omega_{\text {core }} \cup \Omega_{\text {winding-left }} \cup \Omega_{\text {winding-right }} \cup \Omega_{\text {air }} \tag{1}
\end{equation*}
$$

Let $u(x, y)$ denote the z-component of the vector magnetic potential \mathbf{A}, i.e., $\mathbf{A}=(0,0, u(x, y))$. This

Figure 1: Geometry of the C-shaped core with winding and surrounding air.
implies that the relationship $\mathbf{B}=\nabla \times \mathbf{A}=$ curl \mathbf{A} for the magnetic flux $\mathbf{B}=\left(B_{x}, B_{y}, 0\right)$ reduces to

$$
\begin{equation*}
B_{x}(x, y)=\frac{\partial u}{\partial y} \text { and } B_{y}(x, y)=-\frac{\partial u}{\partial x} \tag{2}
\end{equation*}
$$

Let μ denote the magnetic permeability of the material. Then $\mu=\mu_{0} \mu_{r}$, where μ_{0} and μ_{r} are the magnetic permeability of vacuum the relative permeability of the material, respectively. The values of μ_{0} and μ_{r} are given by $\mu_{0}=4 \pi 10^{-7} \mathrm{Hm}^{-1}$

$$
\mu_{r}=\left\{\begin{array}{l}
1000 \text { for }(x, y) \in \Omega_{\text {core }} \tag{3}\\
1 \quad \text { for }(x, y) \in \Omega_{\text {air }} \cup \Omega_{\text {winding-left }} \cup \Omega_{\text {winding-right }}
\end{array}\right.
$$

The magnetic field $\mathbf{H}=\left(H_{x}, H_{y}, 0\right)$ is then through the constitutive relation $\mathbf{H}=\frac{1}{\mu} \mathbf{B}$ given by

$$
\begin{equation*}
H_{x}(x, y)=\frac{1}{\mu} B_{x}(x, y)=\frac{1}{\mu} \frac{\partial u}{\partial y} \text { and } H_{y}(x, y)=\frac{1}{\mu} B_{y}(x, y)=-\frac{1}{\mu} \frac{\partial u}{\partial x} \tag{4}
\end{equation*}
$$

Let $J_{e, z}(x, y)$ denote the applied current density in the z-direction and assume its values to be given by

$$
J_{e, z}=\left\{\begin{array}{l}
J_{0} \text { for }(x, y) \in \Omega_{\text {winding-left }} \tag{5}\\
-J_{0} \text { for }(x, y) \in \Omega_{\text {winding-right }} \\
0 \text { elsewhere }
\end{array}\right.
$$

The magnetic vector potential component $u(x, y)$ is then found by solving the following diffusion equation with discontinuous diffusion coefficient diffusion equation

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(\frac{1}{\mu} \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(\frac{1}{\mu} \frac{\partial u}{\partial y}\right)=J_{e, z} \tag{6}
\end{equation*}
$$

supplied with the homogeneous boundary condition $u=0$.

Figure 2: Geometry and computed magnetic field lines in the C -shaped core.

Assignment 1 (Geometry Definition)

