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Chapter 1

Introduction

In this chapter we aim at

• describing the different stages in a finite element method (FEM) modeling procedure;

• give an example of FEM is applied in the modeling of an electrical energy application.

Extension of these notes
• animations

• visualization using COVISE

• visualization using

1.1 Stages in a FEM Modeling Procedure
Figure 1.1 shows five different stages in the finite element method (FEM) modeling of the mechanical deformation of a
microchip caused by the Ohmic heat generated by an electrical current. The following five stages can be distinguished:

• in Stage 1 a geometry model of the device under consideration in build. For this purpose a computer aided
design (CAD) software package is typically used;

• in Stage 2 the governing physical processes are described in term of appropriate partial differential equations
supplied with initial and boundary conditions. In the modeling of electrical energy applications, the Maxwell
equations for the electric and magnetic field will play a central role;

• in Stage 3 the geometry is subdivided into small entities called elements. Different types of mesh generation
and mesh refinement techniques exists.

• in Stage 4 the governing partial differential equations are discretized in space and time and the resulting (non-
)linear systems of equations are solved.

• in Stage 5 the solution of the partial differential equations and derived quantities are visualized on the mesh
employed for discretization in space and time.

These five stages are typical in any FEM modeling procedure. Although the other stages are not trivial and object of
active research, this course mainly focussed on Stage 2 and Stage 4.
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Figure 1.1: Stages in a FEM Modeling Procedure.

1.2 Motivating Examples
Industrial Furnace The simulation of flows through an enclosed surface is an often reoccuring problem in com-
putational fluid dynamics. In Figure 1.2 a study case of the simulation of the flow and temperature profile inside an
industrial furnace is presented.

(a) Schematic represention of an industrial furnace

(b) Mesh employed (c) Simulated temperature profile.

Figure 1.2: Numerical simulation of industrial furnaces.

Fault current limiters Fault current limiters are expected to play an important role in the protection of future power
grids. They are capable of preventing fault currents from reaching too high levels and, therefore enhance the life time
expectancy all power system components. Figure 1.3 shows two examples of fault-current limiters along with some
finite element simulation results.
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(a) Open core configuration
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(b) Three legged configuration

(c) Diffusion coefficient µ (d) Current with and without limiter

Figure 1.3: Numerical simulation of fault current limiters.

1.3 Classification of Second Order Partial Differential Equations
In this section we classify second order linear partial differential equations (PDEs) with constant coefficients according
to their elliptic, parabolic and hyperbolic nature and give examples of PDEs in each of these three classes.

Classification We consider an open two-dimensional domain (x, y) ∈ Ω ⊂ R2 with boundary Γ = ∂Ω as the
domain of the second order linear partial differential equation (PDE) for the unknown field u = u(x, y) and the source
function f(x, y) that can be written as

L(u) = f on Ω (1.1)

where the operator L has constant coefficients aij , bi and c

L(u) = a11
∂2u(x, y)

∂x2
+ 2a12

∂2u(x, y)

∂x∂y
+ a22

∂2u(x, y)

∂y2
+ b1

∂u(x, y)

∂x
+ b2

∂u(x, y)

∂y
+ c u(x, y) . (1.2)

We classify these equation based on the sign of the determinant

D =

∣∣∣∣ a11 a12

a12 a22

∣∣∣∣ = a11a22 − a2
12 . (1.3)

The differential operator L is called

• elliptic if D > 0

• parabolic if D = 0
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• hyperbolic if D < 0

Prototypes in this classification are the elliptic Laplace equation uxx+uyy = 0, parabolic heat equation uxx−uy = 0
and the hyperbolic wave equation uxx − uyy = 0. In the case of xy-varying coefficients a11, a22 and a12, the sign of
D and therefore the type of the PDE may change with the location in Ω.

As FEM solvers for discretized hyperbolic PDEs are far less developed, we will only consider elliptic and parabolic
equations in this course. Elliptic equations are characterized by the fact that changes in the data imposed on the
boundary Γ are felt instantaneously in the interior of Ω. Parabolic equations model the evolution of a system from
initial to an stationary (time-independent) equilibrium state.

Examples of Elliptic Partial Differential Equations We will consider the Poisson equation

−4 u := −∂
2u(x, y)

∂x2
− ∂2u(x, y)

∂y2
= f (1.4)

as it plays a central role in engineering applications in which the field u solved for plays the role of a (electric, magnetic
or gravitational) potential, temperature or displacement. The reason for the minus sign in front of the Laplacian will
be discussed together with the finite element discretization. We will also consider two variants of (1.4). In the first
variant we introduce a small positive parameter 0 < ε� 1 to arrive at the anisotropic variant

−ε∂
2u(x, y)

∂x2
− ∂2u(x, y)

∂y2
= f (1.5)

that can be thought of as a simplified model to study the effect of local mesh refinement required to capture e.g.
boundary layers or small geometrical details (such as for instance the air-gap in an electrical machine). In the second
variant we again incorporate more physical realism in (1.4) by allowing the parameter c in

− ∂

∂x

(
c
∂u(x, y)

∂x

)
− ∂

∂y

(
c
∂u(x, y)

∂y

)
= f , (1.6)

to have a jump-discontinuity across the boundary of two subdomains (such as for instance the jump in electrical
conductivity across the interface between copper and air).

The Helmholtz and the convection-diffusion equation are other examples of elliptic partial differential equations.
The former can be written as

−4 u− k2u = −∂
2u(x, y)

∂x2
− ∂2u(x, y)

∂y2
− k2u = f , (1.7)

and models the propagation of an acoustical or electromagnetic wave with wave number k. The latter is a simplified
model for the study of a flow with (dimensionless) velocity v = (1, 0) around a body and can be written as

−ε4 u+ v · ∇u = −ε∂
2u(x, y)

∂x2
− ε∂

2u(x, y)

∂y2
+
∂u(x, y)

∂x
= f , (1.8)

where ε is the inverse of the Peclet number (which plays the same role as the Reynolds number in the Navier-Stokes
equations). The verification that the equations introduced above are indeed elliptic is left as an exercise.

The classification given above can be extended to systems of coupled partial differential equations. The vector-
valued double curl equation for example relates the vector potential U(x, y, z) = (U1(x, y, z), U2(x, y, z), U3(x, y, z))
with the excitation vector field F(x, y, z) and can be written as

∇× (ν∇×U) = F(x, y, z) , (1.9)

where as in (1.6) ν represents a material parameter. This model can be derived from the Maxwell equations and plays
a central role in the finite element modeling of electrical machines, wind turbines and power transformers. In this
setting F and U play the role of the applied current density and the magnetic vector potential, respectively.

In order to guarantee uniqueness of the solution of the above elliptic partial differential equations, appropriate
(Dirichlet, Neumann or other) boundary conditions on Γ = ∂Ω need to be supplied.
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Example of a Parabolic Partial Differential Equation In order to give examples of parabolic partial differential
equations, we change the notation y into t and consider Ω to be a rectangle (x, t) ∈ Ω = [0, L]× [0, T ]. The parabolic
differential equation with source term f(x, t)

∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
+ f(x, t) (1.10)

models the diffusion of the quantity u(x, t) in time that reaches a time-independent equilibrium state when ∂u(x,t)
∂t

is zero. All of the elliptic models introduced above can be extended to a parabolic model by adding the allowing u
to become time-dependent, that is u = u(x, y, t), and adding the term ∂u(x,t)

∂t . These models will be considered for
instance when discussing the role of initial vectors of iterative solution methods.

In order to guarantee uniqueness of the solution of parabolic partial differential equations, both boundary and
initial conditions need to be supplied.

1.4 Model Problems
In this section we define a sequence of model problems for future reference.

Elliptic Problem Problems

• given the domain Ω = (a, b) ⊂ R with boundary, given a positive diffusion coefficient c(x) > 0, ∀x ∈ (a, b),
and given the boundary data g(x) or h(x), solve for u(x) the following ordinary differential equation

−d
2u(x)

dx2
= f(x) on Ω (1.11)

or

− d

dx

(
c(x)

du(x)

dx

)
= f(x) on Ω (1.12)

supplied with either Dirichlet boundary conditions

u(x) = g(x) on x = a and/or x = b (1.13)

or Neumann boundary conditions

d u(x)

dx
= h(x) on on x = a and/or x = b . (1.14)

In case that g(x) = 0 in (1.13) (h(x) = 0 in (1.14)) the Dirichlet (Neumann) boundary conditions is called
homogeneous.

• given an open and bounded domain Ω ⊂ R2 with boundary Γ = ∂Ω that can be subdivided as Γ = ΓD ∪ ΓN
and outward normal n, given a positive diffusion coefficient c(x, y) > 0, ∀(x, y) ∈ Ω, and given the boundary
data g(x, y) or h(x, y), solve for u(x, y) the following partial differential equation

−4 u := −∂
2u(x, y)

∂x2
− ∂2u(x, y)

∂y2
= f(x, y) on Ω , (1.15)

or

− ∂

∂x

(
c(x, y)

∂u(x, y)

∂x

)
− ∂

∂y

(
c(x, y)

∂u(x, y)

∂y

)
= f(x, y) on Ω , (1.16)

supplied with either Dirichlet boundary conditions

u(x, y) = g(x, y) on ΓD (1.17)

or Neumann boundary conditions

∂u(x, y)

∂n
= ∇u(x, y) · n = h(x, y) on ΓN . (1.18)

• double curl equation on a 3D domain
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Parabolic Model Problems



Chapter 2

Mathematical Preliminaries

The goals and motivations of this chapter are to

• generalize the concept of a primitive of a scalar function in a single real variable to vector-valued functions
resulting in the concept of a (scalar or vector) potential;

• generalize the integration by parts formula for integrals of scalar functions to integrals of vector-valued functions
allowing to cast the strong form of a partial differential equation problem into its weak (or variational) form;

• give the fundamental lemma of variational calculus as allowing to demonstrate the equivalence of the strong and
weak form of a partial differential equation problem.

We refer to Stuart for details.

2.1 The Geometry of R3

We denote a point in the three-dimensional Euclidean space R3 by x = (x, y, z). We denote a vector u in R3 either
by its components (u1, u2, u3) or by the (vectorial) sum of the components times the respective unit vectors in x, y
and z-direction, .i.e, u = u1 i + u2 j + u3 k.

Inner product and norm We denote the inner product (or scalar product) of two vectors u = (u1, u2, u3) and
v = (v1, v2, v3) in R3 by u · v. The result of this product is a number (or scalar) defined as

u · v = u1v1 + u2v2 + u3v3 . (2.1)

The norm of the vector u denoted as ‖u‖ is defined as

‖u‖ =
√

u · u =
√
u1u1 + u2u2 + u3u3 . (2.2)

Outer product We denote the outer product (or vector product) of two vectors u = (u1, u2, u3) and v = (v1, v2, v3)
in R3 by u× v. The result of this product is a vector defined as

u× v =

∣∣∣∣∣∣
i j k
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣ = [u2v3 − u3v2] i− [u1v3 − u3v1] j + [u1v2 − u2v1] k . (2.3)

The triple product of three vectors u, v and w is defined as (u× v) ·w and satisfies

(u× v) ·w = u · (v ×w) (2.4)
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2.2 Calculus of Functions of a Real Variable
Assume f(x) to be a scalar function in a single real variable x. A point x0 in the domain of f such that d fdx (x = x0) =
f ′(x0) = 0 is called a critical point of f(x). The function f(x) attains its (local) minima and maxima in its first order
critical points (though not all first order critical points are minima or maxima of f(x)). The Fundamental theorem of
Calculus states that, given a function f(x) in a single real variables with primitive F (x), the integral

∫ b
a
f(x) dx can

be computed as ∫ b

a

f(x) dx = F (b)− F (a) . (2.5)

The following integration by parts formula holds∫ b

a

f(x) g′(x) dx = [f(x)g(x)]
b
a −

∫ b

a

f ′(x) g(x) dx . (2.6)

2.3 Calculus of Functions of Several Variables
Assume u(x) = u(x, y, z) to be be a function on R3, i.e., u(x) : R3 7→ R. Assume furthermore x0 to be point in the
domain of u(x) and s a unit vector, respectively.

Directional Derivative The derivative of u(x) in the direction s in the point x0 is denoted as Dsu(x0) and defined
as

Dsu(x0) = lim
ε→0

u(x0 + ε s)− u(x0)

ε
=

d

dε
[u(x0 + ε s)] |ε=0 . (2.7)

This derivative gives the rate of change u(x) = u(x, y, z) in the direction of s at the point x0.

Gradient The gradient of u denoted as gradu = ∇u is vector function that is defined as

∇u =

(
∂u

∂x
,
∂u

∂y
,
∂u

∂z

)
=
∂u

∂x
i +

∂u

∂y
j +

∂u

∂z
k = ux i + uy j + uz k . (2.8)

The gradient of u is allows to compute the directional derivative of u in the direction of s. We indeed have that
Dsu(x0) = ∇u(x0) · s. This identity will be useful in formulating necessary conditions for first order critical points
of u(x). In a physical context and in case that u is e.g. the temperature,∇u is proportional to the heat flux.

First Order Critical Points The point x0 is a first order critical point of u(x0) iff ∇u(x0) = 0 in R3. The latter
condition can be stated equivalently as

d

dε
[u(x0 + ε s)] |ε=0 = 0 ( in R) ∀s ∈ R3 with ‖s‖ = 1 . (2.9)

This condition will be allow to define first order critical point of functionals on infinite dimensional vector spaces in
the next chapter.

2.4 Calculus of Vector Functions
Assume F(x) = (F1(x), F2(x), F3(x)) to be a vector function on R3, i.e., F(x) : R3 7→ R3.
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Divergence and curl The divergence of F denoted as div F = ∇ · F is a scalar function that is defined as

∇ · F =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
. (2.10)

The curl (or rotation) of F denoted as curl F = ∇× F is a vector function that is defined as

∇× F =

 ∂F3

∂y −
∂F2

∂z

−∂F3

∂x + ∂F1

∂z
∂F2

∂x −
∂F1

∂y

 =

(
∂F3

∂y
− ∂F2

∂z

)
i−
(
∂F3

∂x
− ∂F1

∂z

)
j +

(
∂F2

∂x
− ∂F1

∂y

)
k . (2.11)

The divergence of the vector field F evaluated at a particular point x is the extent to which the vector field behaves
like a source or a sink at a given point. If the divergence is nonzero at some point then there must be a source or sink
at that position. The curl of a vector field F describes an infinitesimal rotation of F.

Example 2.4.1 Insert examples as in previous version of the ATHENS notes here.

Example 2.4.2 Assume c(x) and u(x) to be two scalar functions. Then c∇u is a vector function whose divergence
is equal to

∇ · (c∇u) =
∂

∂x

(
c
∂u

∂x

)
+

∂

∂y

(
c
∂u

∂y

)
+

∂

∂z

(
c
∂u

∂z

)
. (2.12)

If in particular c = 1 (i.e. c(x) = 1 for all x), then

∇ · ∇u = 4φ =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
, (2.13)

where4u denotes the Laplacian of u. This differential operator is generalized to vector-valued functions F(x) by the
double-curl operator as ∇× (c∇× F).

Proposition 2.4.1 From the above definitions immediately follows that for any scalar function u and for any vector
function F that

∇× (∇u) = 0 (in R3) (2.14)
∇ · (∇× F) = 0 (in R) . (2.15)

We will see below that scalar functions u that satisfy ∇ · u = 0 and vector functions F that satisfy ∇× F = 0 play a
special role as they generalize the notion of a constant function f(x) for which f ′(x) = 0.

Proposition 2.4.2 Let c, u and v be scalar functions and let F, G and U be vector functions. By applying the product
rule for differentiation, the following properties can be derived

∇ · (vF) = v∇ · F +∇v · F (2.16)
∇ · (F×G) = (∇× F) ·G + (∇×G) · F . (2.17)

Setting in the former equality F = c (∇u), yields

∇ · [(c∇u)v] = [∇ · (c∇u)] v + c∇u · ∇v . (2.18)

while putting in the latter equality F = c (∇×U), yields

∇ · [c (∇×U)×G] = [∇× (c∇×U)] ·G + (∇×G) · (c∇×U) . (2.19)
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Flux and first integration theorem Assume S to be an oriented surface in R3 with unit outward normal n. We
will denote by −S the surface that coincides with S and has opposite orientation. The normal derivative on S of the
function u denoted as un is defined as un = ∇u · n. The flux of F through S denoted as Φ is defined as the surface
integral

Φ =

∫
S

F · dS =

∫
S

F · n dS . (2.20)

Assume the surface S to be closed and enclosing a volume V . We make this relation explicit by writing S = S(V ).
The Gauss integration theorem states that ∫

S(V )

F · dS =

∫
V

∇ · F dV . (2.21)

Proposition 2.4.3 Assume as in Proposition 2.4.2 c, u and v to be scalar functions and F, G and U to be vector
functions. Applying Gauss’ Theorem to the vector function vF and using (2.16) to expand the right-hand side yields∫

S(V )

F v · dS =

∫
V

∇ · [F v] dV =

∫
V

v∇ · F dV +

∫
V

∇v · F dV . (2.22)

Setting F = c (∇u) yields∫
S(V )

[c (∇u)] v · dS =

∫
V

v∇ · [c (∇u)] dV +

∫
V

∇v · [c (∇u)] dV . (2.23)

Using the notation un = ∇u · n for the normal derivative, one can write the integrand in the left-hand side as
[c (∇u)] v ·dS = [c (∇u)] v ·n dS = c un v dS. After rearranging terms, we obtain the following integration by parts
formula ∫

V

[∇ · (c∇u)] v dV =

∫
S(V )

c un v dS −
∫
V

c∇u · ∇v dV . (2.24)

Applying Gauss’ Theorem to the vector function F×G and using (2.17) to expand the right-hand side yields∫
S(V )

F×G · dS =

∫
V

∇ · (F×G) dV =

∫
V

(∇× F) ·G dV +

∫
V

(∇×G) · F dV . (2.25)

We use the identify (2.4) to rewrite the integrand in the left-hand side as F×G·dS = (F×G)·n dS = F·(G×n) dS.
Setting F = c (∇×U) and rearranging terms then yields∫

V

[∇× (c∇×U)] ·G dV =

∫
S(V )

c (∇×U) · (G× n) dS −
∫
V

(c∇×U) · (∇×G) dV . (2.26)

In subsequent chapters, we will extensively use a two-dimensional variant of (2.24) in which an oriented surface Ω
with outward normal n in R2 (that later we will later call a computational domain) is bounded by a boundary Γ = ∂Ω.
In this case we the following integration by parts formula∫

Ω

[∇ · (c∇u)] v dΩ =

∫
Γ(Ω)

c un v dΓ−
∫

Ω

c∇u · ∇v dΩ , (2.27)

Divergence-Free Vector Fields and Existence of Vector Potentials A vector function F is called divergence-free
(or solenoidal) on Ω ⊂ R3 if and only if ∇ · F(x) = 0 (in R) for all x ∈ Ω. Unless stated differently, we will call in
these notes a vector function F divergence-free if and only if it is divergence-free on Ω = R3.

Gauss’ theorem implies that the flux of a divergence-free vector field through a closed surface S is zero. Decom-
posing S as S = S+ +(−S−), the flux of a divergence-free F through S+ and S− can then be seen to be equal. Given
that S was chosen arbitrarily, the flux of a divergence-free vector in surface independent. This surface-independent
property allows in turn to demonstrate that for divergence-free vector fields a vector potential A must exist such that

F = ∇×A , (2.28)
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or component-wise

F1 =

(
∂A3

∂y
− ∂A2

∂z

)
, F2 =

(
−∂A3

∂x
+
∂A1

∂z

)
and F3 =

(
∂A2

∂x
− ∂A1

∂y

)
. (2.29)

Circulation and second integration theorem Assume Γ to be a closed oriented curve in R3 with unit tangential
vector t. We will denote by−Γ the curve that coincides with Γ and has opposite orientation. The tangential derivative
along Γ of the function u denoted as ut is defined as ut = ∇u · t. The circulation of F along Γ denoted as C is defined
as the line integral

C =

∫
Γ

F · dΓ =

∫
Γ

F · t dΓ . (2.30)

Assume that the curve Γ encloses a surface S and that this relation in written as Γ(S). The Stokes’ integration theorem
states that ∫

Γ(S)

F · dΓ =

∫
S

(∇× F) · dS . (2.31)

Curl-Free Vector Fields and Existence of Scalar Potentials A vector function F is called curl-free (or irrotational)
on Ω ⊂ R3 if and only if ∇× F(x) = 0(in R3) for all x ∈ Ω. Unless stated differently, we will call in these notes a
vector function F curl-free if and only if it is curl-free on Ω = R3.

Stokes’ theorem implies that the circulation of a curl-free vector field along a closed curve Γ is zero. Decomposing
Γ as Γ = Γ+ + (−Γ−), the line integral of a divergence-free F along Γ+ and Γ− can then be seen to be equal. Given
that Γ was chosen arbitrarily, the circulation of a curl-free vector is path independent. This path-independent property
allows in turn to demonstrate that for curl-free vector fields a scalar potential u must exist such that

F = ∇ · u , (2.32)

or component-wise

F1 =
∂u

∂x
, F2 =

∂u

∂y
and F3 =

∂u

∂z
. (2.33)



Chapter 3

Minimization Problems and Differential
Equations

A physical system evolves in such a way to minimize their internal energy. Newton’s apple falls due to gravitation.
The thermal or magnetic flux passes by preference through regions of high (thermal or magnetic) conductivity. Partial
differential equations are derived from this principle. Instead of solving the differential problem directly it might
therefore be more advantegeous to consider an equivalent energy minimization problem. In this chapter we put the
equivalence between partial differential equations and minimization problems in a more formal setting as it will serve
as a tool to explain FEM to solve the former. In this chapter we aim at

1. give the fundamental lemma of variational calculus known as du Bois-Reymond’s lemma;

2. derive the Euler-Lagrange equation whose solution describes a stationary point for a functional to be minimized;

3. use the above two ingredients to show how partial differential equations can be derived from a minimization
problem;

4. show under which conditions a partial differential differential can be derived from a minimization problem.

3.1 Function Spaces, Differential Operators and Functionals
In this section we introduce ingredients allowing to describe minimization problems formally. We seek to describe
that the orbit that the falling apple describes is an orbit that minimizes its energy.

3.1.1 Function Spaces
Definition 3.1.1 (Function space) Given Ω (a domain in R, R2 or R3), a function space V (Ω) is a space of functions
(in one, two or three variables) on Ω that satisfy some smoothness requirements and possibly boundary conditions.

The set V (Ω) is e.g. the set of all imaginable orbits of the Newton’s apple. We impose sufficient smoothness conditions
to allow to take derivatives of elements in V (Ω). If additionally boundary conditions are imposed, elements V (Ω) can
be viewed as solutions of a partial differential equation supplied with boundary conditions. More formally, we can
give the following examples:

Example 3.1.1 (One-Dimensional Domain) Given the open interval Ω = (a, b) ⊂ R, we will denote C1 (Ω) the func-
tions u(x) with a continuous first derivative u′(x). We denote the subset C1

0 (Ω) =
{
u ∈ C1 (Ω) |u(a) = 0 = u(b)

}
of functions satisfying homogeneous Dirichlet boundary conditions.
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Example 3.1.2 (Two-Dimensional Domain) In problems on two-dimensional domain, we will denote by Ω ⊂ R2

an open and bounded domain with boundary Γ = ∂Ω that can be partioned into distinct parts ΓD and ΓN , i.e.,
Γ = ΓD ∪ ΓN . We associate with ΓD and ΓN that part of the boundary on which (possibly non-homogeneous)
Dirichlet and Neumann (or Robin) boundary conditions are imposed, respectively. We will denote by C1 (Ω) the
functions u(x, y) with a continuous first order partial derivatives ux and uy . We will denote the subset C1

0 (Ω) ={
u ∈ C1 (Ω) |u|ΓD

= 0
}

.

Treatment of boundary conditions The presence of the Neumann boundary conditions is not reflected in the above
definition of C1

0 (Ω). The condition u|ΓD
= 0 is imposed even in case of non-homogenous Dirichlet boundary con-

ditions. Only with the latter condition the above function spaces are vector space (closed for linear combinations) of
infinite dimensions. These vector spaces can be endowed with a norm, thus becoming therefore Hilbert spaces.

3.1.2 Differential Operators
Assume that L is a second order differential operator acting on elements of V (Ω) and let u = 0, i.e., u(x) = 0
∀x ∈ Ω, denote the zero element of V (Ω). It is obvious that Lu = 0. This trivial situation is excluded in the following
definition.

Definition 3.1.2 (Positivity) The differential operatore L is positive on V (Ω) iff∫
Ω

v (Lv) dΩ > 0 ∀v ∈ V (Ω) \ {0} . (3.1)

Observe that in the above definition the boundary conditions are taken into account by incorporating in the definition
of V (Ω) and requiring that v ∈ V (Ω).

Example 3.1.3 The differential operator Lv = − d2v
dx2 = −v′′(x) is positive on C1

0 ((a, b)). Indeed, using integration
by parts and the homogeneous Dirichtlet boundary conditions we have that∫

Ω

v (Lv) dΩ = −
∫ b

a

v(x) v′′(x) dx = − [v(x) v′(x)]
b
a︸ ︷︷ ︸

=0

+

∫ b

a

v′(x) v′(x) dx > 0 . (3.2)

Example 3.1.4 Given on open and bounded subset Ω ⊂ R2 and the coefficient c(x) > 0 ∀x ∈ Ω, the differential
operator Lv = −∇ · (c∇v) is positive on C1

0 (Ω).

Definition 3.1.3 (Self-adjointness) The differential operator L is called self-adjoint (or symmetric) on V (Ω) iff∫
Ω

v (Lu) dΩ =

∫
Ω

u (Lv) dΩ ∀u, v ∈ V (Ω) . (3.3)

Example 3.1.5 The differential operator Lv = − d2v
dx2 is self-adjoint on C1

0 ((a, b)). This can be seen by integrating by
parts twice and using the homogeneous boundary conditions.

Example 3.1.6 Given an open and bounded subset Ω ⊂ R2 and the coefficient c(x) > 0 ∀x ∈ Ω, the differential
operator Lv = −∇ · (c∇v) is self-adjoint on C1

0 (Ω).

3.1.3 Functionals
Definition 3.1.4 (Functional) Given a function space V (Ω), a functional L is a mapping from V (Ω) onto R, i.e.,
L : V (Ω) 7→ R.

If u ∈ V (Ω) is an orbits of Newton’s apple, then L(u) can for instance represent the length of the orbit. If u ∈ V (Ω) is
a temperature distribution in a region, then can for instance represent the average of the temperature. In the modeling
of electrical machines the function u typically represents the (scalar or vector) magnetic potential and the force, torque,
resistive heat and eddy current are examples of functionals in u. More formal examples are given below.
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Example 3.1.7 (Distance in Flat Land) Let V (Ω) be the set of differentiable functions on the open interval (a, b)
supplied with the additional conditions that u(x = a) = ua and u(x = b) = ub. The graph of each element of V (Ω)
is a path between the points (a, ua) and (b, ub) in R2. The length L(u) of each of these path can be computed by the
line integral

L(u) =

∫
ds (3.4)

where, given that dy = u′(x) dx,

ds2 = dx2 + dy2 =
[
1 + u′(x)2

]
dx2 ⇔ ds =

√
1 + u′(x)2 dx , (3.5)

and therefore

L(u) =

∫ b

a

√
1 + u′(x)2 dx . (3.6)

Example 3.1.8 (Mass-Spring System) Let V (Ω) be the set of differentiable functions on the open interval (a, b)
describing the motion of a point (apple) with mass m vertically attached to a wall with a spring constant k (the
independent variable x ∈ (a, b) thus denotes time here). The instantaneous energy E [u(x)] of the mass is the sum
of the kinetic and potential energy T [u(x)] = 1/2mu′(x)2 and V [u(x)] = 1/2 k u(x)2, i.e, E [u(x)] = T [u(x)] −
V [u(x)]. The total energy is the functional L(u) defined on V (Ω) as

L(u) =

∫ b

a

[
T [u(x)]− V [u(x)]

]
dx =

∫ b

a

[
1/2mu′(x)2 − 1/2 k u(x)2

]
dx . (3.7)

Example 3.1.9 (Abstract One-Dimensional Example) The previous example can be put in a more abstract setting
by allowing f(x, u, u′) to be a function in three variables mapping from (a, b)× V (Ω)× V (Ω) to R with continuous
partial derivatives. Given such a function f , we define the functional on V (Ω) as

L(u) =

∫ b

a

f(x, u, u′) dx . (3.8)

In the next example we establish the link we differential equations. In this example the function f represents the source
term in the differential equation, the current in the modeling of fault-current limiter or the burner in the industrial
furnace example. The function c and h will turn out later to be the diffusion coefficient and the non-homogeneous
term in the Neumann boundary conditions, respectively.

Example 3.1.10 (Two-Dimensional Self-Adjoint Differential Equation) Given Ω ⊂ R2 an open and bounded two-
dimensional domain with boundary Γ = ΓD∪ΓN , given c a positive function on Ω, given f a (not-necessarily smooth)
function on Ω and given h a function on ΓN , a functional on C1(Ω) can be defined by

L(u) =

∫
Ω

[
1/2∇u · (c∇u)− fu

]
dΩ +

∫
ΓN

h(x, y)u dΓ . (3.9)

In turns out in the last example L is linear and bounded (and therefore continuous).

3.1.4 Minimization of Functionals
In this subsection we seek to minimize to minimize functionals over the corresponding function space, i.e., to find
arguments ũ ∈ V (Ω) that minimize L or

find ũ ∈ V (Ω) such that L(ũ) ≤ L(u) ∀u ∈ V (Ω) . (3.10)

Solving this problem is generally hard, if not impossible at all. Local and global minimizers might be hard to distin-
guish and the global optimum might be non-unique. We therefore aim towards the less ambitious goal of seeking first
order critical points of L. These points are defined for functionals in the same way as for functions in several variables.
The point ũ is a first order critical point of L iff the directional derivative of L in ũ is zero in all possible directions.
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For the definition of first order critical point to have sense, it is important that the space of possible directions used

in the definition forms a vector space, i.e., that this space is closed for linear combinations. This requires the proper
treatment of the non-homogeneous Dirichlet boundary conditions. Indeed, any linear combination of two functions
u1 and u2 satisfying the non-homogeneous Dirichlet boundary conditions no longer satisfies them. This motivates the
following definition of the subspace V0(Ω) of V (Ω)

V0(Ω) = {v ∈ V (Ω)|v|ΓD
= 0} . (3.11)

In case that non-homogeneous Dirichlet boundary conditions are imposed the space V0(Ω) forms a vector space, while
V (Ω) does not.

The problem of finding (local) minimizers of L now reduces to

find ũ ∈ V (Ω) such that
d

dε

[
L(ũ+ εv)

]
|ε=0 = 0 ∀v ∈ V0(Ω) . (3.12)

Note that ũ and v not necessarily belong to the same space. We will refer to V0(Ω) as the space of test functions. Only
if L is convex, there is only one critical point that coincides in the global minimizer of L.

3.2 Calculus of Variations
en.wikipedia.org/wiki/Fundamental lemma of calculus of variations

3.3 From Functionals to Differential Equations
In this section we illustrate how differential equations can be obtained by the minimizing of functionals. Given a
functional L, we will carry out the following three-step procedure:

1. assume that ũ is a first-order critical point of L and express that ũ satisfies the condition (3.12);

2. integrate integrate-by-parts and exploit the homogeneous Dirichlet boundary conditions of v ∈ V0(Ω);

3. apply du-Bois Reymond’s Lemma to derive the differential equation for ũ.

In what follows we illustrate the above procedure using the examples of functionals given above.

3.3.1 Distance in Flat Land
In this subsection we illustrate the above procedure using the functional introduced in Example 3.1.7. Given Ω =
(a, b), and given the function space V (Ω) and V0(Ω) where

V (Ω) = {u(x)|u′(x) continuous on Ω, u(x = a) = ua and u(x = b) = ub} (3.13)

and
V0(Ω) = {v(x)|v′(x) continuous on Ω, v(x = a) = 0 and v(x = b) = 0} , (3.14)

we seek to minimize L(u) =
∫ b
a

√
1 + u′(x)2 dx over V (Ω). We begin by recalling that

d

dε
(ũ+ εv) = (ũ+ εv)′ = ũ′ + εv′ . (3.15)

Next we compute the left-hand side of (3.12)

d

dε

[
L(ũ+ εv)

]
=

d

dε

[ ∫ b

a

√
1 + (ũ′ + εv′)2 dx

]
(3.16)

=

∫ b

a

d

dε

√
1 + (ũ′ + εv′)2 dx

=

∫ b

a

(ũ′ + εv′) v′√
1 + (ũ′ + εv′)2

dx .
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Therefore

d

dε

[
L(ũ+ εv)

]
|ε=0 =

∫ b

a

ũ′ v′√
1 + (ũ′)2

dx , (3.17)

and using by integration by parts and the homogeneous Dirichlet boundary conditions on v we obtain

d

dε

[
L(ũ+ εv)

]
|ε=0 =

[
ũ′ v√

1 + (ũ′)2

]x=b

x=a︸ ︷︷ ︸
=0

−
∫ b

a

d

dx

[
ũ′√

1 + (ũ′)2

]
v dx . (3.18)

We expand the integrand in the right-hand side as

d

dx

[
ũ′√

1 + (ũ′)2

]
=

d

dũ′

[
ũ′√

1 + (ũ′)2

]
dũ′

dx
(3.19)

=

[
1√

1 + (ũ′)2

]
ũ′′ + ũ′

d

dũ′

[
(1 + (ũ′)2)−1/2

]
ũ′′

=

[
1 + (ũ′)2

[1 + (ũ′)2]3/2

]
ũ′′ −

[
(ũ′)2

[1 + (ũ′)2]3/2

]
ũ′′

=
ũ′′

[1 + (ũ′)2]3/2
,

and therefore
d

dε

[
L(ũ+ εv)

]
|ε=0 = −

∫ b

a

[
ũ′′

[1 + (ũ′)2]3/2

]
v dx . (3.20)

The condition (3.12) that ũ is a critical point is therefore equivalent to∫ b

a

[
ũ′′

[1 + (ũ′)2]3/2

]
v dx = 0 ∀v ∈ V0(Ω) . (3.21)

By du-Bois Reymond’s Lemma we can then assert that

ũ′′

[1 + (ũ′)2]3/2
= 0 on (a, b)⇔ ũ′′ = 0 on (a, b) , (3.22)

which is the differential equation for ũ sought for.
This example is sufficiently simple to allow for an analytical solution for ũ. Indeed, the differential equation

ũ′′ = 0 on (a, b) supplied with the boundary conditions u(x = a) = ua and u(x = b) = ub yields the solution

ũ(x) = ua +
ub − ua
b− a

(x− b) , (3.23)

which is a straight line interval in R2 between the points (a, ua) and (b, ub). More important than the solution is to
observe the fact that the differential equation for ũ can be obtained by minimizing a functional.

Smoothness Requirements on the Solution The minimization and differential equation problem impose different
smoothness requirements on ũ. Indeed, while the former only requires the first order derivative to exist, the latter
requires the existance of the second order derivative. We indeed used integration by parts in deriving the differential
equation, elevating the derivate on ũ from one to two. This difference in smoothness requirements on ũ will turn out
to be important in motivating the use of the FEM method in solving engineering problems of practical interest.
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3.3.2 Abstract One-Dimensional Minimization Problem
In this subsection we apply the same procedure as before on the functional L described in Example 3.1.9. Given as
before Ω = (a, b), and given the function space V (Ω) and V0(Ω) where

V (Ω) = {u(x)|u′(x) continuous on Ω, u(x = a) = ua} (3.24)

and
V0(Ω) = {v(x)|v′(x) continuous on Ω, v(x = a) = 0} , (3.25)

we seek to minimize L(u) =
∫ b
a
f(x, u, u′) dx over V (Ω). Notice the absence of conditions at the end point of Ω in

the definition of both V (Ω) and V0(Ω). In our derivation we will also make use of the function space W0(Ω) ⊂ V0(Ω)
where

W0(Ω) = {v(x)|v′(x) continuous on Ω, v(x = a) = 0 and v(x = b) = 0} . (3.26)

We begin by computing the left-hand side of (3.12)

d

dε

[
L(ũ+ εv)

]
=

d

dε

[ ∫ b

a

f(x, ũ+ εv, ũ′ + εv′) dx
]

(3.27)

=

∫ b

a

d

dε
f(x, ũ+ εv, ũ′ + εv′) dx .

The derivative in the integrand on the right-hand side can be computed via the chain rule, i.e.,

d

dε
f(x, ũ+ εv, ũ+ εv) =

∂f

∂u
(x, ũ+ εv, ũ′ + εv′)

d(ũ+ εv)

dε
+ (3.28)

∂f

∂u′
(x, ũ+ εv, ũ′ + εv′)

d(ũ′ + εv′)

dε

=
∂f

∂u
(x, ũ+ εv, ũ′ + εv′) v +

∂f

∂u′
(x, ũ+ εv, ũ′ + εv′) v′ .

Substituting this result into the integral and splitting the integral into two parts, one obtains

d

dε

[
L(ũ+ εv)

]
=

∫ b

a

∂f

∂u
(x, ũ+ εv, ũ′ + εv′) v dx+

∫ b

a

∂f

∂u′
(x, ũ+ εv, ũ′ + εv′) v′ dx . (3.29)

Therefore
d

dε

[
L(ũ+ εv)

]
|ε=0 =

∫ b

a

∂f

∂u
(x, ũ, ũ′) v dx+

∫ b

a

∂f

∂u′
(x, ũ, ũ′) v′ dx . (3.30)

and using by integration by parts and the homogeneous Dirichlet boundary conditions in x = a on v we obtain

d

dε

[
L(ũ+ εv)

]
|ε=0 =

∫ b

a

∂f

∂u
(x, ũ, ũ′) v dx+

[
∂f

∂u′
(x, ũ, ũ′) v

]x=b

x=a︸ ︷︷ ︸
=0 in x=a only

−
∫ b

a

d

dx

[
∂f

∂u′
(x, ũ, ũ′)

]
v dx (3.31)

=

∫ b

a

∂f

∂u
(x, ũ, ũ′) v dx+

∂f

∂u′
(x = b, ũ, ũ′) v(x = b)−

∫ b

a

d

dx

[
∂f

∂u′
(x, ũ, ũ′)

]
v dx .

The condition (3.12) is then seen to be equivalent to∫ b

a

[
∂f

∂u
− d

dx

(
∂f

∂u′

)]
v dx =

∂f

∂u′
(x = b, ũ, ũ′) v(x = b) ∀v ∈ V0(Ω) . (3.32)

At this point we can apply du-Bois Reymond’s Lemma. The above condition should in particular hold for v ∈
W0(Ω) ⊂ V0(Ω) for which v(x = b) = 0 and therefore∫ b

a

[
∂f

∂u
− d

dx

(
∂f

∂u′

)]
v dx = 0 ∀v ∈W0(Ω) , (3.33)
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and therefore by du-Bois Reymond’s Lemma

∂f

∂u
− d

dx

(
∂f

∂u′

)
= 0 on (a, b) . (3.34)

To treat the boundary condition as x = b we return to larger space V0(Ω) and to the relation (3.32) knowing now that
the left-hand side is zero, i.e.,

∂f

∂u′
(x = b, ũ, ũ′) v(x = b) = 0 ∀v ∈ V0(Ω) , (3.35)

and therefore we necessarily have that
∂f

∂u′
(x = b, ũ, ũ′) = 0 . (3.36)

Summarizing, we can state that the solution of the differential equation (3.34) supplied with the boundary condi-
tions u(x = a) = ua and (3.36) minimizes L(u) =

∫ b
a
f(x, u, u′) dx over V0(Ω). The minimization of a functional is

seen to give raise to a partial differential equation with boundary conditions guaranteeing an unique solution.
The equation (3.34) is called the Euler-Lagrange equation. It plays an important role in various fields of physics

such as geometrical optics, classical and quantum mechanics and cosmology as it allows to derive the governing
equations starting from a functional describing the total energy of the system. This is illustrated in the example of
Newton’s apply in the next paragraph.

Newton’s Apple In Example 3.1.8 the function f(x, u, u′) is seen to be

f(x, u, u′) = 1/2mu′(x)2 − 1/2 k u(x)2 . (3.37)

Therefore

∂f

∂u′
= mu′(x) (3.38)

d

dx

(
∂f

∂u′

)
= mu′′(x)

∂f

∂u
= −k u(x) .

The Euler-Lagrange equation is therefore seen to simplify

mu′′(x) = −k u(x) , (3.39)

which corresponds to the governing equation for a mass-spring system.

3.3.3 Two-Dimensional Self-Adjoint Problem

L(ũ+ εv) =

∫
Ω

[
1/2∇(ũ+ εv) ·

[
c∇(ũ+ εv)

]
− f(ũ+ εv)

]
dΩ +

∫
ΓN

h(x, y) (ũ+ εv) dΓ (3.40)

=

∫
Ω

[
1/2∇ũ · (c∇ũ)− fũ

]
dΩ +

∫
ΓN

h(x, y) ũ dΓ +

ε

[∫
Ω

[
∇v · (c∇ũ)− f v

]
dΩ +

∫
ΓN

h(x, y) v dΓ

]
+ ε2

∫
Ω

1/2∇v · (c∇v) dΩ .

Therefore

L(ũ+ εv)|ε=0 =

∫
Ω

[
∇v · (c∇ũ)− f v

]
dΩ +

∫
ΓN

h(x, y) v dΓ (3.41)
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and using integration by parts and the homogeneous boundary conditions of v on ΓD

L(ũ+ εv)|ε=0 =

∫
Ω

∇v · (c∇ũ) v dΩ−
∫

Ω

f v dΩ +

∫
ΓN

h(x, y) v dΓ (3.42)

=

∫
Ω

∇ · (c∇ũ) v dΩ−
∫

Ω

f v dΩ +

∫
Γ

c un v dΓ︸ ︷︷ ︸
v=0 on ΓD

+

∫
ΓN

h(x, y) v dΓ

=

∫
Ω

[
∇ · (c∇ũ)− f

]
v dΩ +

∫
ΓN

[
h(x, y)− cun

]
v dΓ

3.4 From Differential Equation to Minimization Problem



Chapter 4

Quasi Stationary Magnetic Fields Models

4.1 Maxwell Equations
The starting point for deriving partial differential equation models for magnetic field computations are the Maxwell
equations [1, 3]. These equations relate five vector fields: the magnetic field H (units A/m), the magnetic flux density
(or induction) B (units T ), the electric field E (units V/m), the electric displacement D (units ) and the electric current
density J (units A/m2). They can be written as

∇×H− σ v ×B = J +
∂D

∂t
, (4.1)

∇×E = −∂B

∂t
, (4.2)

∇ ·B = 0 , (4.3)

∇ ·D = ρ , (4.4)

where ρ is the electric charge density and where v is the velocity of the medium with electrical conductivity σ. Equa-
tions (4.12) and (4.13) are Ampère’s law and Faraday’s law respectively. Equations (4.14) and (4.4) are conservation
laws. The Maxwell equations have to be completed with constitutive material equations

B = µH , (4.5)

D = εE , (4.6)

J = σE , (4.7)

where µ, ε and σ are the magnetic permeability and the electric permittivity and conductivity respectively. Equations
(4.5) and (4.6) are the magnetic and dielectric relations, and equation (4.7) is Ohm’s law. In the general case, the
quantities µ, ε and σ are tensors. The law of charge conservation can be derived from the above equations. Indeed,
given that ∇ · (∇× .) = 0 for any vector field, taking the divergence of both sides of Ampère Law yields that

∂ρ(x, t)

∂t
+∇ · J(x, t) = 0 , (4.8)

which implies that in the absence of free charged particles implies that

∇ · J(x) = 0 . (4.9)

Maxwell’s equations can be derived from a minimizing the electromagnetic energy

Wtot(t) = We(t) +Wm(t) (4.10)

=
1

2

∫
Ω

D ·E dΩ +
1

2

∫
Ω

B ·H dΩ . (4.11)

In the following sections the full set of Maxwell equations are reduced to simpler models by making assumptions
on the time-behavior of the field and the dimensions of the problem.
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4.2 Quasi-Stationary Approximation to Maxwell Equations
In a quasi-stationary approximation the displacement term can be neglected, and the Maxwell equations become

∇×H− σ v ×B = J , (4.12)

∇×E = −∂B

∂t
, (4.13)

∇ ·B = 0 , (4.14)

4.3 Quasi-Stationary Approximation in Integral Form
Assume S as to be a (sufficiently smooth) oriented surface in R3 with unit outward normal vector n. Assume further-
more S to be bounded by an oriented (sufficiently) smooth curve Γ with unit tangential vector t. The surface integrals
of B and J through S define the magnetic flux Φ and electric current I , respectively, i.e.,

Φ =

∫
S

B · ds =

∫
S

B · n ds , (4.15)

and
I =

∫
S

J · ds =

∫
S

J · n ds . (4.16)

The surface integrals of ∇ ×H and ∇ × E through S define the magnetic motive force (MMF) and electro motive
force (EMF), respectively, i.e.,

MMF =

∫
S

(∇×H) · ds =

∫
Γ

H · dt =

∫
Γ

H · t dγ , (4.17)

and
EMF =

∫
S

(∇×E) · ds =

∫
Γ

E · dt =

∫
Γ

E · t dγ . (4.18)

In the absence of motion, the quasi static approximation to Maxwell equations can then be expressed as

MMF = I (4.19)

EMF = −dΨ

dt
. (4.20)

4.4 Stationary Approximation
In a stationary regime, the magnetic field quantities are decoupled from the electric ones and governed by

∇×H(x)− σ v ×B(x) = J(x) , (4.21)

∇ ·B(x) = 0 , (4.22)

B(x) = µH(x) . (4.23)

(need to add physical dimensions).
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Constitutive Equations The constitute equation (4.23) codes magnetic material properties into the magnetic field
equations (4.28)-(4.22) and needs to be made more specific for the different materials considered. In the following we
do so for the following frequently used materials:

• vacuum
B = µ0 H , (4.24)

where the magnetic permeability of vacuum equals µ0 = 4π × 10−7 N
A2 ;

• linear ferromagnetic materials (e.g. linear steel)

B = µH = µ0 µr H , (4.25)

where µr is the (constant) relative magnetic permeability;

• non-linear ferromagnetic materials (e.g. non-linear steel). For these materials the permeability (permeability
tensor components) is a function of the magnitude (or strength) of the magnetic field denoted by B

B = µ(B) H = µ0 µr(B) H , (4.26)

where µr is the relative magnetic permeability. This relationship modeling magnetic saturation will be further
discussed in subsequent chapters;

• permanent magnetic materials: different ways to model these materials exist. Using the remanent magnet flux
density Br for instance, we have that

B = µ0 µr H + Br . (4.27)

Introducing of Potential Potential is a primitive for a vector field.

Scalar Potential Formulation By introducing either a scalar or magnetic vector potential, these equations transform
into second order partial differential equations. In the absence of motion we have that v = 0 and Equation (4.28) states
that electrical charges moving uniformly in time give rise to a static magnetic field. If in addition J = 0 and permanent
magnet materials are present, then the curl-free condition for the magnetic field H (4.28) is ensured by expressing H
in terms of the scalar magnetic potential Vm as

H = ∇Vm . (4.28)

The substitution of (4.28) and (4.23) into (4.22) yields

∇ · (µ∇Vm) = −∇ ·Br , (4.29)

where we brought the known vector Br to the right-hand side. In two-dimensional cartesian (xy) configurations with
the direction of the of the magnetization in this plane, we can assume that Br = (Brx(x, y), Bry(x, y), 0). This
implies that the magnetic field reduces to H = (Hx(x, y), Hy(x, y), 0) where

Hx(x, y) =
∂Vm
∂x

and Hy(x, y) =
∂Vm
∂y

(4.30)

which in turn implies that the magnetic flux reduces to B = (Bx(x, y), By(x, y), 0) where

Bx(x, y) = µHx(x, y) +Brx(x, y) = µ
∂Vm
∂x

+Brx(x, y) (4.31)

By(x, y) = µHy(x, y) +Bry(x, y) = µ
∂Vm
∂y

+Brx(x, y) , (4.32)

and the PDE for the scalar potential becomes

∂

∂x

(
µ
∂Vm
∂x

)
+

∂

∂y

(
µ
∂Vm
∂y

)
= −∂Brx

∂x
− ∂Bry

∂y
. (4.33)
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Vector Potential Formulation The divergence-free condition for the for the magnetic flux density B (4.22) is en-
sured by expressing B in terms of the magnetic vector potential A as

B = ∇×A . (4.34)

or

B = (Bx(x, y, z), By(x, y, z), Bz(x, y, z)) (4.35)

=

(
∂Az
∂y
− ∂Ay

∂z
,−∂Az

∂x
+
∂Ax
∂z

,
∂Ay
∂x
− ∂Ax

∂y

)
. (4.36)

The substitution of (4.34) and (4.23) into (4.28) in the presence of motion and the absence of permanent magnet
materials yields

∇× (ν∇×A)− σ v × (∇×A) = J , (4.37)

where ν = 1/µ is the magnetic reluctivity. In the absence of motion and presence of permanent magnetic materials
one obtains

∇× (ν∇×A) = J + ν∇×Br , (4.38)

Equations (4.37) and (4.38) are coupled systems of three second order PDEs for the three components of A. Once this
system has been solved for A, the technically relevant fields B and H can be calculated by relations (4.34) and (4.23).

To avoid the complexity of solving (4.37) or (4.38), two-dimensional approximations are often considered in
engineering practice. We will consider perpendicular and in plane current formulations. We will consider the former in
both cartesian and cylindrical coordinates. In many applications, these formulations already give valuable information
of the device under consideration.

4.4.1 Perpendicular Current Formulation
In two-dimensional Cartesian formulations, the problem is posed on a domain Ω lying in the xy-plane and all field
quantities are assumed to be z-independent. Here Ω models for example the cross-section perpendicular to the axis of
an electrical machine. The current density J is assumed to be perpendicular to Ω

J = (0, 0, Jz(x, y)) , (4.39)

and the remanent flux density is assumed to have components in Ω only

Br = (Bx(x, y), By(x, y), 0) . (4.40)

Due to symmetry, the field quantity B lies in the plane Ω

B = (Bx(x, y), By(x, y), 0) . (4.41)

Condition (4.34) can therefore be met assuming a potential A of the form

A = (0, 0, Az(x, y)) . (4.42)

and by (4.22) the components of B can be expressed as

Bx =
∂Az
∂y

and By = −∂Az
∂x

. (4.43)

Using appropriate constitutive equations, the components of the magnetic field can be expressed as

Hx(x, y) = νBx(x, y)− νBrx(x, y) = ν
∂Az
∂y
− νBrx(x, y) (4.44)

Hy(x, y) = νBy(x, y)− νBry(x, y) = −ν ∂Az
∂x
− νBry(x, y) . (4.45)
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Moving Parts and No Permanent Magnet Materials By the above assumptions, the system (4.37) reduces to a
single second order PDE for the z-component of the magnetic vector potential

− ∂

∂x

(
ν
∂Az
∂x

)
− ∂

∂y

(
ν
∂Az
∂y

)
+ σ vx

∂Az
∂x

+ σ vy
∂Az
∂y

= Jz . (4.46)

No Moving Parts and With Permanent Magnet Materials By the above assumptions, the system (4.38) reduces
to

− ∂

∂x

(
ν
∂Az
∂x

)
− ∂

∂y

(
ν
∂Az
∂y

)
= Jz + ν

∂Bry
∂x

− ν ∂Brx
∂y

. (4.47)

Boundary conditions The above PDE for Az(x, y) need to be supplied with appropriate boundary conditions. We
distinguish the following types

• magnetic insulation: Az(x, y) = 0

• electric insulation:

• periodic boundary conditions:

Example 4.4.1 In Figure 4.4.1 we consider a permanent magnet magnetized in vertical direction and show the equipo-
tential lines of the computed magnetic scalar and vector potential.

More examples Rotary electrical machines, linear actuators, transformers, shape optimization involving permanent
magnets.

(a) Scalar Potential Model (b) Vector Potential Model (c) Both models

Figure 4.1: Perpendicular current model of a permanent magnet using both the scalar and vector magnetic potential.

4.4.2 Azimuthal Current Formulation
In an axi-symmetrical formulation in cylinder coordinates (r, θ, z), the domain Ω lies in the rz-plane and all field
quantities are assumed to be θ-independent. In analogy to the Cartesian formulation, the applied current density is
assumed to be perpendicular to Ω

J = (0, Jθ(r, z), 0) . (4.48)

As before the field quantity B only has components in the modeling plane

B = (Br(r, z), 0, Bz(r, z)) . (4.49)

Condition (4.34) can therefore be met assuming a potential A of the form

A = (0, Aθ(r, z), 0) . (4.50)
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and by (4.22) in cylindrical coordinates

∇× F =

(
1

r

∂Fz
∂θ
− ∂Fθ

∂z
,
∂Fr
∂z
− ∂Fz

∂r
,

1

r

[
∂(rFθ)

∂r
− ∂Fr

∂θ

])
(4.51)

the components of B in can be expressed as

Br = −r ∂
∂z

(Aθ(r, z)
r

)
= −∂Aθ(r, z)

∂z
(4.52)

and

Bz = r
∂

∂r

(Aθ(r, z)
r

)
+ 2

Aθ(r, z)

r

= r
1

r

∂Aθ(r, z)

∂r
− rAθ(r, z)

1

r2
+ 2

∂Aθ(r, z)

r

=
∂Aθ(r, z)

∂r
+
∂Aθ(r, z)

r

=
1

r

[ ∂
∂r

(rAθ(r, z))
]

=
1

r

[
Aθ(r, z)) + r

∂

∂r
Aθ(r, z)

]
=

Aθ(r, z)

r
+
∂Aθ(r, z)

∂r
(4.53)

The system (4.37) then reduces to the scalar equation

− ∂

∂r

(
ν

r

∂(r Aθ)

∂r

)
− ∂

∂z

(
ν
∂Aθ
∂z

)
+ σ vr

∂Aθ
∂r

+ σ vz
∂Aθ
∂z

= Jθ . (4.54)

Boundary condition Boundary condition on the axis of symmetry.

Examples Voice-coil actuator
The PDE in form (4.47) or (4.54) is the governing PDE for two-dimensional stationary magnetic field computa-

tions.

4.4.3 In Plane Current Formulation
Assume current flowing in plane

J = (Jx(x, y), Jy(x, y), 0) . (4.55)

Then B only has component perpendicular to the modeling plane

B = (0, 0, Bz(x, y)) . (4.56)

Condition (4.34) can therefore be met assuming a potential A of the form

A = (Ax(x, y), Ay(x, y), 0) , (4.57)

and the Bz can be expressed as

Bz(x, y) =
∂Ay
∂x
− ∂Ax

∂y
. (4.58)

The system (??) then reduces to the system of two coupled partial differential equations for Ax(x, y) and Ay(x, y)

∂

∂y
ν

(
∂Ay
∂x
− ∂Ax

∂y

)
= Jx(x, y) (4.59)

− ∂

∂x
ν

(
∂Ay
∂x
− ∂Ax

∂y

)
= Jy(x, y) (4.60)
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(a) Actuator with rotor and stator (b) Geometry of the actuator

(c) Mesh for the actuator (d) Computed Magnetic Field Lines

Figure 4.2: Axi-symmetrical vector-potentiall model of a voice-coil actuator.

Example Non-destructive testing of metallic structures using eddy currents. See example in Comsol Users Confer-
ence.

4.5 Transient Formulation
In order to derive the time-dependent magnetic field formulation, we eliminate the current density J and the displace-
ment current D in the right-hand side of Ampère’s law (4.12) using Ohm’s law (4.7) and the dielectric relation (4.6)
respectively. These manipulations yield

∇×H = σE + ε
∂E

∂t
. (4.61)

We assume the electro-magnetic excitations, and thus also the induced electro-magnetic fields, to vary periodically
in time with period T and with frequency f = 1/T . We introduce the dimensionless variable t′ = t/T = f t. By
rewriting the time derivative in the right-hand of (4.61) in this dimensionless variable, we obtain

∇×H = σE + ε f
∂E

∂t′
. (4.62)

We assume the time-variations to be quasi-stationary. This assumption is justified by the fact that in technically
relevant simulations of electro-magnetic energy transducers a sufficiently large upper bound on the frequency is

f ≤ 104 Hz . (4.63)

For the electrically conducting media that we will consider, the electric conductivity σ and permeability ε lie in the
ranges

σ ∈ [0, 109]C2N−1m−2 s−1 and ε ∈ [ε0, 10 ε0] , (4.64)
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where ε0 = 8.85 . 10−12C2N−1m−2 is the permittivity of vacuum. The above bounds on f , σ and ε allow us to
neglect the contribution of the displacement current, i.e. the second term in the right-hand side of (4.62). Hence, we
obtain

∇×H = σE . (4.65)

In the presence of time-varying fields, the definition (4.34) for the vector potential A remains valid. Introducing A in
the left-hand side of (4.65) yields

∇× (ν∇×A) = σE . (4.66)

By Ohm’s law (4.7), this equation can be written as

∇× (ν∇×A) = J . (4.67)

In the presence of time-varying fields, the integration of Faraday’s law (4.13) yields

E = −∇φ− ∂A

∂t
, (4.68)

where the gradient of the electric potential ∇φ is an integration constant. The contributions of the two terms in the
right-hand side of (4.68) to the current distribution will be treated separately. Substituting (4.68) into the right-hand
side of (4.7) yields

J = Js + Je Js = −σ∇φ Je = −σ ∂A

∂t
, (4.69)

where Js and Je are the source and induced (or eddy) current density respectively. Substituting (4.69) into the right-
hand side of (4.66), we obtain the following partial differential equation for the vector potential

σ
∂A

∂t
+∇× (ν∇×A) = Js . (4.70)

4.6 Time-Harmonic Formulation
Solving the PDE (4.70) numerically entails a time-stepping procedure of some kind. In practice, a great deal of useful
information can already be gained by assuming that the electromagnetic fields vary sinusoidally in time. Assuming a
pulsation ω = 2πf , we can write a generic electro-magnetic quantity F (x, t) oscillating harmonically in time as

F (x, t) = R[ F̂ (x) exp(jωt) ] , (4.71)

where the magnitude F̂ is a complex-valued quantity consisting of a real and imaginary part R[F̂ ] and I[F̂ ] respec-
tively. In a time-harmonic formulation, the PDEs (4.67) and (4.70) reduce to the following PDE for the amplitude Â
of the vector potential

∇× (ν∇× Â) = Ĵ (4.72)

and
∇× (ν∇× Â) + j ωσ Â = Ĵs (4.73)

respectively. By a reasoning analogous to the derivation of equation (4.47), we reduce the system of coupled PDEs
(4.72) and (4.73) to a scalar PDE. In the former case we obtain the Poisson equation

− ∂

∂x

(
ν
∂Âz
∂x

)
− ∂

∂y

(
ν
∂Âz
∂y

)
= Ĵz (4.74)

while in the latter a Helmholtz equation with complex shift

− ∂

∂x

(
ν
∂Âz
∂x

)
− ∂

∂y

(
ν
∂Âz
∂y

)
+ j ω σ Âz = Ĵs,z , (4.75)
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where Ĵs,z denotes the z-component of the source current density Ĵs. Equations (4.74) and (4.75) are the governing
PDEs for two-dimensional time-harmonic magnetic field formulations. In Section 4.8 we will argue which circum-
stances motivate the choice for either one of these equations.

In (4.71) we assumed a single frequency oscillatory behavior. In more advanced formulations a small set a discrete
frequencies is taken into account. Such formulations are called multi-harmonic [?, ?].

4.7 Conductor Models
To do

• extends this part to the transient case

• include text on the impedance

Time-varying currents in a conductor magnetically induce eddy currents and voltages trying to counteract their
source. The current will redistribute in such a way that the current density is larger towards the cross-section bound-
aries. This effect is known as the skin-effect and characterized by the skin-depth. The skin-depth δ is typical length
scale measuring the size of the second order term relative to the term of order zero in the PDE (4.75) and is defined as

δ =

√
1

πf σµ
. (4.76)

It is represented schematically in Figure ??. Technically speaking, about 60% of the current flows in the shaded area in
this figure. Different conductor models are distinguished based on the ratio between the skin-depth and the conductor
radius, i.e. on the importance of the skin-effect in modeling the conductor. In this thesis we will consider solid and
stranded conductors. For both conductor models and for time-varying field, one obtains by substituting (7.7) into
(4.69) the relation

Ĵz =
σ

`z
4̂V − j ω σ Âz (4.77)

or, equivalently,

4̂V = `z

(
Ĵz
σ

+ j ω Âz

)
. (4.78)

Subscripts sol and str will be used to indicate properties associated with the solid and stranded conductors respec-
tively.

4.7.1 Solid Conductors
To add

1. the example in CMP

2. the proximity effect

A solid conductor is a massive bar of electrically conducting material with homogeneous cross-section Ωsol. The
radius of a solid conductor is large compared with the skin-depth δ. The variation of the current density over Ωsol can
therefore not be neglected. The magnitude of the voltage drop 4̂V sol in contrast is constant over Ωsol.

Rotor bars in an induction machine are typically modeled as solid conductors.
To generalize (7.6) for time-harmonic fields in a solid conductor, we integrate both sides of (4.77) over Ωsol. Using

the the fact that 4̂V sol is constant over Ωsol, we find

Îsol = Gsol 4̂V sol − j ω
∫

Ωsol

σ Âz dΩ , (4.79)

where
Gsol =

1

`z

∫
Ωsol

σ dΩ (4.80)

is the Ohmic resistance of the solid conductor (see also e.g. [?]).
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4.7.2 Stranded Conductors
The cross-section of a stranded conductor Ωstr is the union of several conductors, each of them too small to be
modeled individually. The skin-depth is large compared to the radius of the individual conductors, allowing the skin
effect in the individual conductors to be neglected. The current density Ĵz is assumed to be constant over Ωstr. Due to
magnetically induced voltages, the variation of potential drop over Ωstr has to be taken into account. Compared with
a solid conductor, the roles of current density and voltage drop are interchanged.

While the solid conductor is a physical entity, the stranded conductor is merely a convenient mathematical tool
that allows one to model, for example, the windings in the stator of an induction machine or the coil of a transformer.

Assuming that the stranded conductor is made up of Nt conductors, each carrying a current Îstr, the average
current density is

Ĵz =
Nt Îstr
Sstr

, (4.81)

where Sstr is the area of Ωstr. The individual conductors forming the stranded conductor are assumed to be connected
in series. By this assumption the potential difference 4̂V str over the latter is equal to the sum of the potential differ-
ences 4̂V over the conductors. This sum is approximated by Nt times the average potential difference 4̂V av over an
individual conductor

4̂V str = Nt 4̂V av , (4.82)

where
4̂V av =

1

Sstr

∫
Ωstr

4̂V dΩ . (4.83)

Substituting (4.78) into (4.83), taking into account that the current distribution (4.81) as well as the conductivity σ are
constant over Ω, one obtains

4̂V str = Rstr Îstr + j ω
Nt `z
Sstr

∫
Ωstr

Âz dΩ , (4.84)

see also e.g. [?, ?], where

Rstr =
N2
t `z
Sstr

∫
Ωstr

1

σ
dΩ (4.85)

is the Ohmic resistance of the stranded conductor. The insulation material surrounding the individual solid conductors
and the air gaps between them can be taken into account by multiplying σ in (4.85) by a positive factor smaller than
one. This factor is called the slot fill factor.

4.8 Induced Fields in Conductive Media
Relations (4.79) and (4.84) generalize Ohm’s law (7.6) to time-harmonic currents. The first and second term of the
right-hand side of (4.79) represent the resistive and inductive currents respectively . The two terms in the right-hand
side of (4.84) are the resistive and inductive voltage . The relations (4.79) and (4.84) couple magnetic field quantities
with integrated electric ones and are called electrical circuit relations .

To compute the magnetic field over the cross-section of a conductor, appropriate field equations and circuit rela-
tions have to be coupled. The right-hand side in PDE (4.75) can be written in terms of the applied voltage 4̂V sol over
a solid conductor using (4.69) and (7.7)

Ĵs,z = −σ ∂φ
∂z

=
σ

`z
4̂V sol , (4.86)

and is thus constant over Ωsol. It is therefore convenient to choose the PDE (4.75) in the form

− ∂

∂x

(
ν
∂Âz
∂x

)
− ∂

∂y

(
ν
∂Âz
∂y

)
+ j ω σ Âz =

σ

`z
4̂V sol (4.87)
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for the computation of the magnetic field over Ωsol. By a similar argument the magnetic field over the cross-section
of a stranded conductor Ωstr is modeled by PDE (4.74). Upon eliminating the current density by (4.81), this PDE
becomes

− ∂

∂x

(
ν
∂Âz
∂x

)
− ∂

∂y

(
ν
∂Âz
∂y

)
=

Nt
Sstr

Îstr . (4.88)

Conductors can be excited by either a voltage or a current source. If a solid conductor is operated by a voltage
source, the source term in the PDE (4.87) is a known constant, and the PDE can be solved. If instead the solid
conductor is current driven, the source in the PDE has to be calculated from the electrical circuit relation (4.79). In
this case, the PDE and the circuit relation have to be solved simultaneously for the magnetic vector potential and the
applied voltage. To compute the magnetic field distribution of a voltage driven stranded conductor, the PDE (4.88)
and the circuit relation (4.84) have to be solved simultaneously for the vector potential and the applied current.

4.9 Induced Voltage by the Time Variation of the Magnetic Flux
The voltage induced the time-varrying magnetic flux is given by

Vind = −Nt
dψ

dt
, (4.89)

where the minus sign is due to Lenz’s Law. Using the flux-impedance relation (7.16) the above relation can be written
as

Vind =
d

dt
(LI) . (4.90)

In case that dLdt = 0, this formula reduces to

Vind = L
d

dt
(I) . (4.91)

The magnetic flux ψ(t) passing through an oriented surface S with outward normal n is given by the surface integral

ψ(t) =

∫
S

B · dS =

∫
S

B · n dS . (4.92)

In applications of this expression we are typically interested in, the surface S = Score typically denotes the cross-
section of the ferromagnetic core perpendicular to the flux path. In a 2D perpendicular current formulation on the
domain Ωxy , the surface Score is then a line piece perpendicular to the y-axis extending from x = xm to x = xM ,
extruded by a length `z in the z-direction. Using the vector potential A (B = ∇ × A ) as unknown, the above
expression reduces to

φ(t) =

∫
Score

B · n dS (4.93)

=

∫
Score

By dx dz (4.94)

= −
∫ xM

xm

dx

∫ zM

zm

dz
∂Az
∂x

[By = −∂Az
∂x

] (4.95)

= −`z
∫ xM

xm

dx
∂Az
∂x

(4.96)

= −`z [Az(x = xM , t)−Az(x = xm, t)] (4.97)
= `z [Az(x = xm, t)−Az(x = xM , t)] . (4.98)

In other applications S might consist of a component Score in the core and a component Sair in air (refer to the open
core FCL). In this we can write

φtot(t) = φcore(t) + φair(t) ≈ φcore(t) if φair(t) is small. (4.99)

In an azimuthal current application we have that ...
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4.10 Induced Voltage by a Homogenezation Procedure
In this section we review a technique allowing to compute the induced voltage in winded coils (also referred to as
stranded conductors) by integrating its density over the volume in 3D (cross-section in 2D) of the conductor.

4.10.1 Three Dimensional
Need to include pictures of the 3D coils
To compute the induced voltage in winded coils the introduction of the so-called winding function t turns out to be
useful. This is a vector function such that the applied current density in the coil can be expressed as

J = I t (4.100)

We next give two examples of winding functions. For a cylindrical coil in the xy-plane with with center in (x0, y0, z0),
cross-section S and number of turns Nt and excited by a current flowing in counter clock wise direction, we have that
t(x, y, z) = Nt

S (tx(x, y), ty(x, y), 0) where

tx(x, y) =
−(y − y0)√

(x− x0)2 + (y − y0)2
and tx(x, y) =

x− x0√
(x− x0)2 + (y − y0)2

. (4.101)

For a cuboidal coil occupying the surface Ω = (x0, y0) + ([−D,D]× [−W,W ] \ [−d, d]× [−w,w]) in the xy-
plane extruded in the z-direction excited by a current in counter clockwise direction, we have again that t(x, y, z) =
Nt

S (tx(x, y), ty(x, y), 0) where

tx(x, y) =

{
−sgn(y) if|y − y0| > w

d |x− x0|
0 otherwise and ty(x, y) =

{
sgn(x) if|y − y0| ≤ w

d |x− x0|
0 otherwise . (4.102)

In both cases we have that
∇ · t = 0( and thus ∇ · J = 0) and‖t‖ =

Nt
S
. (4.103)

By a homogenization procedure over the individual windings in the coil, the induced voltage can be computed by
integrating the density defined by the dot product t ·E over the volume of the coil

Vind =

∫
Ωcoil

t ·E dΩ . (4.104)

Combining with the previous result, we have that

d
dt (LI) = −Nt dψ(t)

dt =
∫

Ωcoil
t ·E dΩ . (4.105)

This relation is the basis for the field-circuit coupling modeling of a winded coil excited by a voltage source. In what
follows we make the relation for the induced voltage more explicit in two-dimensional computations.

4.10.2 Two Dimensional Perpendicular Current
In a perpendicular current computation we assume the cross-section of a winded coil to consist of components Scoil,1
and Scoil,2, excited by a current in positive and negative z-direction, respectively. The induced can then be computed
as as follows

Vind = Vind,1 + Vind,2 (4.106)

=
Nt `z
Scoil,1

∫
Scoil,1

Ez dS −
Nt `z
Scoil,2

∫
Scoil,2

Ez dS (4.107)

=
Nt `z
Scoil,1

∫
Scoil,1

∂Az
∂t

dS − Nt `z
Scoil,2

∫
Scoil,2

∂Az
∂t

dS (4.108)

where the minus sign stems from the fact that the current flows in opposite directions in both sides of the coil.
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4.10.3 Two Dimensional Azimuthal Current
In a azimuthal current computation we the induced voltage in a coil with cross-section Scoil can the expressed as

Vind =
Nt
Scoil

∫
Scoil

2πr Eφ dS (4.109)

=
Nt
Scoil

∫
Scoil

2πr
∂Aφ
∂t

dS (4.110)

4.11 Boundary Conditions
The partial differential equations introduced before need to be supplied with boundary conditions. In this work we will
make use of homogeneous Dirichlet, Neumann and periodic boundary conditions. When used in combination with a
conformal mapping technique, the latter allow the modeling of infinite domains.

4.11.1 Axial Symmetry

4.11.2 Symmetry Boundary Conditions

4.11.3 Periodic Boundary Conditions
Let Γ1 and Γ2 be two disjoint parts of the boundary of the computational domain as shown in Figure ?? on page ?? for
example. Let n1 and n2 denote the outward normal on Γ1 and Γ2 respectively. Periodic boundary conditions connect
both the vector potential and its normal derivative on Γ1 and Γ2. Periodic boundary conditions state that

Az|Γ1
= Az|Γ2

(4.111)

ν
∂Az
∂n1
|Γ1 = −ν ∂Az

∂n2
|Γ2 . (4.112)

Anti-periodic boundary conditions state that

Az|Γ1 = −Az|Γ2 (4.113)

ν
∂Az
∂n1
|Γ1 = ν

∂Az
∂n2
|Γ2 (4.114)

see e.g. [2, ?]. By imposing periodic boundary conditions one is able to reduce the area of the computational domain.
We illustrate this point by an example. Consider the four-pole alternating current machine depicted in Figure ?? on
page ??. Due to symmetry in field and geometry, it is sufficient to model only two, or even just one pole of the
machine. Figure ?? shows a two-pole half model of the motor being considered. In this model periodic boundary
conditions relate the values on the straight edges at the bottom of the model. In the one-pole quarter model shown in
Figure ??, anti-periodic boundary conditions relate the values of the vertical and horizontal straight edge.

The reduction of the computational domain entails a saving in computational resources required to solve the
problem or allows to obtain higher accuracy for the same problem size.

4.11.4 Unbounded Domains
In some practical magnetic field computations the domain Ω is unbounded. Different types of so-called open boundary
problems exist. In a first one the accurate estimation of the field in a region of interest might require taking the
surrounding unbounded domain into account. In a second type one is interested in far field effects, i.e. in the strength
of the field at a large distance from the source. An example of the former is the computation of the magnetic field in
the vicinity of a transformer. An example of the latter is the computation of the magnetic field excited by high voltage
lines at ground level.

In numerical computations the unbounded domain needs to be truncated somehow. An overview of truncation
techniques proposed in the literature can be found in [?].
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In the application software considered in this work, a conformal mapping technique is used. To describe this

technique formally, consider equation (4.47) posed on the domain Ω = R2. The PDE has to be supplied with the
condition that the potential remains finite at infinity. By properly scaling the potential, one can assume the value at
infinity to be zero, i.e.

Az(x, y)→ 0 as
√
x2 + y2 →∞ . (4.115)

The part of Ω that is of interest is enclosed in a disk ΩD centered in (0, 0) . The radius ρ of ΩD is required to be large
enough so that the source term Jz is zero on (ΩD)c = R2 \ΩD. We further assume ν to be constant on (ΩD)c. Hence,
the function Az satisfies the Laplace equation on (ΩD)c. Let AD and ADc denote the restriction of Az to ΩD and
(ΩD)c and nD and nDc the outward normal on ΩD and (ΩD)c respectively. The original problem on R2 is equivalent
with

− ∂

∂x

(
ν
∂AD
∂x

)
− ∂

∂y

(
ν
∂AD
∂y

)
= Jz on ΩD

−∂
2ADc

∂x2
− ∂2ADc

∂y2
= 0 on (ΩD)c ,

(4.116)

supplied with conditions ensuring the continuity ofAz and its normal flux across the boundary ∂ΩD. These continuity
conditions can be stated as

AD|∂ΩD
= ADc |∂ΩD

and ν
∂AD
∂nD

|∂ΩD
= −ν ∂AD

c

∂nDc

|∂ΩD
. (4.117)

After setting z = x+ j y, one applies the conformal mapping

F(z) = 1/z (4.118)

to (ΩD)c. The latter is mapped onto a disk ΩE with radius 1/ρ

F [(ΩD)c] = ΩE . (4.119)

Properties of conformal transformations imply that the function ADc is a harmonic function on the image disk ΩE
if ADc is harmonic on the domain (ΩD)c. The conformal mapping thus transforms the differential problem (4.116)-
(4.117) into

− ∂

∂x

(
ν
∂AD
∂x

)
− ∂

∂y

(
ν
∂AD
∂y

)
= Jz on ΩD

−∂
2ADc

∂x2
− ∂2ADc

∂y2
= 0 on ΩE

(4.120)

supplied with the conditions

AD|∂ΩD
= ADc |∂ΩE

and ν
∂AD
∂nD

|∂ΩD
= −ρ2 ν

∂ADc

∂nE
|∂ΩE

, (4.121)

where nE denotes the outward normal on ΩE . The factor ρ2 appearing in (4.121) is due to the local magnification
1/|F ′| evaluated on ∂ΩD by conformal mapping. Using a conformal mapping we have thus transformed the original
unbounded domain problem into two problems on bounded domains: a Poisson type problem on ΩD and a Laplace
problem on ΩE . The condition (4.115) is assured by imposing the potential to be zero in the center of ΩE

Az = 0 in center of ΩE . (4.122)



Chapter 5

Magnetic Saturation

In this section we describe the modeling of magnetic saturation in ferromagnetic materials, i.e., the modeling of the
non-linear constitute relation between the magnetic flux B (units T ) and the magnetic field H (units A/m). Using a
vector potential formulation and denoting by B = ‖B‖, H = ‖H‖, the magnetic material law typically considered is

H(B) = ν B = ν0 νr(B)B ⇔ ν(B) =
dH

dB
(B) , (5.1)

where ν0 and ν (νr) denote the reluctivity of vacuum and the material (relative reluctivity), respectively [see paper
Herbert on differential vs. chord reluctivity]. The inverse of the reluctivity is the permeability µ. Using a vector
potential formulation, we have that

‖B‖2 =

(
∂Az
∂y
− ∂Ay

∂z

)2

+

(
−∂Az
∂x

+
∂Ax
∂z

)2

+

(
∂Ay
∂x
− ∂Ax

∂y

)2

(5.2)

Magnetic saturation is such that µr(B) is large and almost constant for small values of B and small almost constant
for large values of B and has a non-linear transition between these two extreme values (see for instance Figure xxx).

In practise engineering practise, the function νr(B) is to be constructed from measured B-H samples. This
process makes the convergence of an FEM computation prone stagnation. We therefore consider analytical expressions
allowing to describe the function νr(B) analytically.

Goals In this chapter we aim at

• giving different analytical expressions for the non-linear B-H -curve modelling magnetic saturation

• give an example of a measured B-H

• illustrate a least square curve fitting technique allow to match the analytical expressions to the given measured
data

To do

• add reference to rational BH-curve approximation

• add reference to Pechstein on approximating the BH-curve

5.1 Analytical Models
To do:

• make all plots of the BH-curves again
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• compute the second derivative of the analytical model to see where the curvature changes from positive to

negative.

• give a plot on double axis and deduce for which value of the current the core is in saturation.

5.1.1 Rational Function Approximation
In [?] the following rational expression modelling the relative reluctivity is given (denoting by B = ‖B‖)

νr = a+
(1− a)B2b

B2b + c
⇔ µr =

1

a+ (1−a)B2b

B2b+c

(5.3)

where the values for the parameters a, b and c are given in Table 5.1. For this models holds that

νr(B = 0) = a (5.4)

and thus the relative permeability at B = 0 is given by 1/a and that

lim
B→∞

νr(B) = 1 (5.5)

and thus the permeability never becomes smaller than µ0 (which is physically correct).

a 2.12e-4
b 7.358
c 1.18e6

Table 5.1: Constants Used in the Rational Approximation

(a) B-H-curve (b) µr-B curve

Figure 5.1: Rational Function Approximation of the B-H curve.

5.1.2 Hyperbolic Function Approximation
In [?] the following approximation is given:

B = C1 arcsinh(C2H)⇔ H =
1

C2
sinh(

B

C1
) (5.6)
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where the values for the parameters C1 and C2 are given in Table (5.2). From this we obtain the chord permeability

µ =
B

H
=

C2B

sinh( BC1
)

(5.7)

µr =
µ

µ0
=

C2B

µ0 sinh( BC1
)

(5.8)

and the differential permeability

ν =
dH

dB
=

cosh(C2B)

C1C2
(5.9)

µ =
1

ν
=

C1C2

cosh(C2B)
(5.10)

µr =
µ

µ0
=

C1C2

µ0 cosh(C2B)
(5.11)

(5.12)

As in this model
lim

B2→∞
µr(B2) = 0 , (5.13)

is has to be used with due care.

Remark This model requires a non-zero initial guess during intial guess to avoid the singularity at B = 0.

C1 .25 [T]
C2 .06 [m/A]

Table 5.2: Constants Used in the Sinh Approximation

(a) B-H-curve (b) µr-B curve

Figure 5.2: Hyperbolic Function Approximation of a B-H curve.

5.2 Measured Data
In this section we give the measured B-H-data we will use in our numerical examples in subsequent chapters.
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5.2.1 Measured BH data
H = [0 310 315 320 330 350 380 410 430 ...
470 500 540 580 620 650 670 720 750 ...
770 820 900 1000 1100 1200 1400 1800 2300 ...
2800 3300 4300 5300 8300 10300 15300 20300 25300 ...
30300 40300 50300 70300 100300 200300 400300 600300 800300 ...
1000300];

B = [0 1.3449 1.3773 1.4003 1.4328 1.4736 1.5112 1.5367 1.5501 ...
1.5715 1.5845 1.5991 1.6114 1.6221 1.6293 1.6337 1.6439 1.6494 ...
1.6529 1.661 1.6724 1.6847 1.6954 1.7048 1.7209 1.7457 ...
1.7687 1.7866 1.8012 1.8242 1.842 1.8796 1.8975 1.9299 1.9529 ...
1.9708 1.9854 2.0084 2.0262 2.0532 2.0817 2.1371 2.1926 2.225 ...

2.248 2.2659 ];

(a) B-H-curve (b) µr-B curve

Figure 5.3: B-H-curve used in tabular form.

5.3 Tuning the Analyical Models
In this section we performs a fitting of the parameters in the rational and hyperbolic approximation to the measured
data by a non-linear optimisation procedure.

5.4 Further Extension
1. Make graphs of the derivative of µr wrt normB for the analytical and tabular data models. These graphs should

how why the tabular is more difficult to work with.



Chapter 6

Magnetic Force Computation Methods

In this section we recall three classical methods for computing the magnetic force: the Lorentz method, the Maxwell
Stress Tensor method and the Virtual Work method.

6.0.1 Lorentz Method
In Lorentz method the total magnetic force F on a current carrying device is computed by integrating the volume force
density J×B over the volume V of the device

F =

∫
V

J×B dV . (6.1)

In 2D perpendicular current computations the domain of integration reduces to a cross section which we denote by
Ω1. Substituting (4.39) and (4.41) for J and B into (6.1) we obtain for the x- and y-components of the total force

Fx = −
∫

Ω1

Jz By dΩ1 and Fy =

∫
Ω1

Jz Bx dΩ1 . (6.2)

Remark 6.0.1 Lorentz method can only be applied to electrical conductors with µr = 1. The method does not allow
computing the force on permanent magnets.

6.0.2 Maxwell Stress Tensor Method
In the Maxwell Stress Tensor (MST) method the total force on a magnetizable device with unit outward normal n
on its enclosing surface S is computed by integrating the product of the Maxwell stress tensor σEM and n over the
enclosing surface

F =

∫
S

σEM n dS . (6.3)

In this paper we always assume that the device on which we want to compute the force is surrounded by empty space.
Then the Maxwell stress tensor is given by

σEM = − 1

2µ0
(B ·B) I +

1

µ0
B BT , (6.4)

where I denotes the identity matrix.
In 2D perpendicular current computations the stress tensor simplifies to the 2× 2 matrix

σEM = − 1

2µ0

(
B2
x +B2

y 0
0 B2

x +B2
y

)
+

1

µ0

(
B2
x BxBy

BxBy B2
y

)
, (6.5)
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while the domain of integration in (6.3) reduces to the boundary of the 2D cross section of the device denoted by Γ1.
By substituting

Hx = ν0Bx and Hy = ν0By (6.6)

in (6.5) we obtain the following expressions for the x- and y-components of the total force

Fx =

∫
Γ1

[
−1

2
nx (HxBx +Hy By) +Bx (nxHx + nyHy)

]
dΓ1 , (6.7)

and

Fy =

∫
Γ1

[
−1

2
ny (HxBx +Hy By) +By (nxHx + nyHy)

]
dΓ1 . (6.8)

6.0.3 Virtual Work Method
In the Virtual Work method the force is computed from the magnetic energy of the system. The magnetic energy
WEM of a system with volume V is given by

WEM =

∫
V

(∫ B

0

H · dB

)
. (6.9)

Under constant magnetic flux condition, the magnetic force is computed as

FΦ = −∇WEM . (6.10)

Under constant current condition, the force is computed similarly, but with opposite sign.



Chapter 7

Lumped Parameter Models of RL Circuits

Prior to detailing finite element models in subsequent chapters, we develop in this chapter simplified lumped parameter
approximation that serve to get an intuitive feeling and point of comparison for the subsequent models. The point of
departure for deriving lumped parameter models is the following first order ordinary differential equation relating the
externally applied voltage excitation Ve(t) with the current I(t) in a circuit with an Ohmic resistanceR and inductance
L.

Figure 7.1: Series connection of a resistance and inductance.

VR(t) + VL(t) = Vin(t)⇔ d

dt
(LI) +RI = Ve(t) . (7.1)

The terms in the left-hand side can be identified as the induced and resistive voltage, respectively, and the equation
states that at all times the sum of the induced and resistive voltage is equal to the externally applied one. The equation
needs to be supplied with an initial value for the current.

The Ohmic resistance R determined by the electrical conductivity of the medium. In the case that the coil is
solenoid wounded Nt times around a ferromagnetic core with magnetic permeability µ, the impedance L can be
expressed as

L = µN2
t

S

lpath
= µ0 µrN

2
t

S

lpath
, (7.2)

where S and lpath cross-section and length of the flux path in the ferromagnetic core respectively.
In this chapter we first derive an analytical expression for the current in an RL-circuit with constant impedance

and two excitations: a constant and sinusoidally varying voltage source. These models illustrate how the presence of
an impedance causes a phase shift in and amplitude reduction of the current. In more realistic models however the
magnetic permeability µ of the core changes by moving the operation point on a non-linear B-H characteristic. In a
second stage we therefore extend the model to include changes in the impedance induced by changes in the magnetic
permeability. This model assumes the coil to be a solenoid for which expression (7.2) is correct. The generalisation of
this model to more complex coil-core configurations is therefore not immediate.

Describe a mechanical equivalent: variable impedance and variable mass.
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Goals In this chapter we aim at

• describing a simple model able to explain the inductive current limiting principle (including the concepts of
induced voltage and phase difference between applied voltage and current). This simple model can possibly
serve as coarse model inside an surrogate based optimisation algorithm.

• explaining why this simple model is not sufficient for the type of devices considered

To do:

1. describe drop in resistive voltage

2. describe presence of DC coil by additive constant in the flux

7.1 Ohmic Resistance of a Wire
Consider a cylindrical electrical conductor along the z-axis with length `z and cross-section Ω in the xy plane. The
shape of the cross-section Ω is assumed to be z-independent. Consider furthermore a stationary electrical current
flowing along the z-axis through the conductor. For stationary fields Faraday’s law implies that the electric field E is
curl free. This condition can be ensured by writing E in terms of the electric potential φ as

E = −∇φ . (7.3)

Substituting this into Ohm’s law E = σ J yields

J = −σ∇φ . (7.4)

For currents flowing in the z-direction only, the above relation yields

Jz = −σ ∂φ
∂z

. (7.5)

Assuming the gradient ∂φ/∂z to be constant over the cross-section Ω, we obtain Ohm’s law by integrating (7.5) over
Ω in integral form

4V = RI , (7.6)

where
4V = −`z

∂φ

∂z
(7.7)

and
I =

∫
Ω

Jz dΩ (7.8)

are the voltage drop over and the current through the conductor and where

R = `z/

(∫
Ω

σ dΩ

)
(7.9)

is the ohmic resistance of the conductor expressed in Ohm Ω. Equation (7.6) can be rewritten as

I = G 4V , (7.10)

where
G =

1

R
, (7.11)

is the conductance of the conductor.
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7.2 Inductance of a Winded Coils

7.2.1 Definition
• give definition of (self and mutual) inductance

• give units (Henry) and function of primary units

1H = 1Wb/A = 1T m2/A = 1
V s
m2

m2/A = 1
V
A

s = 1Ω s (7.12)

• give range of value for applications (tens of miliHenry)

7.2.2 Magnetic Energy
Consider that the volume Ω encloses the core and ferromagnetic core and has a permeability µ = µ(x, t). The
magnetic energy Wm in Ω due to the magnetic flux B and field H induced due a time-varying current is given by the
volume integral

Wm(t) =
1

2

∫
Ω

B ·H dΩ =
1

2

∫
Ω

µB ·B dΩ . (7.13)

In a 2D perpendicular current formulation on a computational domain with cross-section Ωxy in the xy-plane and
length `z in the z-direction (examples will be given in subsequent chapters), this formula simplifies to the surface
integral

Wm(t) =
`z
2

∫
Ωxy

[
BxHx +ByHy

]
dΩ =

`z
2

∫
Ωxy

µ
[
BxBx +ByBy

]
dΩ . (7.14)

In case that the magnetic field is generated by a total current Itot(t) flowing through a coil with Nt windings and
current I(t) per turn, i.e., Itot(t) = Nt I(t), the magnetic energy and the coil impedance L(t) are related by

Wm(t) =
1

2
L(t)I2(t)⇔ L(t) = 2

Wm(t)

I2(t)
. (7.15)

Not that the inductance scales

• quadratically with Nt;

• linearly with µ.

In case that µ is constant (no magnetic saturation), the impedance is current independent and can therefore be computed
using any non-zero value for the current. In case that a sinusoidal current brings (a part of) the core alternatively in
and out of saturation, the impedance can be computed for a particular working condition. In configurations in which
different coils are present (AC and DC coil in the fault current limiter), the self-inductance of the coil can be computed
by considering the current in the single coil only (setting the current in the other coils equal to zero).

7.2.3 Magnetic Flux
Considering the coil to be an interconnection of Nt flux contributions, the magnetic flux and the coil impedance are
related by

ψ(t) = Nt φ(t) = L(t) I(t)⇔ L(t) =
Nt ψ(t)

I(t)
=
φ(t)

I(t)
. (7.16)

Assuming that I(t) 6= 0, this expression allow to compute the impedance via the magnetic flux.
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7.3 Impedance
The Ohmic resistance of the wire and the inductance of a coil can be combined to form the total impedance denoted
by X and defined by

X =
√
R2 + ω2L2 . (7.17)

7.4 Constant Inductance Model
In this section we assume that dLdt = 0. In this case, equation (7.1) reduces to

L
dI

dt
+RI = V (t) . (7.18)

Given some initial condition, this ordinary differential equation can be solved numerically using a time-integrator
taking a time-dependent resistance (simulation of fault) into account. In order to derive analytical expressions however,
we assume from here on that dRdt = 0. The ratio R

L has the dimensions of an (angular) pulsation and will be denoted
by ω1 from here on. The solution of the homogeneous equation to (7.18) is

Ih(t) = C exp(−R/L t) = C exp(−ω1t) (7.19)

where C is chosen so to satisfy the initial conditions.

7.4.1 Constant Applied Voltage
In case that the applied voltage is constant and equal to V0, the method of variation of constants yields that I(t) =
C(t) Ih(t), where

C ′(t) = V0/L exp(ω1t)⇒ C(t) = V0/Lω1 exp(ω1t) + C0 = V0/R exp(ω1t) + C0 . (7.20)

For the current we then have

I(t) =
[
V0/R exp(ω1t) + C0

]
exp(−ω1t) (7.21)

= V0/R+ C0 exp(−ω1t) , (7.22)

where the integration constant C0 is related to the initial condition I(t = 0) = I0 by

C0 = I0 − V0/R . (7.23)

The current is then given by

I(t) =
V0

R
+
[
I0 − V0/R

]
exp(−ω1t) . (7.24)

If the relaxation time τ = L/R is sufficiently small (i.e., if the resistance R is not too small and the inductance L is
not too large), then after a few multiples of the relaxation time, the current is independent of the initial condition and
equal to its stationary value

I(t) =
V0

R
. (7.25)

7.4.2 Sinusoidally Varrying Applied Voltage
In case that the applied is sinusoidally varying, i.e., V (t) = V0 sin(ω0t), the method of variation of constants yields
that I(t) = C(t) Ih(t), where

C ′(t) = V0/L sin(ω0t) exp(ω1t)⇒ C(t) = (V0/L)

∫ t

sin(ω0s) exp(ω1s) ds+ C0 . (7.26)
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for some integration constant C0. Applying integration by parts twice yields

L/V0 C(t) =
[
1/ω1 sin(ω0s) exp(ω1s)

]t − ω0/ω1

∫ t

cos(ω0t) exp(ω1s) ds+ C0 (7.27)

= 1/ω1 sin(ω0t) exp(ω1t)− ω0/ω
2
1

[
cos(ω0s) exp(ω1s)

]t
(7.28)

−ω2
0/ω

2
1

∫ t

sin(ω0s) exp(ω1s) ds+ C0 (7.29)

= 1/ω1 sin(ω0t) exp(ω1t)− ω0/ω
2
1 cos(ω0t) exp(ω1t) (7.30)

−ω2
0/ω

2
1

∫ t

sin(ω0s) exp(ω1s) ds+ C0 (7.31)

Hence

[1 + ω2
0/ω

2
1 ]C(t) = 1/ω1(V0/L) sin(ω0t) exp(ω1t)− ω0/ω

2
1(V0/L) cos(ω0t) exp(ω1t) + C0 (7.32)

or

C(t) = (V0/L)
[ ω1

ω2
0 + ω2

1

sin(ω0t)−
ω0

ω2
0 + ω2

1

cos(ω0t)
]

exp(ω1t) + C0 (7.33)

=
V0

L(ω2
0 + ω2

1)

[
ω1 sin(ω0t)− ω0 cos(ω0t)

]
exp(ω1t) + C0 (7.34)

=
V0

√
ω2

0 + ω2
1

L(ω2
0 + ω2

1)

[ ω1√
ω2

0 + ω2
1

sin(ω0t)−
ω0√

ω2
0 + ω2

1

cos(ω0t)
]

exp(ω1t) + C0 (7.35)

=
V0

L
√
ω2

0 + ω2
1

[
sin(ω0t) cos Θ− cos(ω0t) sin Θ

]
exp(ω1t) + C0 (7.36)

=
V0

X
sin(ω0t−Θ) exp(ω1t) + C0 (7.37)

where we’ve introduced the phase shift

sin Θ

cos Θ
=
ω0

ω1
⇔ Θ = arctan(

ω0

ω1
) = arctan(

2π f R

L
) , (7.38)

and where the integration constant C0 is related to the initial condition by

C0 = I0 −
V0

X
sin(Θ) . (7.39)

The current is then given by

I(t) =
V0

X
sin(ω0t−Θ) +

[
I0 −

V0

X
sin Θ

]
exp(−ω1t) . (7.40)

If the relaxation time τ = 1/ω1 = L/R is suffuciently large, then after a few multiples of the relaxation time, the
current is independent of the initial condition and equal to

I(t) =
V0

X
sin(ω0t−Θ) . (7.41)

Compared with a purely resistive network, the current has both a lower amplitude and a phase shift. A large inductance
in particular will lead to a lower current value and a larger phase shift. This is illustrated in Figure 7.4.2.
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Figure 7.2: Current in RL-circuit for different values of the inductance.

7.5 Flux-Variable Inductance Model
The models developed in the previous section cease to be valid in situations in which the working point changes in
time over a range in which the permeability and therefore the impedance can no longer assumed to be constant. The
case that we will be interested in is the one in which the permeability varries along a non-linear B-H characteristic
and which time-varrying voltage source bringing the ferromagnetic core in (low permeability and impedance) and out
(high permeability and impedance) of saturation.

To extend our models to variable impedance cases, it turns out to be convenient to replace the current by the flux
as state variable

ψ = LI ⇔ I =
ψ

L(ψ)
(7.42)

and to rewrite the equation (7.1) modelling an RL-circuit as

d

dt
ψ +

R

L(ψ)
ψ = V (t) . (7.43)

In this model the variable impedance can be computed using the non-linear characteristic data assuming the model
(7.2) for a solenoid. In this case we have that

L(ψ) = µ
[
B(ψ)

]
N2
t

S

lpath
(7.44)

= µ
[ψ
S

]
N2
t

S

lpath
. (7.45)

Given an inital condition ψ(t = 0) = L(t = 0)I(t = 0), the ODE (7.43) can be solved numerical for the flux ψ and
thus also for current I using (7.42).

This model extends the models of the previous section to a variable impedance and thus allow to illustrate the
inductive fault current limiting effect. This model still has limited applicability as it uses the expression for the
solenoid.

7.6 Numerical Example
In this section we employ the model developed in the previous section to illustrate how a coil with a flux-variable
impedance can work as a fault current limiter.
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(a) B-H-curve (b) µr-B curve

Figure 7.3: Rational Function Approximation of the B-H curve.

1 f u n c t i o n [ T , p s i ] = s o l v e r l c i r c u i t ( my ctx )
2
3 %. . Compute i n i t i a l c o n d i t i o n t a k i n g phase s h i f t i n t o a c c o u n t . .
4 Rpre = 5 ; Rpos t = . 1 ; R i n i t = Rpre+ Rpos t ; T f a u l t = 1 ; Vmax = 2 8 ;
5 L i n i t = lookup imped ( 0 , my ctx ) ;
6 om = 2∗ pi ∗50 ;
7 X i n i t = s q r t ( R i n i t ˆ2 + omˆ2∗ L i n i t ˆ 2 ) ;
8 p h a s e s h i f t = atan (om∗ R i n i t / L i n i t ) ;
9 I i n i t = − Vmax / X i n i t ∗ s i n ( p h a s e s h i f t ) ;

10 p s i i n i t = L i n i t ∗ I i n i t ;
11
12 %. . Add DC component . .
13 V dc = − .4 ;
14 p s i d c = L i n i t ∗V dc / R i n i t ;
15
16 %. . S o l v e ODE f o r t h e m a g n e t i c f l u x . .
17 Tend = 0 . 3 2 ;
18 o p t i o n s = o d e s e t ( ’ Re lTo l ’ ,1 e−12 , ’ AbsTol ’ ,1 e−12);
19 % o p t i o n s = [ ] ;
20 [ T , p s i ] = ode45 ( @ r l c i r c u i t , [ 0 Tend ] , p s i i n i t + p s i d c , o p t i o n s ) ;
21
22 f u n c t i o n d p s i d t = r l c i r c u i t ( t , p s i )
23
24 i f ( t<T f a u l t ) R l i n e = Rpre+ Rpos t ; e l s e R l i n e = Rpos t ; end
25 V l i n e = V dc + Vmax∗ s i n (2∗ pi ∗50∗ t ) ;
26 Limpd = lookup imped ( p s i , my ctx ) ;
27 d p s i d t = V l i n e − R l i n e / Limpd∗ p s i ;
28
29 end
30
31 end

1 f u n c t i o n Limpd = lookup imped ( p s i , my ctx ) ;
2
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3 g l o b a l Limpd
4
5 b t o p s i = my ctx . b t o p s i ;
6 murtoL = my ctx . murtoL ;
7 p s i d c = my ctx . p s i d c ;
8
9 %. . Find b . .

10 b = p s i / b t o p s i ;
11
12 %. . Find r e l a t i v e p e r m e a b i l i t y . .
13 mur = bhcurve ( b ) ;
14
15 %. . Find i n d u c t a n c e . .
16 Limpd = murtoL∗mur ;
17
18 %. . O v e r w r i t e w i t h an a−p r i o r i v a l u e
19 i f ( 0 )
20 Limpd = 1e−1;
21 end

1 f u n c t i o n mur = bhcurve ( b )
2
3 %. . BH c u r v e d e f i n i t i o n . .
4 bha = 2 . 1 2 e−4;
5 bhb = 7 . 3 5 8 ;
6 bhc = 1 . 1 8 e6 ;
7
8 %. . D e f i n e mur−b2 c u r v e
9 b2 = b . ∗ b ;

10 nur = bha + (1−bha )∗ b2 . ˆ bhb . / ( b2 . ˆ bhb+bhc ) ;
11 mur = 1 . / nur ;
12
13 %. . I f d e s i r e d , o v e r w r i t e w i t h l i n e a r m a t e r i a l . .
14 i f ( 0 )
15 mur = ones ( s i z e ( b ) ) ;
16 end



Chapter 8

FEM Computations of Inductance and
Induced Voltage

8.1 Axi-Symmetrical Models
The following experimental data was provided to us by Johan Wolmarans.

1. Coil 1 (larger)

• Inductance at 50Hz: 4.6mH

• Turns: approximately 192, wound in 4 layers

• Wire diameter: 1mm

• Wound around 110mm diameter (55mm radius) pipe

• Coil height: 60mm

2. Coil 2 (as used to measure the carbon fiber sleeve)

• Inductance at 50Hz: 615uH

• Turns: 81, wound in 1 layer

• Wire diameter: 1mm

• Wound around 118mm diameter (59mm radius) pipe

• Coil height: 90mm

8.2 Three Dimensional Models

L (mH) pre fault (A) post fault (A)
axi-symmetrical 3.39 4.55 16.58
cylindrical 3.24 4.59 16.87
cuboidal 4.51 4.51 14.00
cuboidal with open core 17.29 3.44 5.01

Table 8.1: Values of inductance, pre and post fault current in different configurations.
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(a) Induced voltage (b) Average magnetic flux

Figure 8.1: Axi-symmetrical and 3D computation of the induced voltage and magnetic flux.
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(a) Axi-symmetrical Model Geometry (b) Axi-symmetrical Model Current

(c) Cylindrical Model Geometry (d) Cylindrical Model Current

(e) Cuboidal Model Geometry (f) Cuboidal Model Current

Figure 8.2: Different coil configurations and associated current waveforms.



Chapter 9

Two Dimensional FE Models of Inductive
Fault Current Limiters

9.1 TO DO
1. in the first model

• choice of surface S motivated by desire to minimize influence of fringing and leakage flux

• investigate influence influence of space between coil and core

• investige influence of gap in the core

• describe three stage process in solving the model

• include impedance computation after the second stage

• describe the setting of the initial guess in assembling the first jacobian (different from jacobian specified
in femsolver!)

2. additional model

• open core model

• three legs model

Goals

• simulate RL-circuit without having to resort analytical model for the impedance

• compute the impedance of a given configuration in three different ways, using the analytical formula, the mag-
netic energy and the magnetic flux

• compute the current waveform using only the AC coil, the DC coil in two different polarities and with linear
and non-linear core

• check the magnetic flux density in the core legs and verify using the BH-curve to what extend the DC coils
brings the legs in saturation

• investigate to what extend an ODE model allows to simulate this configuration, eventually by first computing
the impedance

• investigate to what extend the geometry of the coils affects the current waveforms

• document issues on time integration
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9.2 Introduction
To do:

• give a definition of the induced voltage in 3D (using the winding function), and show how it simplifies to
perpendicular and azimuthal current application

In these notes we develop a sequence of numerical models of increasing accuracy and complexity for the current
in coils winded around ferromagnetic cores. We start by detailing analytical and semi-analytical models, build two-
dimensional finite element methods and extend these into three dimensions. Modelling results for the current wave
forms are compared with laboratory measuments on scale models of the devices under study. Initially we were mo-
tivated by comparing different configurations of so-called inductive fault current limiters. The study of these devices
was presented at the Comsol Multiphysics Users Conference 2008 in Hannover (+ reference). The configurations
we study are however representative for a wide range of other applications in AC/DC modelling such as electrical
machines, transformers and actuators. We therefore decided to document the solution to different difficulties we
encountered in the modelling in Comsol Multiphysics, hoping that you (the reader) might learn from it.

9.3 Inductive Fault Current Limiters
Wikipedia defines a fault Current Limiter (FCL) to be a device which limits the prospective fault current when a fault
occurs. Different types exist. The fault current limiter we consider here is based on an inductor and consists of a
ferromagnetic core and two coils (see Figure xxx). We will refer to the coils as the AC and DC coils. The AC coil
carries the line current. The DC coil provides the magnetic field on which the working principle of the FCL under
consideration is based. It’s working principle is detailed in [?] and can be summarized as follows:

• nominal regime: a time-independent current in the DC coil bring the core in saturation. A sinusoidal line
current flows throught a wire represented by the the AC winding. Parameters (ohmic resistance of the wire) are
such that the left and right core leg do not desaturate, i.e., the impedance of the left and right core leg remain
small.

• occurence of fault: in case of fault, the drop in the ohmic resistance in the AC coil is compensated by the
magnetically induced fields in the core, i.e., by the raise of the impedance of the coil. The particular construction
of the FCL such that for 0 ≤ t ≤ T/2 (where T denotes the period of the sinusoidal exitation of the AC coil)
one of the core legs desaturates, causing the impedance (and thus the induced voltage) to raise and thus the
current to be limited. During this period the other core leg remains in saturation,. i.e., it does not contribute
to the limiting process. During the period T/2 ≤ t ≤ T , the role of the left and right core leg are inverted,
meaning that over the whole period T sufficient limiting is guaranteed.

9.4 Half Period Limiter

9.4.1 Geometry
In defining the geometry the core acts master and the coil as slaves. This corresponds to the fact that the coils are
wounded around the core.

1. the core:

(a) core variables

crwin = 12.5e-3; crwout = 37.5e-3; crwleg = crwout - crwin;
crhin = 39e-3; crhout = 63e-3;
rad = 3e-3;

(b) core:
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Figure 9.1: Open-core configuration.

core = fillet(rect2(-crwout,crwout,-crhout, crhout), ’radii’, rad) ...
- rect2(crwin,crwin,-crhin,crhin);

2. flux integration lines:

(a) left core leg: line from (-crwout,0) to (-crwin,0)

fluxline1 = line1([-crwout,-crwin],[0,0]);

(b) right core leg: line from (crwin,0) to (crwout,0)

fluxline2 = line1([crwin,crwout],[0,0]);;

3. the AC coil:

(a) AC coil variables

accoilw = 10e-3; accoilh = 20e-3;
xspacer = 2e-3
accoilradin = crlegw/2+xspacer; accoilradout = accoilradin+accoilw;
coilxc = crwin+crwleg/2;

(b) AC coil:

accoil_right = rect2(accoilradin,accoilradout,-accoilh/2,accoilh/2);
accoil = accoil_right+move(accoil_right,-2*accoilradin-accoilw,0);
accoil = move(accoil,accoilxc,0);
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4. the DC coil:

(a) DC coil variables

dccoilh = 10e-3; dccoilw = crwin/2;
dccoilradin = (crhout-crhin)/2; dccoilradout = dccoilradin + dccoilh;
dccoilyc = crhin+(crhout-crhin)/2;

(b) DC coil

dccoil_top = rect2(-dccoilw/2,dccoilw/2,dccoilradin,dccoilradout);
dccoil = dccoil_top + move(dccoil_top,0,-2*dccoilradin-dccoilh);
dccoil = move(dccoil,0,dccoilyc);

5. the air:

(a) air variables

airh = 400e-3; airw = 400e-3

(b) air = rect2(-airh, airh, -airw, airw);

The 1D and 2D entities in the geometry are then combined using

clear c s
c.objs={fluxline1,fluxline2};
c.name={’fluxline1’,’fluxline2’};
c.tags={’g5’,’g6’};

s.objs={air,accoil,dccoil,core};
s.name={’air1’,’accoil’,’dccoil’,’core’};
s.tags={’g1’,’g2’,’g3’,’g4’};

fem.draw=struct(’c’,c,’s’,s);
fem.geom=geomcsg(fem);

9.4.2 Constants, Functions and Subdomain and Global Expressions
Constants

Note that a fill-factor in the coils in not used as the expression for the induced voltage in scaling invariant for the
induced voltage.

Functions Functions are used to define the different BH-curves.

Global expressions The flux variables and their derivatives are included to check the model. They are not used in
the computation as such. Flux variables are used to verify whether or not the core legs are in saturation. The flux
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Electrical constants
ω 2 π 50

Vmax 28
Rpre 4.0
Rpost 0.1
Tfault 45e-3

Tsmooth 1e-3
Core

lz (Length in z-direction) 25e-3
flcrwleg crwleg

crcross (Core leg cross-section) flcrwleg*lz
AC coil

acNt (Number of turns) 200
accross (Cross-section) accoilw*accoilh

Iac (Current value) 5
DC coil

dcNt (Number of turns) 250
dccross (Cross-section) dccoilw*dccoilh

Idc (Current value) 10
BH curve data

linmurfe 1000
bha 2.12e-4
bhb 7.358
bhc 1.18e6
C1 .25
C2 .06

Table 9.1: Constants Used
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derivative variables are used to check the induced voltage.

V line = V max sin(ωt) (9.1)
Rline = Rpre− (Rpre−Rpost) ∗ flc2hs(t− Tfault, Tsmooth) (9.2)
V ind1 = −sign(Jz) ∗ acNt ∗ lz/accross ∗ Eint1 (9.3)
V ind2 = −sign(Jz) ∗ acNt ∗ lz/accross ∗ Eint2 (9.4)
V ind = V ind1 + V ind2 (9.5)

Bavrg1 = Bint1/crwleg (9.6)
Bavrg2 = Bint2/crwleg (9.7)
fluxt1 = −acNt ∗ lz ∗Btint1 (9.8)
fluxt2 = −acNt ∗ lz ∗Btint2 (9.9)

9.4.3 Integration Coupling Variables
We keep two variables for the induced voltage in order to be able to monitor them seperately. Subdomain integration
coupling variables for the induced voltage

Eint1 =

∫
accoil1

Ez dΩ =

∫
accoil1

∂Az
∂t

dΩ (9.10)

Eint2 =

∫
accoil2

Ez dΩ =

∫
accoil2

∂Az
∂t

dΩ (9.11)

and boundary integration coupling variables for the average flux and the time-derivative of the flux

Bint1 =

∫
fluxline1

By dl =

∫
fluxline1

−∂Az
∂x

dl (9.12)

Bint2 =

∫
fluxline2

By dl =

∫
fluxline2

−∂Az
∂x

dl (9.13)

Btint1 =
d

dt

∫
fluxline1

By dl =

∫
fluxline1

−∂
2Az
∂x ∂t

dl (9.14)

Btint2 =
d

dt

∫
fluxline2

By dl =

∫
fluxline2

−∂
2Az
∂x ∂t

dl (9.15)

where the minus sign in the expressions with index two take the direction of the current into account.

9.4.4 Application mode, subdomain and boundary settings
The magnetic field is modeled by a partial differential equation for the z-component of the magnetic vector potential
Az (perpendicular current model) satisfying the following equation

σ
∂Az
∂t

+
∂

∂x

(
ν0 νr(B)

∂Az
∂x

)
+

∂

∂y

(
ν0 νr(B)

∂Az
∂y

)
= Jz(x, y, t) (9.16)

where σ = 0 everywhere on Ω, supplied with boundary conditions. All time-dependency is thus in the current source!
We do solve this equation with a time-stepping procedure as we need the derivative ∂Az

∂t in defining the induced
voltage.

• material characteristics:

– ferromagnetic core: µr through BH-curve

– coils and air: µr = 1
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• current exitation

– DC coil: constant current density equal to Jz,dc = ± Idc,totSdc
= ±dcNt Idc

dccross

– AC coil: voltage driven by a sinusoidal voltage source V line through the circuit relation given below. The
variable Itot is to be computed such that Jz,ac = ± Iac,tot

accross = ±acNt Itot
accross

Different Application Modes In different application modes we subsequently solve for

• the impedance using three different models

• the initial guess for the transient simulation

• the non-linear transient simulation including the fault

9.4.5 ODE Settings
The current in the AC coil is modeled by a crircuit relation (an ODE) for the variable Itot

Vtot = Vres + Vind (9.17)
= RItot + V ind1 + V ind2 (9.18)

9.4.6 Numerical Results
Discuss that

• this configuration is not able to limit the during during both periods.

9.5 Open-Core Configuration
1. geometry of the AC coil changes

9.6 Three-Leg Configuration
1. new geometry

2. DC coils opposite polarity, AC coils different polarity

3. in the computation of the inductance only only AC coil needs to be taken into account

4. new integration coupling variables

5. new ODE setting
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Figure 9.2: Three legged core configuration.
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Figure 9.3: Current with and without limiter.

(a) Geometry (b) Computed line current

(c) Flux in left and right core leg (d) Induced Voltage

Figure 9.4: Numerical results for the O-shaped core configuration.
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(a) Geometry (b) Computed line current

(c) Flux in left core leg (d) Flux in right core leg

(e) Induced Votage (f) Total Votage

Figure 9.5: Numerical results for the open-core configuration.
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(a) Geometry (b) Computed line current

(c) Flux in left core leg (d) Flux in right core leg

(e) Induced Votage in Left Core Leg (f) Total Induced Votage

Figure 9.6: Numerical results for the three-legs configuration.



Chapter 10

Three Dimensional FE Models of Inductive
Fault Current Limiters

To do

• add references to De Gersem and Dular on the field circuit coupling

(a) Open core (b) Three-leg four winding

Figure 10.1: Geometries studied

10.1 Open-Core Configuration

10.1.1 Geometry
In defining the geometry, the core acts as master, while the DC and AC coil act as slave. The geometry will consist of
the following four parts:

1. the core: build by extruding a working plane in the yz-plane in the x-direction. There will be a relation between
the depth and width of the core leg.

(a) core variables

crlegw = ;
crwin = ; crwout = crwin + crlegw;
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crhout = ; crhin = ;
crd = ;

(b) core working plane:

core_plane = fillet(rect2(-crwout,crwout,-crhout, crhout), ’rad’, rad) ...
- fillet(rect2(crwin,crwin,-crhin,crhin), ’rad’, rad);

(c) core extrusion

set working plane at x = 0
core = extrude(core_plane, ’distance’, 2*crd);

2. flux integration surfaces:

3. the generic coil: build by extruding a working plane in the xy-plane in the z-direction

(a) generic coil variables

coilw = ; coilh = ;
yspacer = ; zspacer = ;
coilradin = crlegw/2+yspacer; coilradout = coilradin+coilw;
coilyc = crwin+crwleg/2; coilzc= coilh/2 + zspacer;

(b) coil working plane:

coil_plane = circ2(coilradout) - circ2(coilradin);

(c) coil extrusion

set working plane at z = 0
coil = extrude(coil_plane, ’distance’, coilh)

4. the DC coil: by moving the generic coil in positive y-direction and in positive z-direction

(a) DC coil variable

dccoilzc= coilh/2 + zspacer;

(b) dccoil = move(coil,0,coilyc,dccoilzc);

5. the AC coil: by moving the generic coil in positive y-direction and in negative z-direction

(a) AC coil variable

accoilzc= -coilh/2 - zspacer;

(b) accoil = move(coil,0,coilyc,accoilzc);

6. the air: build using the block3 command

For the ease of modification of this geometry we will work with a full model.

10.1.2 Meshing
Currently the meshing happens fully automatically, excepts for the option hauto used in meshinit. Due to this
automation, difficulties may occur in case the space between the coils and the core leg is to small. This issue will have
to be dealt with in the future.

10.1.3 Constants, Functions and Subdomain and Global Expressions
Constants

Note that a fill-factor in the coils in not used
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Electrical constants

ω 2 π 50
DC coil

Number of turns
Cross-section
Current value

AC coil
Number of turns

Cross-section
BH curve data

a 2.12e-4
b 7.358
c 1.18e6

C1 .25
C2 .06

Table 10.1: Constants Used

Functions

Here we define the BH curves and the winding functions.

Subdomain expressions

Here we define the densities for the induced voltage

Global expressions

Here we define the electrical excitation and the induced voltage.

10.1.4 Application modes
We solve for both the vector and scalar potential. The scalar potential is used to avoid that during time integration
components in the null space of the curl-curl operator are introduced.

10.1.5 Integration coupling variables
Here we integrate the induced voltage density to obtain the total induced voltage.

10.1.6 Definition of the ODE
The sum of resistive and induced voltage is at all times equal to the total applied voltage.
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10.1.7 Solution process

10.1.8 Post processing

10.2 Different solution modes

10.2.1 Linear core

10.2.2 Non-linear core
Define the different stages.
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