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Abstract

In this project we introduce the sintering process, which involves two basic phenomena, pore

shrinkage and grain growth, occurring simultaneously. The objective of this project is to quan-

titatively describe the sintering process incorporating the kinetics of pore shrinkage and grain

growth.

First we build a model for pore shrinkage separately. An important use of the results from pore

shrinkage model is to estimate the relative density of the sintering material. Here we show an

example with feedstock KA-13 in Ludwigshafen. The estimated result is reasonable, but not

as good as expected, which means that lots of work are needed to be done in the future, such

as more accurate measurements, adjustment of the model parameters and so on.

Using the same population balance equation as that used in the pore shrinkage model, we

introduce the grain growth model, which only has different velocity model from that of pore

shrinkage. Since during the intermediate stage of sintering, the kinetics of grain growth de-

pends on the rate of pore shrinkage, we can further model the grain growth rate coupled with

pore shrinkage through porosity or relative density, which depends on the solution of the pore

shrinkage model.

Here we solve the PDEs using finite element method with COMSOL Multiphysics 4.3a (which

is a software based on finite element method), and compare the results with analytical solution,

solution generated using finite different method in Matlab. Initial values and parameters in the

model are discussed as well. In the end we give an simple example with temperature cycle in

the real system.
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Chapter 1

Introduction

The objective of this project is to quantitatively describe the sintering process of alumina using

numerical models. Since the process for the industrial production of alumina is not a familiar

topic for most people, in the first chapter we’ll introduce the basic properties of alumina and

the whole process for production of alumina. Sintering is an important step during the whole

production process of making premium alumina. In chapter 2, we explain the concept of

sintering, discuss the quality control of sintering and introduce some important parameters in

the sintering process. The early analytical model for solid state sintering process introduced

in this chapter will help readers understand this process better. Chapter 3 - 5 are the most

important parts in this thesis, especially chapter 3. In these three chapters, we introduce

mathematical models for the sintering process, which includes two separate models and one

combination model. All of these models are based on the number continuity equation. In

chapter 3, using the pore shrinkage model we can get a reasonable estimation of the Dilato

test result, which is useful in the quality control of sintering. In chapter 6, we try to use some

temperature cycles which are closer to the reality to generate the model parameters and show

the results. Chapter 7 is the conclusion part, where we discuss the results and the future work.

1-1 Alumina

Alumina is a chemical compound of aluminium and oxygen with the chemical formula Al2O3.

It can be also called Aluminium oxide. This is a white or nearly colorless crystalline substance,

as shown in Figure 1-1.
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2 Introduction

Figure 1-1: Alumina [3]

Alumina is a kind of widely known and used material for the production of aluminum. Besides,

it’s widely used for non-metallic applications. The key properties of alumina include [15]: high

compression strength, high hardness, resistant to abrasion, resistant to chemical attack by a

wide range of chemicals even at elevated temperature, high thermal conductivity, resistant to

thermal shock, high degree of refractoriness, high dielectric strength, high electrical resistivity

even at elevated temperatures, transparent to microwave radio frequencies, low neutron cross

section capture area, and raw material readily available and so on. Due to its physical and

chemical properties, alumina is playing an important role as an essential raw material for many

market applications, such as ceramic, refractory, flame retardant polymer and etc..

1-2 Production of Alumina

1-2-1 Bayer Process

Generally, alumina can be got from bauxite, i.e. gibbsite (Al(OH)3), boehmite (AlO(OH))

and diaspore (AlO(OH)). Deposits of bauxite ore are mined and refined into alumina. The

most common method used to produce alumina is the Bayer process, which is invented in 1887

by Austrian scientist Karl Josef Bayer. There are also some other methods used in Russia and

China. Details for these methods can be found in Luo.Z and Soria.A’s report in 2007 [16].

Since Bayer process is the general method used for industrial production of alumina, here we

use it as an example (See Figure 1-2) for better understanding of alumina production.

As shown in Figure 1-2, the process stages includes [17]:

• Wet Milling

The bauxite is washed and crushed to increase its surface area. Lime and caustic soda

(NaOH) are added.

• Digestion
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1-2 Production of Alumina 3

Figure 1-2: Bayer Process [4]

Hot caustic soda (NaOH) solution is used to dissolve the aluminium-bearing minerals in

the bauxite to form a sodium aluminate supersaturated solution or "pregnant liquor".

Gibbsite: Al(OH)3 + Na+ + OH− → Al(OH)−
4 + Na+

Boehmite, Diaspore: AlO(OH) + Na+ + OH− + H2O → Al(OH)−
4 + Na+

• Settling

The pregnant liquor got from digestion contains a solution of sodium aluminate and

undissolved bauxite residues which contain iron, silicon and titanium. The slurry is flash

cooled and an insoluble residue, known as red mud, is separated from the aluminate liquor

via sedimentation. The bauxite residue sinks to the bottom of the settling tanks and then

undergoes a series of washing stages to recover the caustic soda (which is reused in the

digestion process).

The purpose of the security filters is to ensure that the final product is not contaminated

with impurities present in the residue.

• Precipitation

The alumina is recovered by crystallisation from the pregnant liquor. The pregnant liquor

is further cooled, resulting in the formation of small crystals of aluminium hydroxide

(Al(OH)3), which then grow and agglomerate to form larger crystals.

Al(OH)−
4 + Na+ → Al(OH)3 + Na+ + OH−

This is an reverse of the reaction in the digestion stage.
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• Calcination

In the calciners temperature is up to 1100 ◦C. Free moisture and chemically-connected

water are driven off. The following equation describes the calcination process.

2Al(OH)3 → Al2O3 + 3H2O

Alumina solids is the final product of this step as well as the Bayer Process.

During the calcination process of aluminum hydroxides, many forms (crystalline phases) of

alumina can be produced: α, χ, η, δ, κ, θ, γ, ρ 1.

Aluminum Hydroxide Al(OH)3 → Transition Alumina (χ, η, δ, κ, θ, γ, ρ) → α − Al203

The common alumina phases can all be formed from room temperature up to about 1200 ◦C

and end in the α phase (See Figure 1-3 [5]).

Figure 1-3: Thermal Transformation of Alumina Hydroxides [5]

If the alumina is not heated above 1200 ◦C, it’ll adsorb water vapor very fast and no equilibrium

was reached. Alumina produced in this period are called transition alumina. These are very

complex materials. "Although the existence of the transition aluminas, specifically γ-, δ-, and

θ- alumina, has been recognized for many years, their structure is still not well understood

today. Lack of structural information is due in part to the growth characteristics of these forms

of alumina. Large single crystals of these materials cannot be made, ..." - said by K.J. Morrissey

[19].
1Use of Greek letters is common in chemistry to distinguish compounds with the same composition but

different physical chemistry properties. For example, Jon Martin Andersson compared properties of three most

important alumina phases α, θ, γ in 2005 [18]. These three alumina phases have different density.
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1-2 Production of Alumina 5

Alumina heated above 1200 ◦C is called α-alumina by Rankin and Merwin [20]. This is the

most thermal dynamically stable form of alumina. It has the same crystalline structure as the

mineral corundum, as shown in Fig. 1-4.

Figure 1-4: Crystal Structure of α − Al2O3 [6]

During 1000-1250◦C, the transformation from transition alumina to α-alumina is irreversible

and it completes after a few hours more than 1250◦C [21]. Above all, if a high enough temper-

ature is used in the Bayer process for a long time, the final product is α-alumina, which is also

called calcined alumina.

1-2-2 Tabular Alumina

During recent 70 years tabular alumina has been widely used in high performance refractory

materials for many applications in steel, foundries petrochemistry and ceramics [22]. Tabular

alumina derives its name from its morphology, which consists of large, 50-500µm, flat tablet-

shaped crystals of corundum [15]. It can be produced by the sintering of calcined alumina.

The manufacture process of tabular alumina is shown in Figure 1-5, which includes the following

steps [16]:

• Grinding: Make the fineness and surface of alumina satisfy a certain requirement in ball

mill.

• Granulation: Make green balls2 with grinding powder and water.

• Drying: Remove the moisture of the green balls. Too wet balls entering the converter will

explode, because the water trapped inside the balls will become vapor as temperature

increases. This mostly happens at the top of the converter.
2Green ball doesn’t mean that the ball’s colour is green. Here it is a relative concept to the sintered ball.
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Figure 1-5: Production Process of Tabular Alumina by Sintering [7]

• Sintering: Send dried green balls to a vertical shaft kiln (converter), which is fired by a

combination of nature gas and air. The sintering process is performed continuously at

1800-1900 ◦C, to obtain the highest mass density and lower porosity (see section 2-5-2).

The powder particles recrystallize as hexagonal profile or even hexagonal prisms with

α − Al203 structure [5]. The dried green balls are converted to tabular alumina.

• Crushing and sieving: Cool and crush the sintered converter discharge (CD) balls, sieve

them to various opened and closed sized products.

In this project we only focus on the sintering process. The sintering process occurs above

1600◦C and under α-alumina’s melting point 2050◦C in shaft kilns, which usually have gas

burner in the median zone [23].
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Chapter 2

Sintering of Alumina

What is sintering? Where does sintering take place? What happens during the sintering

process? How can we control the quality of sintering? This chapter can help you better

understand the above questions. First we give the definition of sintering process. Then we

discuss about the driving force, mechanisms of sintering process and several approaches used

in theoretical analysis of sintering. Details related to these topics are really a long story, so it’s

hard for us to explain all in this thesis. If readers want more information about this part, they

can turn to the work of Kang [8] or M.N.Rahaman[1]. Here we just want to give readers a first

impression of sintering process, which will be useful for better understanding of our model. In

the end we discuss about quality control of sintering process and introduce some key parameters

of sintering.

2-1 What is Sintering?

2-1-1 Definition and Driving Force of Sintering

Definition

Sintering is a processing technique used to produce density-controlled materials and components

from metal or/and ceramic powders by applying thermal energy. When thermal energy is

applied to a powder compact, the compact is densified and the average grain size increases [8].
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8 Sintering of Alumina

Basically, sintering processes can be divided into two types: solid state sintering and liquid phase

sintering. By Kang’s definition [8]. "Solid state sintering occurs when the powder compact is

densified wholly in a solid state at the sintering temperature, while liquid phase sintering occurs

when a liquid phase is present in the powder compact during sintering".

To make our problem simple, here we only consider solid state sintering, since the melting

point of aluminum oxide is generally 2050 ◦C and the temperature during the sintering process

is below 2050 ◦C. In the real industry there might be also some other material, whose melting

point is lower than 2050 ◦C, existing together with alumina. For example, generally, there

might be some sodium oxide (Na2O) left. And its melting point is around 1132 ◦C and boiling

point is around 1950 ◦C. Then during the sintering process, the sodium oxide is in liquid phase.

However, to make our problem simple in the beginning, we don’t consider this situation, because

except for alumina, other materials occupy relatively small percentage during the sintering of

alumina. For example, the feedstock in Almatis contains 99.95% Al2O3.

Driving Force

The driving force of sintering process is the reduction in the total interfacial energy. The

following formula (2-1) and figure (Figure 2-1) in Kang’s book [8] explain this principle very

well.

Figure 2-1: Basic Phenomena Occurs during Sintering [8]

"The total interfacial energy of a powder compact can be expressed as γA, where γ is the

specific surface (interface) energy and A is the total surface (interface) area of the compact."
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2-1 What is Sintering? 9

Then the change of total interfacial energy is

∆(γA) = γ∆A + A∆γ (2-1)

The change in interfacial energy (∆γ) is due to atom diffusion processes that lead to densifica-

tion of the body (by transporting matter from inside the grains into the pores) and the change

in total surface area (∆A) is due to the atom diffusion processes that lead to coarsening of

the microstructure (by rearrangement of matter between different parts of the pore surfaces

without actually leading to a decrease in the pore volume). So the sintering process includes

two processes: densification and coarsening. And it’s necessary for us to understand the basic

mass transport mechanism under the microstructure of particles and the relationship between

these mechanisms and the two processes before building the model.

2-1-2 Mechanisms of Sintering

Figure 2-2: Transport Mechanisms [1]

There are at least 6 types of material transport mechanisms during sintering.

1 - Surface diffusion

"The free surface of a crystalline solid is not perfectly flat. It contains some vacancies (as in

the bulk of the crystal), terraces, kinks, edges, and adatoms (See Figure 2-3). The migration

of vacancies and the movement of adatoms provide the main mechanisms of surface diffusion."

[1]
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10 Sintering of Alumina

Figure 2-3: Solid Surface [1]

2,5 - Lattice 1 diffusion (volume diffusion or bulk diffusion)

Lattice diffusion takes place by the movement of point defects through the bulk of the lattice.

The following figure (Fig. 2-4) shows the movement of atoms during lattice diffusion according

to different mechanisms.

Figure 2-4: Lattice Diffusion [1]

3 - Vapor transport (evaporation-condensation)

Evaporation-condensation takes place because the vapour pressure on a curved surface is differ-

ent from that on a flat surface or any other surface. The mass transport can proceed through

a gas phase, driven by difference in vapour pressure. Atoms evaporate from the sphere surface

1Crystal lattice is a geometric arrangement of the points in space at which the atoms, molecules, or ions of

a crystal occur.
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2-1 What is Sintering? 11

and the evaporated atoms condense in the neck region [8]. For most materials, the evaporation-

condensation transport is slow.

4 - Grain boundary diffusion

The grain boundary is usually assumed to be an area where no energy is required for atoms to

attach or detach. The grains are separated from one another by grain boundaries, where lattice

mismatch and disorder.

6 - Plastic flow

Plastic flow is the motion of dislocations under stress.

Details about these material transport mechanisms can be found in M.N.Rahaman’s book

[1]. In all of these mechanisms, the material transports from high chemical potential to low

chemical potential. They all lead to bonding or neck growth between particles. We should

notice that only certain mechanisms lead to pore shrinkage or densification. Surface diffusion,

lattice diffusion (matter from the particle surfaces to the neck), and vapor transport lead to neck

growth without densification and are referred to as nondensifying mechanisms. Grain boundary

diffusion, lattice diffusion (matter from the grain boundary to the pore), and plastic flow are

densifying mechanisms. The nondensifying mechanisms cannot simply be ignored because they

reduce the driving force for sintering and so reduce the rate of the densifying mechanisms [1].

Figure 2-5: The Distinction between Densifying and Nondensifying Mechanisms [1]
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12 Sintering of Alumina

Table 2-1: Mechanisms of Sintering

Mechanism Source of matter Sink of matter Densifying or not

Surface diffusion surface neck N

Lattice diffusion surface neck N

Lattice diffusion grain boundary neck Y

Grain boundary diffusion grain boundary neck Y

Plastic flow dislocations neck Y

Evaporation-condensation surface neck N

2-2 Equipment Used for Sintering - Shaft Kilns (Converter)

Shaft kiln (converter, see Figure 2-6) is the equipment used for sintering process. It is operated

by combustion of a mixture of natural gas and air and based on a very simple principle. The

raw material (green ball) enters at the top of the kiln and the product is withdrawn from the

bottom. The materials move slowly downwards through the kiln. Heat is added in the middle

of the kiln. Therefore, materials above is preheated by rising hot exhaust gases and materials

below is cooled by incoming air from the bottom. So the kiln can be divided into three operating

sections: the pre-heating area, the burning area and the cooling area.

Figure 2-6: Shaft Kiln [9]
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2-3 Quality Control of Sintering 13

Figure 2-7 shows the temperature trajectory that the material goes through between entering

and exiting the converter.

Figure 2-7: Sintering Process in the Shaft Kiln

Sintering temperature, heating and cooling rates are very important criteria for the quality of

the products and are therefore strictly controlled.

2-3 Quality Control of Sintering

Optimization of an alumina sintering cycle is to achieve zero porosity (fully dense compact)

with minimum possible grain growth. There are lots of items that would influence the final

result, including both of the raw materials for sintering and the sintering environment.

Chemical composition of the powder compact will influence the sintering process. In industry

field, 100% purify alumina doesn’t exist. Generally, there are some other chemical composition

included in the green ball. For example, the feedstock we used contains 99.95% Al2O3. There

are also Fe2O3 (0.014%), SiO2 (0.006%), TiO2 (0.003%), Na2O (0.360%), CaO (0.009%),

Ga2O3 (0.011%), V2O5 (0.001%), ZnO (0.001%). Take Na2O for example, the Sodium oxide’s

melting point is 1132 ◦C, while the general melting point for alumina is 2050 ◦C. It means

that the liquid will exist at the sintering temperature and furthermore influence the sintering

process. Besides, sodium oxide left in the CD balls will make the ball light yellow.

Partical size (also called grain size), partical shape, partical size distribution, degree of particle

agglomeration of the green ball will also influence the sintering process further, since the raw

material’s density and densification time are related with these variables.

Insufficient control of temperature, time, atmosphere, pressure, heating and cooling rate in the

shaft kiln will change the sintered microstructure, too. For example, if the balls travel too fast
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14 Sintering of Alumina

in the converter, the crystallization won’t complete and we’ll get border balls with low density.

If the ball travel too slow in the converter, the material will be melted a bit. This is bad for the

grain growth and the density could also get down. If the temperature is too high, we could also

have fusing in the converter then a large number of balls are fused together, like big lumps of

material. In the worst case the converter itself can fuse together, then we really have a problem.

To observe the quality of sintering and to guarantee a stable product quality, we can get

samples from the converter at fixed time point and see the microstructure of the fired balls.

Figure 2-8 shows some examples of the crystal structure under microscope: We can see that

(a) Over fired, 1000x (b) Over fired with a bit fusing,

500x

(c) Well fired, 5000x

(d) OK, 5000x (e) Border, 5000x

Figure 2-8: Crystal Structure under Microscope

for the over fired ball, very large reflected crystals overlapping entire ball. Shape of crystals

appear somewhat spherical. For the well fired ball, large reflected crystals overlapping entire

ball. For the ball that is OK, fine reflected crystals not overlapping entire ball. For the border

ball, there are white chalky marks in appearance with some sporadic reflected crystals.

Further quality control is carried out by the laboratory, monitoring both the chemical compo-

sition and the physical properties of the material, by the following characteristics: bulk specific

gravity (B.S.G), apparent porosity and water absorption. Generally we can get B.S.G and tem-

perature data under 1750◦C in the lab with dried green balls (the dried green balls used in the

lab and the balls we used in the real industrial process are the same). Then we hope to build a
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2-4 Main Approaches used in Theoretical Analysis of Sintering [1] 15

mathematical model which describes the entire sintering process as well as the evolution of the

microstructure (e.g. grain size, pore size, and the distribution of the grain and pore sizes), so

that to help us control the sintering process. We can use existing experiment data to estimate

parameters in the model and then try to estimate the situations in different temperature cycles,

in order to improve the quality of sintering.

2-4 Main Approaches used in Theoretical Analysis of Sinter-

ing [1]

2-4-1 Analytical Models for Solid State Sintering Process

The solid state sintering is usually divided into three states: initial stage, intermediate stage

and final stage.

Figure 2-9: Three Stages of Solid State Sintering [10]

The initial stage is characterized by the neck formation between particles. During this stage,

particles maintain their individual identity while neck growth takes place between them with

relatively limited shrinkage of the compact.

During he intermediate stage, the particles lose their individual identity, pores become smooth

and interconnect. Porosity is modeled as a network of interconnected channels running along

the grain edges. Most of the densification and a great deal of grain growth occurs at this time.

So this is the most important stage of sintering process.

In the final stage pores are isolated, grain growth is evident.

These analytical models help us understand the basis of sintering. Whereas these models assume

an unrealistically simple geometry and often the occurrence of only a single mechanism, it’s
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16 Sintering of Alumina

Table 2-2: Stages of Sintering

Stage Feature Relative density rage Model

Initial neck formation up to 0.65 two spheres in contact

Intermediate continuous porosity 0.65 - 0.9 Tetrakaidecahedron with cylindrical

pores along the edge

Final isolated porosity above 0.9 Tetrakaidecahedron with spherical

pores at the corners

unsuitable for us to use these models for quantitatively predicting the sintering behavior of real

powder systems. In fact, there are a lot of methods used in theoretical analysis of sintering.

2-4-2 Other Approaches

The development of the analytical models, is the first real attempt at a quantitative modeling of

the sintering process. There are still lots of other approaches used to analyze sintering process

(see Table 2-3).

Table 2-3: Approaches used for Theoretical Analysis of Sintering

Approach Advantage Disadvantage or Limitations

Analytical models Useful for understanding Too simple geometry;

basis of sintering Based on single mechanism

Scaling laws Useful for understanding Assume that particle size remains

the particle size dependence the same and the geometrical changes

of the sintering mechanisms remain similar

Numerical simulations Ability to analyze more Require advanced numerical methods

realistic geometries

Topological models More appropriate to Predictions of kinetics limited

microstructural evolution

Statistical models Simplified geometry Semi-empirical analysis

Phenomenological equations Empirical or phenomenological No reasonable physical basis

derivation of equations

The scaling laws [24], formulated at about the same time as the early analytical models, provide

a guide for understanding the particle-size dependence of the sintering mechanisms. The topo-
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2-5 Measurement of Sintering 17

logical models [25] make limited predictions of the sintering kinetics and are more appropriate

to the understanding of the evolution of the microstructure. The statistical models [26] get lit-

tle attention. The phenomenological equations are used to fit sintering data but add almost no

insight into the process. Numerical simulations can analyze more realistic geometries than the

analytical models as well as the occurrence of multiple mechanisms. Here we use the numerical

analysis method.

2-5 Measurement of Sintering

To provide data for sintering kinetics, we need to measure the density or shrinkage of the

powder compact at several times (or temperatures), and to give a plot of density or shrinkage

versus sintering time (or temperature). Dilato test provides continuous monitoring of the linear

shrinkage of the powder compact over the complete sintering schedule. Additional information

from the microstructure, such as the pore size and pore size distribution, the grain size and

grain size distribution, are also important to understand the sintering process.

2-5-1 Dilatometer test

Dilatometer test is a thermal analytical technique used to measure the expansion or shrinkage

of solids, powders, pastes and liquids under negligible load when subjected to a controlled

temperature/time program.

Dilatometer

Dilatometer is a scientific instrument that measures volume changes caused by a physical or

chemical process. From the different kinds of dilatometers, we can get change of length, change

of volume, relative change of length, linear thermal coefficient of expansion, differential thermal

coefficient of expansion, volumetric thermal coefficient of expansion, softening point, transfor-

mation point, swelling behavior, penetration, shrinkage and change of density [27].

Principle of Dilatometer

Pushrod dilatometry is a method for determining dimensional changes versus temperature or

time when temperature is changing overtime. Here is a simple example of dilatometer [11]:
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Figure 2-10: Dilatometer [11, 12]

We can measure the expansion of a known material (pushrod) and an unknown material

(sample)[12]. In the parts lA and lB all rods expand to the right direction (because the left

holder is fixed). The length of the sample l0 is equal to the rod length lc at the beginning of

a measurement. At higher temperatures the rod expands to the right and also the unknown

sample, but the sample has a different thermal expansion coefficient and it expands also to the

left. We can estimate the expansion of the sample from ∆lc and ∆d = ∆l0 − ∆lc, where ∆l0 is

the expansion of sample and ∆lc is the expansion of rod.

∆l0
l0

= ∆lc
l0

+ ∆d

l0
(2-2)

The result of dilatometer test can be shown in Figure 2-11.

2-5-2 Pore Size and Pore Size Distribution

Pore

In fact, a completely accurate definition of a pore is almost impossible, because there are too

many kinds of pores with different shapes and sizes. The shape of pores can be sphere, bubble-

like, slip-shaped and so on. However, most pores’ shapes are irregular and are changing over

time. It can even not be described with dictionary words. In Dullien’s book [13], pore is defined

as "portion of pore space bounded by solid surfaces and by planes erected where the hydraulic
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Figure 2-11: Dilatometer Test Result

radius of the pore space exhibits minima, analogously as a room is defined by its walls and

the doors opening to it. If the local minima, the pore throats (the doors), can be located and

imaginary partitions erected at these positions (the door closed) then the pores are defined,

and their size can be determined by any arbitrary definition of size of an irregularly shaped

object".

Figure 2-12: Pore [13]

The advantage of hydraulic radius is that it can be used to any shape of pores. The hydraulic

radius rH = area of cross section
length of perimeter of cross section

.
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Types of Pores

Open pore - forming a continuous phase within the medium.

Closed pore - non-interconnected/isolated pores that cannot contribute to the mass transport

across the medium.

As shown in Figure 2-14, B is a closed pore and C is an open pore.

Figure 2-13: Open Pore and Closed Pore

Pore Size Distribution

For sphere shape, it’s easy to define the size with it’s radius or diameter. For aspheric shape,

its maximum dimension, i.e. the greatest distance between any two surface points, has proven

to be useful for characterizing size distributions [28].

The pore size distribution function n(r) (unit: m−3m−1) is defined such that n(r)dr is the total

number of pores per unit volume of particles with sizes in the domain [r, r+dr]. The total

number of particles is obtained by integrating n(r) over all sizes
∫ ∞

0 n(r)dr (unit: m−3).

According to Dullien and Batra’s work [29], lots of methods for determining the pore size dis-

tribution are introduced. For example, mercury porosimetry (based on Archimedes’ principle,

see Appendix C), x-ray scattering, image analysis, etc... The widely used methods are mercury

porosimetry (for macro range pores) and gas absorption (for meso range pores). But these two

methods are only available for measuring open pores. Scanning electron microscopy (SEM)

provides an image analysis method for us to measure the size of all pores. While enough

pores must be included for statistic when image analysis method is used. From Jan Gerard

Jacob Peelen’s work [30] in 1977, the pore size distribution of sintered alumina fits log-normal

distribution.

For the log-normal distribution, the representation of density function is as follows:

f(r) = 1
r4

√
2π ln σ

e− 1
2 ( ln r−ln rm

ln σ
)2 (2-3)
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This is defined by two parameters rm and σ. rm is geometric mean, and σ is geometric standard

deviation.

ln rm = Σ((ln ri∆Ni))
Σ∆Ni

(2-4)

(ln σ)2 =
Σ(ln ri

rm
)2∆Ni

Σ∆Ni

(2-5)

Here Ni is the number of pores whose size are smaller than ri. According to Charlie Zender’s

work [28] in 2010, rm is the median radius of the log-normal distribution. And the geometry

standard deviation is the ratio of the number of particles whose diameter are larger than 84.1%

of all particles to the median diameter rm.

2-5-3 Grain Size and Grain Size Distribution

Grain size and Grain size distribution will also influence the sintering process.

Grain (Particle) Size

For sphere shape, the diameter can be used to describe the grain size. For the irregular shape,

size is hard to define. A simple way to define the size of an irregular shaped particle is the

diameter of the sphere which has the same volume as the particle. But this method is not very

helpful because in many cases it’s hard to measure the volume of the particles. The particle

size is usually defined arbitrarily by the measuring technique. The particle size measured by

one technique may be quite different from that measured by another technique, even when the

measuring instruments are operating properly.

In M.N.Rahaman’s book [1], he mentioned several definitions of grain size. Surface diameter

is the diameter of a sphere having the same surface area as the particle. Volume diameter is

the diameter of a sphere having the same volume as the particle. Surface volume diameter

is the diameter of a sphere having the same surface area to volume ratio as the particle.

Stokes diameter (or equivalent spherical diameter) is the diameter of a sphere having the same

sedimentation rate as the particle for laminar flow in a liquid. Projected area diameter is the

diameter of a circle having the same area as the projected area of the particle. Perimeter

diameter is the diameter of a circle having the same perimeter as the projected outline of the

particle. Sieve diameter is the width of the minimum square hole through which the particle

will pass. Feret’s diameter is the mean value of the distance between pairs of parallel tangents

to the projected outline of the particle.
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Grain Size Distribution

M.N.Rahaman shows some common methods to measure the grain size distribution in his book

(See Table 2-4)[1].

Table 2-4: Common Methods to Measure the Grain Size Distribution [1]

Method Measurement Range (µm)

Microscopy

Optical >1

Scanning electron >0.1

Transmission electron >0.001

Sieving 20-10000

Sedimentation 0.1-100

Coulter counter 0.5-400

Light scattering

Scattering intensity 0.1-1000

Brownian motion 0.005-1

X-ray line broadening <0.1

Similar to the measurement of pore size, microscopy provides a straightforward method to

measure the particle size and the individual shape of particles. Image analysis is necessary for

this method and it needs a large number of particles within an appropriate size range on the

image. Sieving is the oldest and one of the most widely used classification methods. However,

it’s time consuming and not available for powders where the particle size is less than 20 µm.

It shouldn’t be used for clean powders either since there might be some metallic impurities

from the sieves. Sedimentation method is based on the Stoke’s law (see Appendix D), so it’s

limited by the assumptions of Stoke’s law such as "there are no collisions or interactions between

the particles". Coulter counter is first applied to the counting of blood cells. In the coulter

counter, the particles are suspended in electrolyte. The number and size of the particles are

measured by causing them to flow through a narrow hole on either side of which an electrode

is immersed. Particles passes through the hole will cause change in the electrical resistance,

the magnitude of which is proportional to the volume of the particle. Light scattering method

measures the particle size by measuring the scattering angle of light. And X-ray broadening

method measures the particle size by measuring the width of the diffraction peak (or the size

of the diffraction spot). This method gives a measure of the particle size regardless of whether
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the particles consist of single crystals, polycrystal, or agglomerates.

From Tsung-shou Yeh and Michael D.Sacks’ work [31] using X-ray sedimentation, the grain size

distribution for alumina fits log-normal distribution. So the pore size distribution and grain

size distribution we used in this project are both log-normal distributions. The advantage of

log-normal distribution is that the shape of the distribution is unchanged for all moments.

Thus, if the number distribution is log-normal, the surface and mass distributions will also be

log-normal.

2-5-4 Density, Porosity, Water Absorption and Specific Gravity

Density

Density is the mass per unit volume, ρ = m
V

;

Bulk Density = Mass
Bulk V olume (T otal V olume)

= Mass
Solid V olume (A, T rue V olume) +Open P ore V olume (C) + Closed P ore V olume (B)

Apparent Density = Mass
Apparent V olume

= Mass
Solid V olume + Closed P ore V olume (B)

True Density = Mass
T rue V olume

= Mass
Solid V olume (A)

Theoretical Density = Mass of a unit cell
V olume of a unit cell

Porosity

Porosity is the fraction of the bulk volume of the porous sample that is occupied by pore or

void space [13].

Apparent Porosity (AP) = Open P ore V olume (C)
T otal V olume (A+B+C) ∗ 100%

True Porosity (TP) = T otal P ore V olume (B+C)
T otal V olume (A+B+C) ∗ 100%

Figure 2-14: Open Pore and Closed Pore
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24 Sintering of Alumina

Water Absorption

Water Absorption (WA) = W eight of Dry P iece Soaked in F luid−W eight of Dry P iece in F luid
W eight of Dry P iece in F luid

∗ 100%

Specific Gravity

Specific Gravity (SG), or relative density, is the ratio of the density of a substance to the density

of a given reference material [32, 33]. It is common to use the density of water at 4 ◦C (39 ◦F)

as the reference material, because the density of water is highest at this point (0.999972g/cm3).

SG = ρsample

ρH2O
= msample/V

mH2O/V
= msampleg

mH2Og
= Wsample

WH2O
.

where ρ represents the density, m represents the mass, V represents the volume, W represents

the weight and g is gravity of earth.

Bulk specific gravity (BSG) denotes specific gravity measurements in which volume of the

substance includes both open and closed pores. Apparent specific gravity is used to denote

the specific gravity of a porous solid when the volume used in the calculations is considered to

exclude the open pores.

In the following chapters, when we mention about relative density or BSG, it’s

ρr = Bulk Density

True Density
= 1 − True Porosity (2-6)
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Chapter 3

Model of Pore Shrinkage

There are a lot of models for simulating sintering process. In this project we introduce a

mathematical model of sintering based on the combination of two general population balance

model - one is for separate pore shrinkage process (see Chapter 3) and the other is for grain

growth 1 (see Chapter 4). These two models are very similar, they only differ in the choice of

velocity model. We use COMSOL Multiphysics 4.3a (which is an engineering, design, and finite

element analysis software environment for the modeling and simulation of any physics-based

system) to solve these problems and compare the result with analytical solution and matlab

solution. In Chapter 5, we combine these two models together.

The most important thing in this chapter is that we can use the result of pore shrinkage model

to calculate the relative density.

3-1 Particle-Number Continuity Equation

The continuity equation describes the transport of a conserved quantity, such as mass, energy,

momentum and electric charge. A variety of physical phenomena may be described using

continuity equations. The particle number continuity equation, or population balance equation

is given by Randolph and Larson [34] as follows:

∂n

∂t
+ ∇ · ven + ∇ · vin + D − B = 0 (3-1)

1Grain growth describes the increase in the grain size. While coarsening we mentioned in last chapter is

used to describe the process of grain growth coupled with pore growth.
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26 Model of Pore Shrinkage

• n - number density function, defined in an (m+3)-dimensional space consisted of 3 external

(spatial) coordinates and m internal coordinates (size, age and etc.)

• t - time

• ve - external (spatial) particle velocity

• vi - internal particle velocity

• D - particle death function

• B - particle birth function

This equation comes from the basic principle: in a fixed region

Accumulation = Input − Output + Net Generation (3-2)

If we consider a fixed region R1 with the convection velocity v (v = ve + vi),

d

dt

∫
R1

ndR =
∫

R1
(B − D)dR (3-3)

Since

d

dt

∫
R1

ndR =
∫

R1

∂n

∂t
dR + (nv) |R1=

∫
R1

[∂n

∂t
+ ∇ · (nv)]dR (3-4)∫

R1
[∂n

∂t
+ ∇ · (nv) − B + D]dR = 0 (3-5)

R1 is chosen arbitrary, so

∂n

∂t
+ ∇ · (nv) − B + D = 0 (3-6)

⇒ ∂n

∂t
+ ∇ · (ven) + ∇ · (vin) − B + D = 0 (3-7)

In our project, we use the number continuity equation for pore shrinkage as well as grain

growth. To simplify the problem, we assume that:

(1) The sample is spatially homogeneous and sintering is a convectionless batch process, i.e.

ve = 0 [35];

(2) Sintering is coalescence free, i.e. B − D = 0 [35];

Then our the popular balance equation is simplified to:

∂n

∂t
+ ∇ · vin = 0 (3-8)
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3-2 Model for Pore Shrinkage 27

Assume that particles size can be determined by radius r (as that said in chapter 2, many kinds

radius can be found). If we only focus on the size of the particle, the continuity equation is

∂n

∂t
+ ∂

∂r
(vrn) = 0 (3-9)

This is also a generalized form of advection equation.

3-2 Model for Pore Shrinkage

The continuity equation for the population balance on pores is:

∂np(rp, t)
∂t

+ ∂

∂rp

(vrpnp(rp, t)) = 0 (3-10)

where rp (unit: µm) is the pore radius and np(rp, t) (unit: µm−3µm−1) is the number density

function of pores. np(rp, t)drp is the number of pores whose radius is between rp and rp + drp

at sintering time t.

From Pradip’s work [36], the model for pore shrinkage velocity is as follows:

vrp = drp

dt
= − kp

rm
p

(3-11)

where kp (µmm+1/h) is a rate constant and m is a floating model parameter influenced by the

material transport mechanism. The minus sign before the formula means shrinkage.

The initial pore size distribution is given by

np(rp(0), 0) = n0(r0) (3-12)

Here r0 = rp(0), which means the pore size at the initial time. Combination of equation 3-19

and 3-20 forms the model of pore shrinkage.

Using the solution of this model, we can calculate the total pore volume (which can be used

to calculate relative density) and cumulative pore volume distribution (which can be used for

comparison).

At sintering time t, the total pore volume Vp(t) (unit: 1) is

Vp(t) = C
∫ ∞

0
np(rp, t)r3

pdrp (3-13)

where C is a dimensionless constant for given pore geometry. For example, if we assume that

all the pores are spheres, C is 4π
3 .
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28 Model of Pore Shrinkage

The cumulative pore volume distribution Fv(rp, t) (unit:1) is defined as the normalized volumes

of pores larger than size rp, i.e.

Fv(rp, t) =
∫ ∞

rp
np(r′

p, t)r′3
pdr′

p∫ ∞
0 n0(rp)r3

pdrp

(3-14)

3-2-1 Model Parameter m

m is a floating model parameter influenced by the matter transport mechanism. Although we

have introduced the common matter transport mechanisms in Chapter 2, it’s hard for us to

know which kinds of matter transport mechanism occur in a fixed time point, so the parameter

m we used here represents a combination result of all the matter transport mechanisms. It can

not only be an integer number, but also non-integer.

Figure 3-1 shows us the pore shrinkage velocity for pores with different sizes. For the small

pores, the bigger m is, the faster the pores shrink. For big pores, the shrinkage velocities with

different m are very close.
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ty
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m

/h

 

 
m=2.8
m=2.9
m=3
m=3.1
m=3.2

Figure 3-1: Velocity of Pore Shrinkage

Since m is a combination result, it’s hard for us to get m directly. It often comes from trial and

error of the model calibration.

3-2-2 Rate Constant kp

The rate constant kp is only actually constant if all changing during the chemical reaction is

the concentration of the reactants. If the temperature or the catalyst is changing, for example,

the rate constant will change. Generally, it’s decided by Arrhenius equation (See Appendix E).

kp(T ) = kp0e
− Qp

RT (3-15)
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3-2 Model for Pore Shrinkage 29

Where Qp (unit: J/mol) is the activation energy for pore shrinkage (densification). R (unit:

J · K−1mol−1) is the gas constant. T (unit: K) is the absolute temperature. The units of the

pre-exponential factor kp0 is identical to the rate constant kp and will vary depending on the

order of the reaction. If the reaction is first order it has the units h−1 or s−1.

Qp can be calculated from the data of Dilato test. kp0, similar to the parameter m, can be got

from trial and error. For details on how to get these two parameters, we will discuss later in

this chapter.

Figure 3-2 shows the relationship between rate constant kp and absolute temperature T.

250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

x 10
−10

T (unit: K)

k p

Figure 3-2: Arrhenius Plot 1

The Arrhenius eqaution can be also written as

lnkp = lnkp0 − Qp

RT
(3-16)

2 2.5 3 3.5 4

x 10
−3

−45

−40

−35

−30

−25

−20

1/T, K−1

ln
 k

p

Figure 3-3: Arrhenius Plot 2

The graph between lnkp and 1/T is a straight line with an intercept of ln(kp0) and the slop of

the graph is equal to −Qp/R. This kind of graph is always used to estimate activation energy.
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30 Model of Pore Shrinkage

3-2-3 Initial Distribution

The pore size distribution for a given moment can be interpreted as a histogram of the pore

size, which can be got from image analysis.

Figure 3-4: Image Analysis

As discussed in Chapter 2, we assume that the initial pore size distribution of alumina is

log-normal distribution (see Appendix B):

n0(r) = 1
r4

√
2π ln σ

e− 1
2 ( ln r−ln rm

ln σ
)2 (3-17)

where rm is the number median size and σ is the geometric standard deviation.

3-3 Relative Density

Information from the pore shrinkage model is enough for us to predict the relative density (i.e.

there is no need for grain growth model). From Pradip’s work [37], the relative density (unit:

1) can be calculated from

ρr(t) = 1
1 + Vp(t)

Vp(0) [
1

ρr(0) − 1]
(3-18)

This equation comes from the definition of relative density,

RelativeDensity = BulkDensity
T rueDensity

= Mass/T otalV olume
Mass/SolidV olume

= SolidV olume
T otalV olume

i.e. 1
ρr

= Vsolid+Vp

Vsolid
= 1 + Vp

Vsolid

1
ρr

− 1 = Vp

Vsolid
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3-4 Analytical Solution 31

So 1/ρr(t)−1
1/ρr(0)−1 = Vp(t)Vsolid(0)

Vp(0)Vsolid(t) , since Vsolid(t) = Vsolid(0), it’s easy to transform it into 3-18.

With 3-18, using the results we get in example alumina A16 (see subsection 3-7-1) and the

initial relative density 0.62 [37] which is commonly determined from the mass and dimensions,

we can get the relative density changing with time.

Figure 3-5: Relative Density

3-4 Analytical Solution

Now we go back to the model,

∂np(rp, t)
∂t

+ ∂

∂rp

(vrpnp(rp, t)) = 0 (3-19)

vrp = drp

dt
= − kp

rm
p

(3-20)

np(rp(0), 0) = n0(r0) (3-21)

Solving equation 3-20, we can get that

vrp = drp

dt
= − kp

rm
p

(3-22)

⇒ rm
p dr = −kpdt (3-23)

⇒
rm+1

p

m + 1
|rp(t)
rp(0) = −

∫ t

0
kpdt (3-24)

Note that in last section we introduce kp as a variable related with temperature T. But T is

changing over time, so kp can be also viewed as a function of time t. Then

rp(0) = [rm+1
p (t) + (m + 1)

∫ t

0
kpdt]

1
m+1 (3-25)
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32 Model of Pore Shrinkage

Also from equation 3-20, we can get that

⇒ drp(0)
drp(t)

= ( rp(t)
rp(0)

)m (3-26)

Besides, equation 3-19 can be solved by a transformation technique [36]. We assume that the

pores with same size will have same shrinkage rate. The number of pores whose radius are

same in the beginning will keep the same at sintering time t. Then the equation 3-27 holds for

all time t. This is stronger than 3-19, which means that solution derived from this equation

can be also used as the solution of 3-19.

np(rp(t), t)drp(t) = n(rp(0), 0)drp(0) (3-27)

Substitute equation 3-26, 3-27 into 3-21, we can get

np(rp(t), t) =
n0([rm+1

p + (m + 1)
∫ t

0 kp(t′)dt′]1/(m+1))
(1 + (m + 1)r−(m+1)

p
∫ t

0 kp(t′)dt′)m/(m+1)
(3-28)

If kp is a constant, all the
∫ t

0 kpdt′ shown in the above equations can be replaced by kpt, the

analytical solution is

np(rp(t), t) =
n0([rm+1

p + (m + 1)kpt]1/(m+1))
(1 + (m + 1)kptr

−(m+1)
p )m/(m+1)

(3-29)
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Figure 3-6: Plot of Analytical Solution

If we choose the initial distribution as:

n0(r) = 1
r4

√
2π ln σ

e− 1
2 ( ln r−ln rm

ln σ
)2 (3-30)

where geometric mean radius rm = 0.034µm and geometric standard deviation σ = 1.2. And

to make problem simple, we use a constant kp here. The parameter m and kp in the model is

m = 3, kp = 4.92 ∗ 10−8µm4/h. The plot of analytical solution is shown in Figure 3-6.

We can use the analytical solution to check the subsequent numerical computations.
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3-5 Numerical Solution with Two ODEs 33

3-5 Numerical Solution with Two ODEs

Substitute 3-20 into 3-19,

∂np(rp, t)
∂t

+ ∂

∂rp

(− kp

rm
p

np(rp, t)) = 0 (3-31)

⇒ ∂np(rp, t)
∂t

+ np(rp, t) kpm

rm+1
p

− kp

rm
p

∂np(rp, t)
∂rp

= 0 (3-32)

⇒ ∂np(rp, t)
∂t

+ np(rp, t) kpm

rm+1
p

+ drp

dt

∂np(rp, t)
∂rp

= 0 (3-33)

⇒ ∂np(rp, t)
∂t

+ drp

dt

∂np(rp, t)
∂rp

= −np(rp, t) kpm

rm+1
p

(3-34)

Then

dnp

dt
= ∂np

∂t
+ ∂np

∂rp

∂rp

∂t
= −np(rp, t) kpm

rm+1
p

(3-35)

Now we change the problem into 2 Ordinary Differential Equation (ODE) model

drp

dt
= − kp

rm
p

(3-36)

dnp

dt
= −np(rp, t) kpm

rm+1
p

(3-37)

With the same initial distribution and parameters as that in last section (same as Figure 3-6),

solving 3-36 and 3-37 with finite difference method (forward Euler).

rp(t(n + 1)) − rp(t(n))
∆t

= − kp(t(n))
rm

p (t(n))
(3-38)

np(rp(t(n + 1)), t(n + 1)) − np(rp(t(n)), t(n))
∆t

= −np(rp(t(n)), t(n)) kp(t(n))m
rm+1

p (t(n))
(3-39)

If we use equidistant time interval, some times negative value of rp my occur, which doesn’t

match the situation in the real world. So the time interval we choose here is not equidistant.

We assume that the smallest pore will vanish first, then the first time interval equals to the

time for the smallest pore to vanish. Then the first value of new generated rp and np must be

zero. We start to use forward euler method from the second value. The next time interval is

got in the same way using the updated values of rp. Again and again, we can get all the time

intervals and values corresponding to the time points. Since we use different time interval, to

get the number density values at other time points, we use interpolation.

The plot of solutions is as follows:
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Figure 3-7: Plot of Numerical Solution (two ODEs model)

We can see that on the left of the figure, the curves are not so smooth. This is because there

are too many zeros during the interpolation. If we want to get more accurate solutions, we

can discard the zero values after fixed number of iterations and reconstruct the remaining size

distribution. Since the purpose of introduing ODE models is for comparison, the above result

is enough.

3-6 Numerical Solution with Finite Element Method(FEM)

3-6-1 Conventional Galerkin Method

The underlying finite element discretization method in COMSOL Multiphysics is the Galerkin

method. [38] For the following problem,

∂np(rp,t)
∂t

+ ∂
∂rp

(vrpnp(rp, t)) = 0 on [0, L]

np(rp, 0) = n0(rp) on [0, L]

np(rp = 0, t) = 0

np(rp = L, t) = 0

(3-40)

Multiplying the first equation by test function w (w(0) = 0 = w(L)) and integrating on the

whole domain, we have∫ L

0

∂np(rp, t)
∂t

wdrp +
∫ ∞

0

∂

∂rp

(vrpnp(rp, t))wdrp = 0 (3-41)∫ L

0

∂np(rp, t)
∂t

wdrp + wvrpnp(rp, t)|Lrp=0 −
∫ L

0
(vrpnp(rp, t)) ∂w

∂rp

drp = 0 (3-42)∫ L

0

∂np(rp, t)
∂t

wdrp −
∫ L

0
(vrpnp(rp, t)) ∂w

∂rp

drp = 0 (3-43)
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3-6 Numerical Solution with Finite Element Method(FEM) 35

This is the weak form of the original equation. Further we take basis functions (piecewise

linear), ϕi(0) = ϕi(L) = 0 for i = 1, 2, . . . , s − 1

np(rp, t) = Σs−1
j=1[npj

(t)ϕj(rp)] + np0(t)ϕ0(rp) + npL
(t)ϕs(rp) (3-44)

According to the boundary condition,

np(rp, t) = Σs−1
j=1[npj

(t)ϕj(rp)] (3-45)

then

Σs−1
j=1[n′

pj
(t)

∫ L

0
ϕj(rp)ϕi(rp)drp] = Σs−1

j=1[npj
(t)

∫ L

0
vrpϕj(rp)ϕ′

i(rp)drp], i = 1, 2, . . . , s − 1(3-46)

For backward Euler,

Σs−1
j=1[

nn+1
pj

− nn
pj

∆t

∫ L

0
ϕj(rp)ϕi(rp)drp] = Σs−1

j=1[nn+1
pj

(t)
∫ L

0
vrpϕj(rp)ϕ′

i(rp)drp] (3-47)

i = 1, 2, . . . , s − 1. Elementwise, we obtain

nn+1
pi−1

− nn
pi−1

∆t

∫
ei

ϕiϕi−1drp +
nn+1

pi
− nn

pi

∆t

∫
ei∪ei+1

ϕ2
i drp +

nn+1
pi+1

− nn
pi+1

∆t

∫
ei+1

ϕiϕi+1drp (3-48)

= nn+1
pi−1

∫
ei

vrpϕi−1ϕ
′
idrp + nn+1

pi

∫
ei∪ei+1

vrpϕiϕ
′
idrp + nn+1

pi+1

∫
ei+1

vrpϕi+1ϕ
′
idrp (3-49)

Let Mij =
∫ L

0 ϕiϕjdrp and Sij =
∫ L

0 vrpϕiϕ
′
jdrp, Matrix M is called mass-matrix [39] and S is

called Stiffness Matrix [39]. The above finite element discretization problem can be written in

matrix form as

M
dc

dt
= Sc, c = [np1 , np2 , . . . , npn ]T (3-50)

Using backword-Euler method, it can be rewritten as

Mcn+1 = Mcn + ∆tScn+1 (3-51)

where M =



∫ L
0 ϕ2

1drp

∫ L
0 ϕ1ϕ2drp 0 0 · · · 0 0∫ L

0 ϕ2ϕ1drp

∫ L
0 ϕ2

2drp

∫ L
0 ϕ2ϕ3drp 0 · · · 0 0

0
∫ L

0 ϕ3ϕ2drp

∫ L
0 ϕ2

3drp

∫ L
0 ϕ3ϕ4drp · · · 0 0

... ... . . . . . . . . . ... ...

0 0 0 0 · · ·
∫ L

0 ϕ2
s−2

∫ L
0 ϕs−2ϕs−1drp

0 0 0 0 · · ·
∫ L

0 ϕs−1ϕs−2drp

∫ L
0 ϕ2

s−1drp


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and S =



∫ L
0 vrpϕ1ϕ

′
1drp

∫ L
0 vrpϕ2ϕ

′
1drp 0 · · · 0 0∫ L

0 vrpϕ2ϕ
′
1drp

∫ L
0 vrpϕ2ϕ

′
2drp

∫ L
0 vrpϕ3ϕ

′
2drp · · · 0 0

0
∫ L

0 vrpϕ2ϕ
′
3drp

∫ L
0 vrpϕ3ϕ

′
3drp · · · 0 0

... . . . . . . . . . ... ...

0 0 0 · · ·
∫ L

0 vrpϕs−2ϕ
′
s−2drp

∫ L
0 vrpϕs−1ϕ

′
s−2drp

0 0 0 · · ·
∫ L

0 vrpϕs−2ϕ
′
s−1drp

∫ L
0 vrpϕs−1ϕ

′
s−1drp



Figure 3-8: Piecewise Linear Function ϕi(rp)

3-6-2 Streamline Diffusion

A problem shown in Figure 3-9 is that even if we use extremely fine mesh, there still exists

some wiggle after sufficient time. We change the tolerance (AT is absolute tolerance, RT is

relative tolerance) and time step into smaller pieces, it doesn’t work.

(a) timestep=0.1, AT = 10−4, RT =

10−3

(b) timestep=0.001, AT = 10−6, RT =

10−5

Figure 3-9: Number Density Function with Different Time Step and Tolerance Value

This is because the Partial Differential Equation (PDE) in our problem has no diffusion part.
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Such equations are unstable if discretized using the Galerkin finite element method. For equa-

tion

∂u

∂t
+ β∇u = ∇(c∇u) + su + F (3-52)

Element Péclet number (Pe) [38] is Pe = ∥β∥h
2c

. Element Damköhler number [38] is Da = |s|h
∥β∥ .

The solution is unstable if 2DaPe = |s|h2

c
> 1. In our case c is 0, so 2DaPe is always larger

than 1. The conventional Galerkin method is unstable [38]. So we need to use stabilized finite

element methods to obtain physical solutions.

For the advection dominated problem, the conventional Galerkin method cannot produce opti-

mal approximation [14]. To solve this problem, we introduce streamline diffusion method. The

streamline diffusion method is a consistent stabilization method in COMSOL [38], including

the Streamline-Upwind/Petrov-Galerkin (SUPG) method and Galerkin Least-Squares (GLS)

method. The main idea of these two methods is to add products of suitable perturbation terms

and the residuals, thereby maintaining consistency [40]. In a conventional Galerkin weighted

residual method, the weighting functions are considered to be continuous across inter element

boundaries. The streamline upwind/Petrov-Galerkin formulation, however, requires discontin-

uous weighting functions of the form.

The SUPG method, introduced from Brooks and Hughes in [14], is the first successful sta-

bilization technique to prevent oscillations in advection-dominated problems in finite element

method. In the SUPG method, the weighting function for a typical node is modified to weight

element upwind of the node more heavily than the downwind element, as shown in the following

figure:

Figure 3-10: Piecewise Linear Function (Conventional Galerkin and SUPG)[14]

Galerkin Least-Squares (GLS) is a more advanced version of SUPG. It’s also a consistent

method and has the same order of accuracy as SUPG [14].
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COMSOL has supplied lots of existing models for different situations, so it’s not necessary for

us to rewrite the weak form by ourselves. To use streamline diffusion method, we start from

(ModelWizard > 1D > Chemical Species Transport > Thansport of Diluted Spieces(chds).

Then we choose ’convection’ under transport mechanism, ’streamline diffusion’ under consistent

stabilization and ’Conservative form’ under Advanced setting in COMSOL 4.3a. The results

are as follows:

Figure 3-11: Solution with GLS

Compared with results using conventional Galerkin method (shown in Figure 3-9), we can see

that the oscillation problem has been solved.

3-7 Numerical Examples

The parameter values and initial distributions used in the following two examples are from

Pradip’s work [37].

3-7-1 Example 1: Alumina 16

Parameters in the model are m = 3, kp = 4.92∗10−8µm4/h, rm = 0.034µm, σ = 1.2. Comparison

results from Figure 3-12 and Figure 3-13 have the same shape and very close values. This is a

very strong indication that our solutions in COMSOL is a ’good’ simulation.

The graphs of number density function of pores show a decrease of average pore size in time.

The graphs of the cumulative distribution function show that small pores decrease faster than

big ones, which is the same as what we get from velocity analysis earlier in this chapter.
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(a) analytical result
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(b) 2-ODE model (c) FEM result

Figure 3-12: Number Density Function of Pores - Alumina A16
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(a) analytical result
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(b) 2-ODE model (c) FEM result

Figure 3-13: Cumulative Pore Volume Distribution - Alumina A16

3-7-2 Example 2: Zirconia SYP 5.2

Change the parameters into m = 1, kp = 0.43µm2/h, rm = 4µm, σ = 1.4. Comparing with

the analytical results and results generated from matlab, what we get from FEM produces a

better approximation than 2-ODEs. It’s not clear in the number density graphs, but in the

cumulative pore volume distribution graphs, we can see that the results of analytical solution

and FEM solution are the same, while the results from 2-ODE model have significant error.
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(a) analytical result
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(b) 2-ODE model (c) FEM result

Figure 3-14: Number Density Function of Pores - Zirconia SYP 5.2
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(a) analytical
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(b) 2-ODE model (c) FEM result

Figure 3-15: Cumulative Pore Volume Distribution - Zirconia SYP 5.2

Similar to the previous example. The graphs of number density function of pores show a

decrease of pore size in time. The graphs of the cumulative distribution function show that

small pores decrease faster than big ones, which is the same as what we get from velocity

analysis earlier in this chapter.

3-8 Sensitive Analysis

Here we use Alumina A16 as an example:

rm = 0.034µm, σ = 1.2, m = 3, kp = 4.92 ∗ 10−8µm4/h.

The velocity and number density is shown in Figure 3-16. From these two sub-figures we can

see that the smaller the pore size is, the faster it shrinks.

(a) velocity
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(b) number density

Figure 3-16: Velocity and Number Density Function

Now we change the parameters m and kp and see how the solution performs.
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3-8-1 m Change

If we change m from 3 to 4 (or 3 to 2, see Figure 3-17), it’s a little bit hard for us to compare

the velocity in one figure.

Figure 3-17: Velocity Changing with m, m is 3,4

So we choose a smaller range from 2.8 to 3.2 (see Figure 3-18).

Figure 3-18: Velocity Changing with m, m is 2.8 3.2
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(a) after 2h
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(b) after 6h
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(c) after 10h

Figure 3-19: Number Density Changing with m
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42 Model of Pore Shrinkage

From Figure 3-18 we can see that for smaller pores, the larger m is, the faster the shrinkage

rate is. while for big pores, the changing of pore shrinkage velocity is not so clear. This can be

also illustrated in the figure of number density function (see Figure 3-19).

3-8-2 kp Change

Similar to the reason we choose the range for m change, we now change the value for parameter

kp from 1 ∗ 10−8 to 11 ∗ 10−8.

Figure 3-20: Velocity Changing with kp

From Figure 3-20 we can see that for smaller pores, the larger kp is, the faster the shrinkage

rate is. While for big pores, the changing of pore shrinkage velocity is not so clear. This can

be also illustrated in the figure of number density function (see Figure 3-21).
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Figure 3-21: Number Density Changing with kp
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3-9 Application

Until now we’ve got enough information on the model of pore shrinkage. First we introduced

the basic concept of the pore shrinkage model and corresponding parameters. Secondly, we

introduced three different solutions to this model (analytical solution, numerical solution with

two ODEs and numerical solution with FEM). Then using data from some existing literature,

we validate the model with two examples and do sensitive analysis. In this section we focus on

how to use the real data to get all the parameters and variables needed in the model step by

step and show the comparison result of the model and the real data.

3-9-1 Initial Pore Size Distribution of Alumina

As discussed in Chapter 2, we assume that the initial pore size distribution of alumina is

log-normal distribution:

n0(r) = 1
r4

√
2π ln σ

e− 1
2 ( ln r−ln rm

ln σ
)2 (3-53)

where rm is the number median size and σ is the geometric standard deviation.

Earlier in this chapter, we said that the distribution can be got from image analysis. Now we

use an example to show how to do it.

There are several kinds of methods and corresponding softwares used to do image analysis. In

this project, we use the software Image J 2.

For the Figure 3-22, we use the software Image J to analyze the pore size and get the following

result:

The mean value of area diameter is 45.019px (≈ 64.313µm), and the standard deviation is

155.228px (≈ 221.754µm). However, this result may be far away from the accurate value,

because some too large values have to be gave up. Besides, lots of the area values are 1px,

which means that we may need the SEM figure with larger amplification factor. Giving up the

values larger than 1000px, we calculate the geometric mean and geometric standard deviation

and get the results rm = 3.747µm, σ = 5.925.

So the initial pore size distribution is

n0(r) = 1
r4

√
2π ln σ

e− 1
2 ( ln r−ln rm

ln σ
)2 (3-54)

2Image J is a public domain Java image processing program inspired by NIH Image for the Macintosh [41].

http://rsbweb.nih.gov/ij/index.html
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44 Model of Pore Shrinkage

Figure 3-22: SEM Image

Figure 3-23: Image Analysis
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with rm = 3.747µm and σ = 5.925.

3-9-2 Initial Relative Density of Alumina

As to the initial relative density of alumina, we use the value from some other literatures [42]

[43]. The initial relative density of α-alumina is 0.5 or 0.62.

3-9-3 Rate Constant kp

We’ve already known that kp is decided by Arrhenius equation (See Appendix E).

kp(T ) = kp0e
− Qp

RT (3-55)

The gas constant R is 8.314J · mol−1 · K−1. we still need to know the activation energy Qp and

the pre-exponential parameter kp0.

Theory of Estimating Activation Energy

Simón Yobanny Reyes Lópeza, Juan Serrato Rodríguezb and Satoshi Sugita Sueyoshic intro-

duced a method to calculate densification activation energy in 2011 [44]. Their idea is as

follows:

In general, the densification rate can be separated into temperature and density [45] [46].

dρ

dt
= kp0

e− Qp
RT

T
f(ρ) (3-56)

Where dρ/dt is the instantaneous rate of densification, R is the gas constant, T is the absolute

temperature, Qp is the activation energy for densification, f(ρ) is a function of density and kp0

is a material parameter that is insensitive to ρ.

Densification rates may be written as:

dρ

dt
= dρ

dT
T ′ (3-57)

Substitute 3-57 into 3-56,

ln(TT ′ dρ

dT
) = − Qp

RT
+ ln(f(ρ)) + kp0 (3-58)

A plot of ln(TT ′ dρ
dT

) v.s. 1
T

would give a value for Qp. This can be got from the data of Dilato

test.
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Example of Estimating Activation Energy

We take an example from the lab for example. The raw material is KA-13 used in Ludwigshafen

of Almatis.

If we want to plot ln(TT ′ dρ
dT

) vs 1
T

, we need temperature cycle and the relative density calculated

from experiment data.

Temperature cycle in the lab is as follows:

Figure 3-24: Temperature Cycle

As to calculating the relative density changing over temperature (or time) in the experiment,

we need to know what we can get directly from the experiment. From Dilato test, we can

get relative expansion, which is similar to that shown in Figure 2-11. Now what we need to

do is to find out the relationship between the relative expansion and relative density. Here

we introduce two new concepts: thermal expansion coefficient and shrinkage rate, then we’ll

show the relationship among thermal expansion coefficient, shrinkage rate and relative density

(densification curve).

The degree of expansion (for certain material) decided by the change in temperature is called

the thermal expansion coefficient (α) and generally varies with temperature.

True thermal expansion coefficient

αv = 1
V0

(∂V

∂T
)P (3-59)

• V0 - initial volume

• V - volume

• T - temperature

• p - indicates that the pressure is held constant during the expansion
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Figure 3-25: Thermal Expansion Coefficient

More common use is the average thermal expansion coefficient, defined by a change in volume

over a specified temperature range:

αv = 1
V0

∆V

∆T
(3-60)

• V0 - initial volume

• ∆V - change in volume

• ∆T - change in temperature

Since volume change is difficult to measure, linear change is much more simple and a typical

thermal expansion coefficient is based on a length-change measurement:

α = 1
L0

∆L

∆T
(3-61)

• α - coefficient of expansion

• L0 - initial sample length

• ∆L - change in length

• ∆T - change in temperature

We can assume that during sample cooling sintering doesn’t take place, then the cooling shrink-

age is only dependent on thermal dilatation and we can calculate the thermal expansion coef-

ficient [47].

α = ϵroom − ϵT max

(Troom − Tmax) ∗ 100
(3-62)

where

• ϵroom - the shrinkage after cooling (%)

• ϵT max - the shrinkage at the end of dwell (%)

• Troom - the temperature after cooling (◦C)

• Tmax - the temperature at the end of dwell (◦C)
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(a) Shrinkage V.S. Time (b) Shrinkage V.S. Temperature

Figure 3-26: Shrinkage

Compared with the result of Dilato test, we can find that equation 3-60 is our best choice. And

we come back to the experiment data.

At low temperature only thermal dilatation of the green body happens. When a certain tem-

perature is reached the sintering process begins and the material starts to shrink. As long as the

temperature increases the thermal dilatation continues as well. So we can take first (increasing)

part of the shrinkage curve to calculate thermal expansion coefficient, because we assume that

in this part only thermal dilatation of the green body happens. From Figure 3-27, we can see

that the thermal expansion coefficient is 7 ∗ 10−6K−1.

Figure 3-27: Thermal Expansion Coefficient from Experiment

In Cho Yen Ho and Richard Erwin Taylor’ book[48], the thermal expansion coefficient of α-

alumina at room temperature is in the range about 5 ∗ 10−6K−1. Comparing this value with

our result, we can see that the value we calculated from the experiment data is reasonable.

Since we only want to get the activation energy for pore shrinkage caused by sintering, we need

to subtract the shrinkage caused by thermal dilatation and get the sintering shrinkage (also
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called technological shrinkage) [47].

ϵtech(t, T ) = ϵ(t, T ) − α ∗ 100 ∗ (T − Troom) (3-63)

where

• ϵtech(t, T ) - the shrinkage at time t (temperature T)

• t - time

• T - temperature (◦C)

• Troom - 25 ◦C

Using the thermal expansion coefficient calculated before (α = 7 ∗ 10−6K−1), the sintering

shrinkage result is shown as follows:

Figure 3-28: Sintering Shrinkage

Next step is to calculate relative density with the sintering shrinkage result. The sintering

densification curve [47] can be calculated according to the following equation:

ρ(t, T ) = ρgd ∗ 1003

(100 + ϵtech(t, T ))3 (3-64)

where

• ρ(t, T ) - the bulk density or relative density, depending on ρgd.

• ρgd - the green density, which is the sample density before sintering and can be measured

accurately according to Archimedes’ principle (see Appendix C). It can be either bulk

density or relative density.

When the sample after sintering doesn’t contain open pores. The final density can be measured

easier than the green density, and can be more precise. Then the sintering densification curve

can be calculated from

ρ(t, T ) = ρf ∗ (100 + ϵT max)3

(100 + ϵtech(t, T ))3 (3-65)
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where

• ρf - the final density, which is the sample density after sintering

Here we use equation 3-64. The green ball density3 is 2.06g/cm3 and theoretical density of

alumina is 4 g/cm3. ρgd = 2.06g/cm3

4g/cm3 = 0.515. Then the densification curve is

Figure 3-29: Relative Density

The plot of ln(TT ′ dρ
dT

) vs 1
T

is

Figure 3-30: ln(TT ′ dρ
dT ) V.S. 1

T

The slope -14.12 is equal to −Qp/R, where R is 8.314 JK−1mol−1. Then Qp is 8.314 ∗ 14.12 =

117.39kJ/mol.

Until now the unknown parameters are kp0 and m. The parameter m is related with the diffusion

mechanisms and hard to calculate directly. As to the parameter kp0, we also have no idea on

how to calculate it. However, if we’ve already got some experiment data, we can estimate these

parameters by trial and error with our model.
3The value of green ball density used here is from Almatis website: http://www.almatis.com/.
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3-9-4 Model Parameter m and Pre-exponential Parameter kp0

Now we substitute all the values got in the previous discussion into our model. Initial distribu-

tion is the log-normal distribution with geometric mean rm = 3.747µm and geometric standard

deviation σ = 5.925. The initial relative density is 0.515. Activation energy for densification is

117.39 kJ/mol.

Compare the results with experiment data using different kp0 and m, we can find the proper

kp0 and m.

(a) m=3, kp0 = 4 (b) m=3, kp0 = 4.5 ∗ 10−6

(c) m=5, kp0 = 4.5 ∗ 10−4 (d) m=2, kp0 = 4.5 ∗ 10−4

Figure 3-31: Relative Density: Model V.S. Experiment

When kp0 = 4.5 ∗ 10−4, m = 3.4, the estimation result of the model is closer to that of the

experiment data, although there still exists difference.
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Figure 3-32: Relative Density: Model V.S. Experiment, m=3.4, kp0 = 4.5 ∗ 10−4

To get a better estimation result, we still have a lot of things to do. First of all, more accurate

data about the initial values and other parameters are required. For the initial values, we

assume that it fits log-normal distribution. In the real world, initial pore size distribution may

not fit very well with log-normal distribution. Use of the original pore size distribution may

lead to better estimation result. Even if we accept the log-normal distribution as the initial

distribution, more SEM figures are needed to be analyzed, so that the average value can be

used. For the green ball density and theoretical density of alumina, more accurate data for

different cases from the industry field are necessary, because the feedstock used for different

productions may be different. Here the values we used are found via web site. It may be

close to but not correspond to the true value. For the dilato test result used to calculate

activation energy, it’s better to have several set of data using different heating rate but same

final temperature, then we can estimate the activation energy in a range. When we calculate

the thermal expansion coefficient and relative density, more accurate formula can be used if

we can get the corresponding data directly. Besides, it’s also possible to adjust our models in

some specific cases. For example, we can have several values of m to estimate different part of

the densification curve.

If we can get a very close estimation result, we can further try to predict the relative density

using our own temperature cycles, which is valuable for production in the industry field.
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Chapter 4

Model of Grain Growth

In this chapter we introduce a model for grain growth only. Grain growth describes the increase

in the grain size. It occurs in both dense and porous polycrystalline solids at sufficiently high

temperatures. For the conservation of matter, the sum of the individual grain sizes must remain

constant. So an increase in the average grain size is accompanied by the disappearance of some

grains, usually the smaller ones.

The grain growth model has similar structure with the pore shrinkage model. And the structure

of this chapter is similar to that of last chapter. However, since the velocity model for grain

growth is more complicated, it’s hard to get the analytical solution directly. Instead an asymp-

totic steady-state solutions is used to show that the finite element method using COMSOL 4.3a

will lead to a reasonable result.

4-1 Model of grain growth

The continuity equation for the population balance of grain size is [37]:

∂ng(rg, t)
∂t

+ ∂

∂rg

(vrgng(rg, t)) = 0 (4-1)

And the velocity function for grain growth is

vrg = drg

dt
= kg

rn
g

( 1
rc

− 1
rg

) (4-2)
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where rg (µm) is the grain radius and ng is the number density function of grain size (which

can be got from the histogram of grain size for a given instant in time). kg (µmn+2/h) is a

function of temperature, diffusivity and surface free energy of the particle material. n (unit:1)

is a model parameter which depends on the mechanism of grain growth. rc (µm) is the critical

radius of grain.

From the formula of velocity, we can see that the velocity for grain growth vrg is negative for

rg < rc, positive for rg > rc and zero for rg = rc. It means that the grains whose radius are

smaller than the critical radius are shrinking and those with radius larger than the critical

radius are growing. The critical radius is the grain size which neither grow nor shrink at a

particular instant of time. For the following figure, the value of critical radius is around 2.5.

(a) velocity (b) zoom in of left

Figure 4-1: Grain Growth Velocity

4-1-1 The Critial Radius rc

Since the total volume of particles is conserved during the process, the increased volume of the

particles whose size is larger then rc is equal to the decreased volume of the particles whose

size is smaller than rc, i.e.

ΣN
i=1dr3

g,i = 0 (4-3)

N is the particle number. According to Eq. (5-1),

drg

dt
= kg

rn
g

( 1
rc

− 1
rg

) (4-4)

⇒
dr3

g

dt
=

3r2
gkg

rn
g

( 1
rc

− 1
rg

) (4-5)

⇒ dr3
g =

3r2
gkg

rn
g

( 1
rc

− 1
rg

)dt (4-6)
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⇒ ΣN
i=1dr3

g,i = ΣN
i=1

3kg

rn−2
g,i

( 1
rc

− 1
rg,i

)dt = 0 (4-7)

⇒ ΣN
i=1

1
rn−2

g,i

( 1
rc

− 1
rg,i

) = 0 (4-8)

⇒ rc =
ΣN

i=1r
2−n
g,i

ΣN
i=1r

1−n
g,i

(4-9)

⇒ rc =
ΣN

i=1r
2−n
g,i /N

ΣN
i=1r

1−n
g,i /N

(4-10)

In case of continuous distribution of particle radius r,

rc =
∫ ∞

0 r2−n
g dF (rg)∫ ∞

0 r1−n
g dF (rg)

= M2−n

M1−n

(4-11)

where Mk =
∫ ∞

0 rk
g dF (rg) = k

∫ ∞
0 rk−1

g R(rg)drg is the kth moment, F (rg) is the cumulative

distribution function of rg, and R(rg) = 1 − F (rg)is the corresponding survival function.

(a) frequency (b) rc

Figure 4-2: Critical Radius 1

(a) frequency (b) rc

Figure 4-3: Critical Radius 2

The critical radius rc is a function of time t. In the case shown in Figure 4-2 where the initial

distribution is normal distribution, the value of rc increases very slowly during the sintering
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time. However, we must notice that it doesn’t mean rc is a constant. For example, if we use

bimodal distribution, we can see the value of rc is changing faster in Figure 4-3. This also

indicates that the velocity of grain growth is influenced by the initial distribution.

4-1-2 Model Parameter kg

The model parameter kg is related with temperature. Similar to kp in the pore shrinkage model,

it’s decided by Arrhenius equation (See Appendix E).

kg(T ) = kg0e
− Qg

RT (4-12)

Where Qg (unit: J/mol) is the activation energy for grain growth. R (unit: J ·K−1mol−1) is the

gas constant. T (unit: K) is the absolute temperature. The units of the pre-exponential factor

kg0 is identical to the rate constant kg and will vary depending on the order of the reaction.

Similar to last chapter, Qg can be got from experiment data. And kg0 can be got from trial

and error.

4-1-3 Model Parameter n

For n = 0, particle growth is controlled by surface reaction.

For n = 1, particle growth is controlled by bulk diffusion.

For n = 2, the process of coarsening is limited by diffusion of atoms along grain boundaries.

For n = 3, the supply of material to particles is along the cross section dislocation pipes.

If we want to analyze the grain growth process dominated by different diffusion mechanisms

separately, we can use n = 1, 2, 3, 4. Besides, similar to the parameter m in chapter 3, n

can also be non-integer, representing grain growth due to the combination of several diffusion

mechanisms.

4-2 Asymptotic Steady-State Solutions

For the case of n = 0, the asymptotic steady-sate solution is [49]

ng(u) = ng0u
(α − u)A

( α
α−1 − u)B

0 ≤ u < α and 1.25 ≤ α < 2 (4-13)
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where ng0 is a normalizing constant, α the largest u of the function ng(u), A = (4α−5)/(2−α),

B = (5 − α)/(2 − α) and u = rg

rc
, ng(u) = r4

cng(rg).

For the case of n = 1, the asymptotic steady-sate solution is [50] [51]

ng(u) = ng0
u2

(1.5 − u)11/3(3 + u)7/3 e
−u

1.5−u 0 ≤ u < 1.5 (4-14)

ng(u) = 0 else (4-15)

where ng0 is a normalizing constant and u = rg

rc
, ng(u) = r4

cng(rg).

Both of these two solutions are independent with initial grain size distribution.

Take n = 1 for example, we use kg = 0.01µm3min−1. With different initial grain size distribu-

tion, we can see that ’LSW’ in the figure is the plot of asyntptotic steady state, to which the

numerical solution is getting closer and closer as time going on. It illustrates that the numerical

solution is reasonable.

(a) case 1 (b) case 2

Figure 4-4: LSW Solution and Numerical Solution

4-3 Examples and Sensitive Analysis

Here we show an example with parameters from some existing literatures [37]. The initial grain

size distribution is Gaussian distribution with mean 2.5 µm and standard deviation 0.2 µm.

The other parameter values are kg = 0.01µm2/min, n = 0.

From Figure 4-5, we can see that the mean grain size is growing over time, that is, grain growth.
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Figure 4-5: Number Density Function of Grain Growth

4-3-1 kg Change

kg is a parameter which influences the grain growth velocity both directly and indirectly. It’s

obvious that kg will influence the velocity because kg is one of the parameters which construct

the velocity formula. Besides, the value of rc, another parameter in the velocity model, is also

influenced by kg. So we want to see kg ’s influence on rc.

Figure 4-6: rc Changes with kg

From Figure 4-6, we can see that in this case, only when kg is 0.01, rc is almost a constant. For

other values of kg, rc is increasing in the beginning and then gets close to a fixed value. So rc

is not a constant, but a function of time t. Recall the definition of rc, this value depends on

the grain size distribution at each time step. When kg changes, it influences the grain growth

velocity and then the grain size distribution at next time step. So rc will change as well. And

then the values of rc and kg both contribute to the change of velocity. But kg contributes more.

From Figure 4-7, we can see that although rc changes a lot, the velocity is not as sensitive as rc

to kg. For the grains whose size are smaller than rc, the larger kg is, the faster shrinkage rate

is. But for the grains whose size are larger than rc, the grain growth rate changing with kg is

not very clear in the figure.
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Figure 4-7: Velocity Changes with kg

Figure 4-8 shows the number density of grain growth changing with kg. The larger kg is, the

faster the mean grain size increases as time goes on, and the faster the grain number decreases.

It can be easily understood. In the beginning of this chapter, we discussed about grain growth.

The sum of the individual grain sizes must remain constant, so an increase in the average grain

size is accompanied by the disappearance of some grains, usually the smaller ones. From the

velocity figure, we know that the larger kg corresponds to faster shrinkage rate of grains. So

more small grains will vanish if kg is larger. Big grains will grow and won’t vanish. So the total

number of grains will decrease faster.

(a) t=0 (b) after 30min (c) after 90min

Figure 4-8: Number Density Function Changing with kg

4-3-2 n Change

Similar to kg, n will influence the grain growth velocity both directly and indirectly. But it’s

hard to say that the critical radius rc is increasing or decreasing with the change of parameter

n.
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(a) n=0

(b) n=1

(c) n=2

(d) n=3

Figure 4-9: Number Density Function, Critical Radius and Velocity Changing with n
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From Figure 4-9, we can see that when n is 0 or 3, the critical radius is an increasing function

of time t, and when n is 1 or 2, the critical radius is an decreasing function of time t. The

larger n is, the faster the mean grain size increases as time goes on, and the faster the total

grain number decreases.

4-3-3 rc Change and Distribution Change

We won’t discuss about the contribution of rc to the grain growth velocity separately, because

rc won’t change itself. It depends on the change of grain size distribution, which is influenced

by other parameters. Since rc is sensitive to the grain size distribution and will influence the

velocity, the initial distribution of grains also plays an important role. Figure 4-10 shows two

examples with different initial distributions - one is Gaussian distribution and the other is

bimodal distribution.

(a) frequency - Gaussian (b) rc - Gaussian

(c) frequency - bimodal (d) rc - bimodal

Figure 4-10: Number Density of Grain Size with Different Initial Distribution
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Chapter 5

Combination of Two Models

In the previous two chapters, we introduced pore shrinkage model and grain growth model

separately. In fact, accompanied with the pore shrinkage, porosity (i.e. 1 - relative density) is

decreasing and getting close to 0. And porosity could influence the grain growth rate. So the

porosity could be added into the velocity model of grain growth, so as to get a coupled model.

5-1 Coupled Model

The two models are combined with parameter relative density ρ. It can be calculated from the

result of pore shrinkage model and then be considered as an input parameter for the grain

growth model.

Figure 5-1: Flowchart of Combination Model
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The velocity model for isolated grain growth in last chapter is changed to [37]

vrg = drg

dt
= kg

rn
g (1 − ρ(t))α

( 1
rc

− 1
rg

) (5-1)

where ρ(t) (unit: 1) is the relative density and α (unit: 1) is a model parameter. Other

parameters in the formula have the same explanation as those in last chapter. This is the

velocity model for grain growth coupled with densification.

When the porosity (1 − ρ) is getting close to 0, the grain growth rate is becoming larger; when

the porosity is getting close to 1, the grain growth rate is becoming smaller. This phenomenon

is understandable because when porosity is 0, there is no pore inside the material, grains are

next to each other, it’s very convenient for combination of grains.

Due to lack of experiment data, we don’t get our own parameter values. Here we use the

parameter values from Pradip’s work [37] and others’ work to show an example. Assume that

the initial distribution of pore size is log-normal with median size 0.034µm and geometric

standard deviation 1.2 and initial distribution of grain size is log-normal with median size

0.98µm and geometric standard deviation 2. m = 6, kp = 1.00∗10−13µm7/h, n = 4, α = 1, kg =

0.06µm6/h, ρ(0) = 0.42. The results are shown as follows:

Figure 5-2: Combination Model Results

5-2 Sensitive Analysis

5-2-1 m Change

Change of m will first influence the pore shrinkage model, and further the relative density and

grain growth model. Sensitive analysis of m to the pore shrinkage model has been discussed in

Chapter 3, and can be seen in Figure 5-3.
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Figure 5-3: Pore Size Distribution Changing with m

The relative density is increasing with time. When m increases, the increase rate of relative

density is getting faster. The total pore volume is decreasing with time. When m increases,

the decrease rate of total pore volume is getting faster (see Figure 5-4).

Figure 5-4: Relative Density and Total Pore Volume Changing with m

Similar to what we discussed in last chapter, except for the influence on velocity directly,

changing of relative density ρ(t) will also influence the value of rc (see Figure 5-5). In this case

the critical radius rc and the velocity of grain growth are not sensitive to small change of m.

We can imagine that the grain size distribution is not sensitive to m. This is illustrated in

Figure 5-6.

Figure 5-5: Critical Radius Changing with m
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Figure 5-6: Grain Size Distribution Changing with m

5-2-2 kp Change

Similar to m, the influence on pore size distribution by changing kp has been discussed in

Chapter 3. It can be seen from Figure 5-7.

Figure 5-7: Pore Size Distribution Changing with kp

Figure 5-8: Relative Density Changing with kp

From Figure 5-8, the relative density is increasing with time. When kp increases, the increase
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rate of relative density is getting faster. The total pore volume is decreasing with time. When

kp increases, the decrease rate of total pore volume is getting faster.

In this case the critical radius rc and the velocity of grain growth at each time point are not

sensitive to small change of kp (see Figure 5-9). The grain size distribution is not sensitive to

kp, either (see Figure 5-10).

Figure 5-9: Critical Radius Changing with kp

Figure 5-10: Grain Size Distribution Changing with kp

5-2-3 kg Change

We can see that in this case changing the value of kg won’t influence the value of critical radius

rc too much. And the grain size distribution is not sensitive to kg.
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Figure 5-11: Grain Size Distribution Changing with kg

5-2-4 α Change

We can see that in this case changing the value of α ’s influence on the value of critical radius

rc contributes more than above parameters, and further contributes more on the final results.

Figure 5-12: Grain Size Distribution Changing with α

5-2-5 n Change

n is a parameter corresponding to the material transport mechanism. We can see that different

transport mechanism will lead to different results. When n is changing from 0 to 2, the difference

is not clear. But when n is changed to 3, the result is apparently different from the others.
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(a) n=0 (b) n=1

(c) n=2 (d) n=3

Figure 5-13: Grain Size Distribution Changing with n

Above all, in this case n plays the most important role in the combination model. kg and α

are less important. Parameters m and kp, which exists in the pore shrinkage model, although

having relatively significant influent on the relative density, are not as important as parameters

directly existing in the combination model, i.e. kg, α and n. However, sensitive analysis might

be different from cases.
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Chapter 6

Application in Industry Field

In the above examples, we consider all the parameters as a constant. However, in the real

world, the temperatures are changing over time. And the corresponding parameters kp and

kg are influenced by temperature. Generally, these two parameters are decided by Arrhenius

equation (See Appendix E).

kp(T ) = kp0exp(− Qp

RT
) (6-1)

kg(T ) = kg0exp(− Qg

RT
) (6-2)

Parameters we used are as follows [37]:

m = 4, kp0 = 1.9879e + 005, Qp = 131kJ/mol; n = 2, kg0 = 8.7720e + 011, Qg = 533kJ/mol
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Figure 6-1: kp vs T and kg vs T
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First we start with an simple example. Initial pore size distribution is supposed to be log-

normal with rm = 0.034µm, σ = 1.2. The temperature increases in the first two hours and then

is kept in a constant level. The relative density is increasing as well, slowly in the beginning

but faster in the next 4 hours.

Figure 6-2: Application 1

The second example is about three similar temperature cycles. Initial pore size distribution

is supposed to be log-normal with rm = 4µm, σ = 1.4. In the first 4 hours, temperature is

increasing to 800 ◦C linearly. While in the following 2 hours the temperature increasing rates

are different. Then the corresponding relative density increasing rate are also different. Faster

heat up rate leads to faster increasing rate of relative density.

Figure 6-3: Application 2

The third example is temperature cycles which increase fast in the beginning, keeps almost

constant for a while, and then decrease slowly.
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Figure 6-4: Application 3

This kind of temperature cycle can be got from the combustion model of shaft kiln, since the

temperature increases in the preheating zone, and decreases in the cooling zone.
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Chapter 7

Conclusion and Future Work

In this project we focus on the sintering process of making tabular alumina from α-alumina. The

main work is based on M. Subbanna, P.C. Kapur, Pradip, S.G. Malghan’s models built in 2000.

To make problem simple, we only consider solid state sintering, which includes pore shrinkage

process and grain growth process. In general, these two processes happen simultaneously.

However, lots of literatures have shown that pore shrinkage may be analyzed independent of

grain growth. So in our model, pore shrinkage is analyzed independently. Then the results

of pore shrinkage model is embedded into the grain growth model. The coupling of pore

shrinkage and grain growth is through the relative density which depends on the solution of

the pore shrinkage model.

The theoretical basis of both of the two models are continuity equation. Here we solve the PDEs

using finite element method (streamline-diffusion method) with COMSOL Multiphysics 4.3a.

The reason we choose COMSOL Multiphysics to solve this problem is that we want to use the

estimated temperature cycle which comes from the combustion model1 in the future. For the

pore shrinkage model, we use analytical solution and solution generated using finite different

method in Matlab to verify that FEM can generate a ’good’ result as well. For the grain growth

model which is a little bit more complicated, it’s hard to get the analytical solution directly.

We use asymptotic steady-state solutions instead to verify the FEM solution.

One important use of the pore shrinkage model is to estimate the relative density (also called

bulk specific gravity, i.e. BSG). The initial pore size distribution can be got from image analysis
1This is another project in Almatis, which would simulate the temperature distribution in the shaft kiln.
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method with software Image J. Activation energy can be estimated from the Dilato test result.

And other model parameters can be estimated by trial and error using the Dilato test result.

We use the feedstock KA-13 in Ludwigshafen as an example. Comparison between experiment

data and the simulation result shows that our model is reasonable.

However, the estimation result is not as good as we expect. There are lots of factors which

would influence the result. First, the image analysis process we used to estimate initial pore size

distribution is not so accurate. Figures with larger amplification factor may be more helpful.

And it’s better to analyze enough figures and then find the average value. Secondly, we assume

that the initial pore size distribution fits log-normal distribution. In the real world, initial

pore size distribution may not fit very well. Thirdly, when calculating activation energy, it’s

also better to use data from several Dilato tests with different temperature cycles and then

to find the range of activation energy for pore shrinkage. Besides, some parameter values we

used for simulation are found via web site. If we can test these values by ourselves using the

corresponding product, results may be better. There are also some parameters hard to be

calculated directly. So we have to use trial and error method to estimate these values. Maybe

in the future we can try to look for some other methods to calculate these parameters.

For isolated grain growth model and the combination model, it’s a pity that until now we

haven’t got our own examples due to lack of information. This part is really interest in the

future.

And to make problem simple, we made lots of assumptions, which are different from that in

the real world. For example, the temperature cycle we used in the last chapter is very simple

and may be far away from the real world. Data from the combustion model (which is another

project in Almatis B.V.) may provide us more reasonable values. More realistic results are

expected in the future.

Furthermore, it’s also possible to expand the 1D model to 2D or even 3D in COMSOL, so that

people can see clearly what has happened during the sintering process.
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Chapter 8

The Back of the Thesis

Appendices are found in the back.

8-1 Appendix A - Particles [1]

All the materials in the world are either crystalline or amorphous (or glassy) in structure. A

primary particle is a discrete, low-porosity unit that can be either a single crystal, a polycrys-

talline particle, or a glass. If any pores are present, they are isolated from each other. In this

report the primary particle is defined as the smallest unit in the powder with a clearly defined

surface.

Normally, crystalline ceramics (and metals) are actually polycrystalline - they are made up of

a large number of small crystals, or grains, separated from one another by grain boundaries.

An agglomerate is a cluster of primary particles held together by surface forces, by liquid, or

by a solid bridge.

Particles can consist of primary particles, agglomerates, or some combination of the two. They

are small units that move as separate entities when the powder is dispersed by agitation.

In ceramics as well as in metals, we focus on both of the atomic scale structure and the

microstructure. For the atomic scale: the research is about the type of bonding and the crystal

structure (for a crystalline ceramic) or the amorphous structure (if it is glassy). As to the

microstructure, if refers to the nature, quantity, and distribution of the structural elements or

phases in the ceramic (e.g., crystals, glass, and porosity).
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8-2 Appendix B - Log-normal Distribution

The normal distribution is the most common used distribution. It can be expressed in terms

of mean x̄ and standard deviation σx. The density function is

n(x) = dN

dx
= 1√

2πσx

e− 1
2 ( x−x̄

σx
)2

(8-1)

where

x̄ = Σxi∆Ni

Σ∆Ni

(8-2)

Since there is no limitation for the values of x, x can be both positive and negative, which

sometimes doesn’t fit the reality. For example, the particle size can only be positive. So we

substitute x = lnD into 8-1 (which maps x ∈ [−∞, ∞] to D ∈ [0, ∞]) and get

n(lnD) = dN

dlnD
= 1√

2πσg

e
− 1

2 ( lnD−lnD̃
σg

)2
(8-3)

where σg and D̃ are to be defined.

Since dlnD = D−1dD,

n(D) = dN

dD
= dN

DdlnD
= 1√

2πDσg

e
− 1

2 ( lnD−lnD̃
σg

)2
(8-4)

which is the common form of log-normal distribution.

Geometric mean:

lnD̃ = Σlnxi∆Ni

Σ∆Ni

(8-5)

Geometric standard deviation:

(lnσg)2 =
Σ(lnxi

x̄
)2∆Ni

Σ∆Ni

(8-6)

8-3 Appendix C - Archimedean Principle

The Archimedean principle is named after its discoverer, Archimedes of Syracuse. This principle

says that when a body is partly or totally immersed in a fluid there is an upthrust that is equal

to the weight of fluid displaced. It’s easy to use this principle to calculate the density of

materials.

Consider a simple case: an object hanged on a string is immersed in a container of water, as

depicted in the following. Because the object is in static equilibrium, the net force on the object

is zero, i.e. Wa + B − W = 0. where
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Figure 8-1: Archimedean Principle

• Wa is the apparent weight of the object

• B is the buoyant force, B = ρwatergVwater, g is the gravity of earth

• W = Mobjg is the weight of the object, M is the mass of the object

Then ρobj = Mobj

Vobj
= Mobj

Vwater
= Mobj

B/(ρwaterg) = Mobj

Ma−Mobj
∗ ρwater, where Ma = Wa/g.

8-4 Appendix D - Stoke’s Law

In 1851, George Gabriel Stokes derived an expression, known as Stokes’ law, for the frictional

force exerted on spherical objects with very small particles in a continuous viscous fluid [52].

Fd = 6πµRu (8-7)

where

• Fd - the friction force (unit: N)

• µ - the dynamic viscosity (unit: Ns/m2 )

• R - the radius of the spherical object (unit: m)

• u - the particle’s velocity (unit: m/s)

8-5 Appendix E - Arrhenius Equation[2]

8-5-1 Reaction Rate Constant

For a chemical reaction where two substances A and B are reacting to produce C.

A + B → C (8-8)
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Assume that at least one of them (i.e. A) is in a form where it is sensible to measure its

concentration - for example, in solution or as a gas. we could measure the rate of the reaction

by finding out how fast the concentration of A was falling per time period. The reaction rate

is as follows:

r = k[A]m[B]n (8-9)

This is called the rate equation for the reaction. r represents the reaction rate (unit: mol · L−1 ·

s−1). [A], [B] are respectively the concentration of substance A and substance B in moles per

volume of solution (unit: mol·L−1). m and n are called partial orders and depend on the reaction

mechanism (unit: 1). They can be determined experimentally. k is the reaction rate constant.

The unit of k depends on the global partial orders (m+n) (unit: mol1−(m+n) · L(m+n)−1 · s−1).

The rate equation shows the effect of changing the concentrations of the reactants on the rate of

the reaction. But other things (like temperature and catalysts, for example) also change rates

of reaction. Where do these fit into this equation? These are all included in the rate constant

k - which is only actually constant if all you are changing is the concentration of the reactants.

If you change the temperature or the catalyst, for example, the rate constant will change.

This can be shown in the Arrhenius equation.

8-5-2 Arrhenius Equation

Arrhenius Equation was proposed by Svante Arrhenius in 1889. It is a simple but useful

equation to show the dependence of the rate constant k of chemical reactions on the temperature

T.

k = k0e
− Q

RT (8-10)

where k is the reaction rate constant discussed in last section. T is the temperature (to fit

into the equation, T has to be meaured in kelvin, unit: K). R (unit: J · mol−1 · K−1) is the

gas constant coming from the equation, pV = nRT , which relates the pressure, volume and

temperature of a particular number of moles of gas. Q (unit: J ·mol−1) is the activation energy,

which is the minimum energy needed for the reaction to occur. The pre-exponential factor k0

(unit: same as k) is is a term which includes factors like the frequency of collisions and their

orientation.aries slightly with temperature, although not much. It is often taken as constant

across small temperature ranges.
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The Arrhenius eqaution can be also written as

lnk = lnk0 − Q

RT
(8-11)

The graph between ln k and 1/T is a straight line with an intercept of ln(k0) and the slop of

the graph is equal to −Q/R.

Figure 8-2: Arrhenius Plot
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List of Acronyms

AM Applied Mathematics

AP Apparent Porosity

BSG Bulk specific gravity

EEMCS Electrical Engineering, Mathematics and Computer Science

GLS Galerkin Least-Squares

ODE Ordinary Differential Equation

PDE Partial Differential Equation

SEM Scanning electron microscopy

SG Specific Gravity

SUPG Streamline-Upwind/Petrov-Galerkin

TP True Porosity

WA Water Absorption
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