Progress Report Meeting

May 22, 2012
Miguel Romero

1-D PFR Model (ODE)

Why use a simplified model?

- It may give good results due to the low loading of the kiln
- It can be used as an aid for decisions in the re-design of the operation unit, e.g. the temperature of the feed can be changed easily and the computation time is seconds (to evaluate preheating of the feed for example)
- It will be used for an initial solution for further models

1-D/2-D Sketch of the Kiln

Assumptions of the Model

- The freeboard gases are homogeneously mixed in the transversal direction,
- The granular material is perfectly mixed in the transversal direction,
- The granular material flows in a PFR-like manner.

One must note that indeed the approach is a simplification of the actual phenomena.

1-D/2-D Sketch of the Kiln

Governing Equations

$$
\begin{aligned}
& \dot{m}_{s} c_{p s} \frac{d T_{s}}{d z}=Q_{\text {radiation }, g \rightarrow s}+Q_{\text {convection }, g \rightarrow s}+Q_{\text {conduction }, w \rightarrow s} \\
& Q_{\text {gas } \rightarrow \text { wall }}+Q_{\text {radiation } \rightarrow \text { wall }}+Q_{\text {solids } \rightarrow \text { wall }}=Q_{\text {shell } \rightarrow \text { ambient }}
\end{aligned}
$$

Governing Equations

$$
\begin{gathered}
\dot{m}_{s} c_{p s} \frac{d T_{s}}{d z}=Q_{\text {radiation }, g \rightarrow s}+h_{c o n v} A_{g \rightarrow s}\left(T_{g}-T_{s}\right)+h_{c o n d} A_{w \rightarrow s}\left(T_{w}-T_{s}\right) \\
h_{c o n v}=0.4 G_{g}^{0.62} \quad N u=\frac{h_{c o n d} R \xi}{k_{b}} \\
N u=11.6 P e^{0.3} \quad P e=\frac{R^{2} \xi \omega}{\alpha_{b}}
\end{gathered}
$$

Preliminary Results

Base Case: $4500 \mathrm{~kg} / \mathrm{h}, 500 \mathrm{Nm} 3 / \mathrm{h}, 100 \mathrm{C}$

Preliminary Results

High gas velocity

Preliminary Results

Higher Kiln loading/Lower Gas Velocity

Further work on 1-D model

- Calibration with data calculated by M. Pisaroni
- Selection of convective heat transfer correlation
- Validation with data from the Kiln, thermocouples and discharge end temperatures
- Sensibility analysis on Gas velocity, Mass Flow and Solids initial Temperature.

What comes next?

- 1-D Model
- Calibration and Validation
- Transversal Flow Model (DEM)
- Calibration and Scale Up to actual kiln size
- PDE Heat Transfer Model
- Setup, calibration and validation

PDE Heat Transfer Model

- Model described by Boateng,
- Uses Input from a Transversal Flow model which in our case is a DEM simulation,
- Uses same physical correlations as 1-D model and similar governing equations

Sample Output

$$
\frac{\partial}{\partial x}\left(k_{\mathrm{eff}} \frac{\partial T}{\partial x}\right)-\rho c_{p} \mu_{x} \frac{\partial T}{\partial x}+\frac{\partial}{\partial y}\left(k_{\mathrm{eff}} \frac{\partial T}{\partial y}\right)-\rho c_{\rho} L_{y} \frac{\partial T}{\partial y}+\dot{m}_{\mathrm{b}} c_{\rho_{\mathrm{p}}} \frac{\mathrm{~d} T_{\mathrm{ba}}}{\mathrm{~d} z}=0
$$

*Images from Boateng

Thank you for your Time!

Questions?

