## Computer Assignment EE4550: Block 1

## Finite Difference Solver of a Poisson Equation in One Dimension

The objective of this assignment is to guide the student to the development of a finite difference method (FDM) solver of a Poisson Equation in one dimension from scratch. This assignment consists of both pen-and-paper and implementation exercises.

We request the students to prepare a report on these assignments. We appreciate receiving a clearly structured report with an introduction, body and conclusions.

## 1 Finite Difference Method in 1D

In the first part of this assignment we aim at solving the Poisson equation on the open interval $\Omega=(0,1)$. Our objective is to numerically approximate the function $u(x)$ that is the solution of the following problem: given the source function $f(x)$ and the number $\alpha$, find the function $u(x)$ such that $u(x)$ is the solution of the differential equation

$$
\begin{equation*}
-\frac{d^{2} u}{d x^{2}}=f(x) \tag{1}
\end{equation*}
$$

supplied with the following homogeneous Dirichlet boundary condition in $x=0$ and the non-homogeneous Neumann boundary conditions in $x=1$.

$$
\begin{equation*}
u(x=0)=0 \quad \text { and } \quad \frac{d u}{d x}(x=1)=\alpha \tag{2}
\end{equation*}
$$

## Compulsory Analytical Part

Assignment 1 Choose $f(x)=x$ and $\alpha=0.5$ and show that the function $u(x)=-\frac{1}{6} x^{3}+x$ is the exact solution of the problem. Do so by verifying using pen and paper that $u(x)$ satisfies the differential equation as well as both boundary condition. There is no need to use symbolic differentiation, not to use integration to construct $u(x)$. We will use the short hand notation $u^{\prime}(x)=\frac{d u}{d x}$ and $u^{\prime \prime}(x)=\frac{d^{2} u}{d x^{2}}$.

Assignment 2 Plot the function $u(x)$ as a function of $x$ for $0 \leq x \leq 1$ by avoiding for-loops in Matlab.

## Compulsory Numerical Part

Assume that the interval $\Omega$ is discretized by an uniform mesh consisting of $N$ elements with mesh width $h=1 / N$ and vertices $x_{i}=(i-1) h$, where $i$ runs from 1 to $N+1$. This enumeration includes the end points of $\Omega$, that is, $x_{1}=0$ and $x_{N+1}=1$. The grid nodes can then be denotes by

$$
\begin{equation*}
G_{h}=\left\{x_{i} \mid x_{i}=(i-1) h ; h=\frac{1}{N}, 0 \leq i \leq N+1\right\} \tag{3}
\end{equation*}
$$

Assignment 3 (Discretization in the interior nodes) The differential equation holds in particular for all of the internal nodes on $\Omega$, that is, we have that

$$
\begin{equation*}
-\left.\frac{d^{2} u}{d x^{2}}\right|_{x=x_{i}}=f\left(x_{i}\right) \text { for all } 2 \leq x_{i} \leq N \tag{4}
\end{equation*}
$$

Use a finite difference formula twice to show that the second derivative $\left.\frac{d^{2} u}{d x^{2}}\right|_{x=x_{i}}=u^{\prime \prime}\left(x_{i}\right)$ can be discretized as follows

$$
\begin{align*}
u^{\prime \prime}\left(x_{i}\right) & \approx \frac{u^{\prime}\left(x_{i}+h / 2\right)-u^{\prime}\left(x_{i}-h / 2\right)}{h}  \tag{5}\\
& =\frac{u\left(x_{i+1}\right)-2 u\left(x_{i}\right)+u\left(x_{i-1}\right)}{h^{2}}
\end{align*}
$$

(Using Taylor polynomials is can be shown that the local truncation error is of second order in $h$ ). The finite difference discretization thus leads to the following stencil for the approximation of $-\left.\frac{d^{2} u}{d x^{2}}\right|_{x=x_{i}}$ (beware of the minus-sign)

$$
\frac{1}{h^{2}}\left[\begin{array}{ccc}
-1 & 2 & -1  \tag{6}\\
x_{i-1} & x_{i} & x_{i+1}
\end{array}\right]
$$

This stencil implies that each node $x_{i}$ is coupled to its left $\left(x_{i-1}\right)$ and right neighbour ( $x_{i+1}$ ) with a weight of $-\frac{1}{h^{2}}$.

Assignment 4 (Discretization in the left end point) Verify that the Dirichlet boundary condition in the left end point can be enforced by requiring that

$$
\begin{equation*}
u_{1}=0 \tag{7}
\end{equation*}
$$

The finite difference stencil in the left end point thus reduces to

$$
\left[\begin{array}{ccc}
1 & 0 & 0  \tag{8}\\
x_{1} & x_{2} & x_{3}
\end{array}\right] .
$$

Assignment 5 (Discretization in the right end point) Verify that the Neumann boundary condition in the right end point can be enforced by requiring that

$$
\begin{equation*}
\frac{d u}{d x}(x=1)=\frac{u_{N+1}-u_{N}}{h}=\alpha . \tag{9}
\end{equation*}
$$

The finite difference stencil in the right end point thus reduces to

$$
\frac{1}{h}\left[\begin{array}{ccc}
0 & -1 & 1  \tag{10}\\
x_{N-1} & x_{N} & x_{N+1}
\end{array}\right] .
$$

Assignment 6 Assume $h=1 / 3$ (and thus $\mathrm{N}=3$ ). Determine the size of the global matrix $A^{h}$ and the global right-hand vector $\mathbf{f}$. Give all the elements of this matrix and vector with pen (or pencil) on paper.

Assignment 7 Assume $h=1 / 4,1 / 8,1 / 16, \ldots$ and assemble for all these values the global matrix $A^{h}$ and the global right-hand vector $\mathbf{f}^{h}$. Solve the linear system

$$
\begin{equation*}
A \mathbf{u}^{h}=\mathbf{f}^{h} \tag{11}
\end{equation*}
$$

using the Matlab backslash ( $\backslash$ ) command. Plot the various solution for $\mathbf{u}^{h}$ found and compare this plot with the plot of the exact solution in the first assignment.

## Elective Assignments

Assignment 8 Redo Assignment 7 for other choices for $f(x)$ and/or $\alpha$.

Assignment 9 Verify that the numerical scheme is indeed second order accurate by investigating how the max-norm of the discretization error

$$
\begin{equation*}
E=\left\|u(x)-u^{h}(x)\right\|_{\infty}=\max _{1 \leq i \leq N+1}\left|u\left(x_{i}\right)-u^{h}\left(x_{i}\right)\right| \tag{12}
\end{equation*}
$$

scales with the meshwidth $h$ as expected.
Assignment 10 Assemble the matrix $A^{h}$ and the vector $\mathrm{f}^{h}$ avoiding for-loops in Matlab.

Assignment 11 Extend your implementation is such a way to be able to treat a variable diffusion coefficient $c(x)$, i.e, the differential equation

$$
\begin{equation*}
-\frac{d}{d x}\left[c(x) \frac{d u}{d x}\right]=f(x) \tag{13}
\end{equation*}
$$

