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Different goals – different approaches

Use multigrid applied to the Helmholtz operator to precondition one of the
Krylov methods;

Use multigrid applied to the Shifted Complex Laplacian operator to
precondition one of the Krylov methods;

Use multigrid as a stand alone solver for the Helmholtz operator.
Standard multigrid does not work – need tricks!
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Main ingredients

Each error component is effectively reduced on some grid where it is
accurately resolved;

The near-kernel (Fourier) components and/or the lowest eigenmodes of the
finest grid discrete operator have to be accurately resolved on all grids,
including the coarsest, as they are poorly reduced by residual-based
relaxations.
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Helmholtz - the black sheep of multigrid

Lu(x) = −∆u(x)− k2(x)u(x) = 0
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Results of applying three multigrid V-cycles to the homogeneous Helmholtz
equation using random initial approximations;
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Obvious bottlenecks for multigrid

Dominant phase discretization error: O((dk)(k2h2));

Poor multigrid relaxation - standard schemes diverge due to many negative
modes.

Quality of standard coarse-grid and prolongation operators deteriorates on
coarse grids;
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Coarse grid approximation (2014)
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More bottlenecks for multigrid

Oscillatory near-zero modes;

There are many of them;

They are different from each other;

On sufficiently coarse grids, there is no a single prolongation or a coarse grid
operator of a reasonable sparsity that works for all of them.
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Ideas

Choose a basis for the set of near-kernel (low-energy) components (with
smooth rather than constant coordinates);

Build coarse and smooth representation for each of the basis functions and
its neighbors

Hope: together, multiple coarse representations will effectively reduce all
near-kernel error components at reasonable costs.
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Geometric multigrid: multiple coarse representation
1997, 2006, 2014

Helmholtz near-kernel Fourier components are eω = e i(ω1x+ω2y), |ω| ≈ k.
Indeed,

Leω ≈ (k2 − |w |2)eω.

The error unreduced by standard multigrid

e(x , y) =
∑
|ω|≈k

αωeω,

(1− γ1)k ≤ |ω| ≤ (1 + γ2)k ,

where typical are values γj ≈ 0.3
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Multiple representations

Consider basic functions uκ = e i(k
κ
1 x+kκ

2 y), (kκ1 )2 + (kκ2 )2 = k2, κ = 1, . . . ,K ).

(kκ1 , k
κ
2 ) = k(cos((κ− 1)

π

4
, sin((κ− 1)

π

4
)

Then unreduced error can be represented as

e(x , y) =
K∑
κ=1

eκ(x , y)uκ(x , y)

where weight functions eκ are smooth compared to uκ.
Idea: Approximate smooth eκ instead of the oscillatory e(x , y).
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Components of multiple representation: Geometric
multigrid, constant k .

Differential operators Lκ for eκ is obtained from

Le(x , y) = L

( K∑
κ=1

eκ(x , y)uκ(x , y)

)
=

K∑
κ=1

uκ(x , y)Lκeκ(x , y)

Residuals:

r(x , y) = Le(x , y) =
K∑
κ=1

rκ(x , y)uκ(x , y)

where rκ are separated using averaging to the target coarse grid;

Discrete Lκeκ = rκ are solved (using line relaxation) on scale with
kH = O(1).
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Geometric Multigrid: constant k

k
kh 40 80 160 320

0.625 Cycles 13 14 14 14
0.3125 Cycles 12 12 13 14
0.1562 Cycles 15 15 16 16

Table: The number of geometric cycles needed to satisfy ||r ||/||f || ≤ 10−6; The results
are computed for different choices of k and the finest h; the number of levels varies from
L = 5 (k = 40, kh = 0.625) to L = 10 (k = 320, kh = 0.15625).
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Algebraic multigrid: constant k (2015)
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Multiple corrections in AMG
• There is a set of prolongation operators {Pκ}, κ = 1, . . . ,K , K = O(1),
where each Pκ is n × nc sparse operator with nc � n, such that e belongs to its
collective range:

e ∈
K⋃
κ=1

R(Pκ). (1)

Then e can be approximately represented as

e =
K∑
κ=1

Pκe
c
κ, (2)

where {ecκ}Kκ=1 is a set of coarse functions. The fine scale residual equation is
then approximated by

K∑
κ=1

APκe
c
κ = r . (3)

A coarse (block) system
Acec = rc , (4)

where each block is given by

Ac
p,q = P∗pAPq, p, q = 1, . . . ,K . (5)
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Prolongation operators

Each operators Pκ are built to exactly interpolate a given basis vector uκ from a
constant coarse function:

uκ = Pκ 1nc ,

where 1nc is a coarse scale unit vector. More precisely, Pκ is defined as

Pκ = BκI
n
nc , (6)

where I nnc : Rn → Rnc is a bilinear interpolation operator and B is a n× n diagonal
matrix with uκ on the main diagonal.
Clearly,

Pκ1nc = BκI
n
nc 1nc = Bκ1n = uκ.

With out choice of prolongations P t
qPr ≈ 0nc and Ac is block diagonally dominant!
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AMG: constant k – multigrid solver

k
kh 20 40 80 160 320

0.625 8 12 21 25 40
0.3125 8 9 16 27 38

0.15625 8 9 14 16 38
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AMG: constant k – multigrid preconditioner

k
kh 20 40 80 160 320

0.625 5 7 9 11 24
0.3125 6 7 8 11 20

0.15625 6 7 8 11 20
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Discontinuous k(x)

k(x , y) =

 γ1k0, if y ≤ `1(x),
k0, if `1(x) < y < `2(x),

γ2k0, if y ≥ `2(x),
(7)
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Figure: Wave number function k(x , y), defined for for k0 = 80, γ1 = 0.9 and γ2 = 1.1.
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Basis functions: with and without multigrid preprocessing

Basis functions uκ, κ = 1, 2 for k0 = 20, γ1 = 1.1 and γ2 = 0.9 before and after
application of one standard V-cycle to Abκ = 0.
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(d) Real part of u2 after preprocessing
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Mutigrid as preconditioner without/with preprocessing

k0
γ = γ2/γ1 40 60 80 120 240
1.2 = 1.1/0.9 18 22 30 35 42
1.5 = 1.2/0.8 22 23 38 35 45
2 = 1.4/0.7 27 27 40 45 80
3 = 1.8/0.6 52 33 64 63 102

k0
γ = γ2/γ1 40 60 80 120 240
1.2 = 1.1/0.9 15 13 17 16 36
1.5 = 1.2/0.8 14 13 16 24 32
2 = 1.4/0.7 22 18 36 23 61
3 = 1.8/0.6 48 22 52 39 73
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Conclusions

Solvers are a combination of standard multigrid and multiple corrections;

Basis functions are exponent-based, providing local independence and
orthogonality;

Preprocessing of basis functions is beneficial for non-constant wave numbers;

The complexity is similar to the one for Laplace, it is O(n);
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New directions include

Choice of basis functions based on the laws of geometric optics (tested in
1D);

Use of different scales for multiple representations, depending on local values
of k (tested in 1D);

Numerical discovery of basis functions using standard multigrid and local
orthogonalization (tested in 1D).
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