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Different goals — different approaches

@ Use multigrid applied to the Helmholtz operator to precondition one of the
Krylov methods;
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Different goals — different approaches

@ Use multigrid applied to the Helmholtz operator to precondition one of the
Krylov methods;

@ Use multigrid applied to the Shifted Complex Laplacian operator to
precondition one of the Krylov methods;

@ Use multigrid as a stand alone solver for the Helmholtz operator.
Standard multigrid does not work — need tricks!
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Main ingredients

@ Each error component is effectively reduced on some grid where it is
accurately resolved;
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Main ingredients

@ Each error component is effectively reduced on some grid where it is
accurately resolved;

@ The near-kernel (Fourier) components and/or the lowest eigenmodes of the
finest grid discrete operator have to be accurately resolved on all grids,
including the coarsest, as they are poorly reduced by residual-based
relaxations.
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Helmholtz - the black sheep of multigrid

Lu(x) = —Au(x) — k*(x)u(x) =0
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Results of applying three multigrid V-cycles to the homogeneous Helmholtz
equation using random initial approximations;
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Obvious bottlenecks for multigrid

e Dominant phase discretization error: O((dk)(k?h?));

@ Poor multigrid relaxation - standard schemes diverge due to many negative
modes.

@ Quality of standard coarse-grid and prolongation operators deteriorates on
coarse grids;
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Coarse grid approximation (2014)
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More bottlenecks for multigrid

Oscillatory near-zero modes;
There are many of them;
They are different from each other;

On sufficiently coarse grids, there is no a single prolongation or a coarse grid
operator of a reasonable sparsity that works for all of them.
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Ideas

@ Choose a basis for the set of near-kernel (low-energy) components (with
smooth rather than constant coordinates);
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Ideas

@ Choose a basis for the set of near-kernel (low-energy) components (with
smooth rather than constant coordinates);

@ Build coarse and smooth representation for each of the basis functions and
its neighbors
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Ideas

@ Choose a basis for the set of near-kernel (low-energy) components (with
smooth rather than constant coordinates);

@ Build coarse and smooth representation for each of the basis functions and
its neighbors

@ Hope: together, multiple coarse representations will effectively reduce all
near-kernel error components at reasonable costs.
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Geometric multigrid: multiple coarse representation
1997, 2006, 2014

Helmholtz near-kernel Fourier components are e, = e/(“Fw2v) || ~ k.
Indeed,
o (12 2
Le, = (k* — |w|)e,

The error unreduced by standard multigrid

E Oéwewa

|w|~k

(I=m)k < || < (1 +12)k,

where typical are values v; ~ 0.3
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Multiple representations

Consider basic functions v, = e/ (KX y) (k)2 4 (k)2 = k% k= 1,..., K).

(kf', k) = k(cos(( — 1) sin((x — 1))
Then unreduced error can be represented as

K
z:e,v X, y)ue(x,y)
k=1

where weight functions e,, are smooth compared to uy.
Idea: Approximate smooth e, instead of the oscillatory e(x, y).
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Components of multiple representation: Geometric
multigrid, constant k.

o Differential operators L, for e, is obtained from

K

Ld&y):L<

K
em(xyuﬁxy> ZuﬁxyLeH(xy)
1 r=1

K=

@ Residuals:
K

r(X7)/) = Le(X7)/) = ZFN(X,}/)UH(X,}/)

k=1
where r,. are separated using averaging to the target coarse grid;

@ Discrete L, e, = r, are solved (using line relaxation) on scale with
kH = O(1).
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Geometric Multigrid: constant k
K
kh 40 80 160 320
0.625 | Cycles 13 14 14 14
03125 | Cycles 12 12 13 14
0.1562 | Cycles 15 15 16 16

Table: The number of geometric cycles needed to satisfy ||r||/||f|| < 107°; The results
are computed for different choices of k and the finest h; the number of levels varies from
L =5 (k =40, kh = 0.625) to L = 10 (k = 320, kh = 0.15625).
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Algebraic multigrid: constant k (2015)
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Multiple corrections in AMG

e There is a set of prolongation operators {P.}, k =1,..., K, K = 0(1),
where each P,; is n X n. sparse operator with n. < n, such that e belongs to its
collective range:

K
ec |JR(P.). (1)
k=1

Then e can be approximately represented as

K
e=> Pgef, (2)
k=1

where {e}X_, is a set of coarse functions. The fine scale residual equation is

then approximated by

K
> AP.ef =r. (3)
k=1
A coarse (block) system
A% =r, (4)
where each block is given by

A;q:P;APm P7CI:1K (5)
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Prolongation operators

Each operators P,; are built to exactly interpolate a given basis vector u,, from a
constant coarse function:
u, = P, 1",

where 1" is a coarse scale unit vector. More precisely, P, is defined as
PH - BHI:C7 (6)

where /] : R" — R is a bilinear interpolation operator and B is a n x n diagonal
matrix with v, on the main diagonal.
Clearly,

P1" = Bl 1" = B.1" = uj.

With out choice of prolongations PP, ~= 0" and A€ is block diagonally dominant!
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AMG: constant k — multigrid solver

k
kh | 20 40 80 160 320
0625 | 8 12 21 25 40
03125 | 8 9 16 27 38
0.15625 | 8 9 14 16 38
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AMG: constant k — multigrid preconditioner

k
kh | 20 40 80 160 320
0625 5 7 9 11 24
03125 | 6 7 8 11 20
015625 | 6 7 8 11 20
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Discontinuous k(x)

ko, if y </li(x),
k(x,y) = ko, if l1(x) <y < la(x), (7)
72k07 Ify > £2(X)7

Figure: Wave number function k(x, y), defined for for ko = 80, v1 = 0.9 and > = 1.1.
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Basis functions: with and without multigrid preprocessing

Basis functions u,,, kK = 1,2 for kg = 20, 71 = 1.1 and 7, = 0.9 before and after
application of one standard V-cycle to Ab,, = 0.

f///ﬂii/']l"l,,.‘
i,
It

Al Jl
i
! Ui
i
il it /
Uty i,
ittt Il,'o::
i ﬂ&.ﬂ;%z{{//;;/&,

(a) Real part of u; before preprocessing (b) Real part of u; after preprocessing
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(c) Real part of up before preprocessing (d) Real part of u, after preprocessing
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Mutigrid as preconditioner without/with preprocessing

ko
Y=~/ |40 60 80 120 240
1.2=11/09 |18 22 30 35 42
1.5=12/08 |22 23 38 35 45
= 1.4/0.7 27 27 40 45 80
3=1.8/0.6 52 33 64 63 102
ko
v ="Y/m 40 60 80 120 240
1.2=11/09 |15 13 17 16 36
1.5=12/08 |14 13 16 24 32
—14/07 |22 18 36 23 61
3=1.8/0.6 48 22 52 39 73
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Conclusions

Solvers are a combination of standard multigrid and multiple corrections;

Basis functions are exponent-based, providing local independence and
orthogonality;

Preprocessing of basis functions is beneficial for non-constant wave numbers;

The complexity is similar to the one for Laplace, it is O(n);

Ira Livshits (Ball State University) Multigrid with Multiple Coarsening for the Helmholtz

Recent Developments in_Fast Helmholtz Solvers. /T5J3D




New directions include
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New directions include

@ Choice of basis functions based on the laws of geometric optics (tested in
1D);
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New directions include

@ Choice of basis functions based on the laws of geometric optics (tested in
1D);

@ Use of different scales for multiple representations, depending on local values
of k (tested in 1D);
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New directions include

@ Choice of basis functions based on the laws of geometric optics (tested in
1D);

@ Use of different scales for multiple representations, depending on local values
of k (tested in 1D);

@ Numerical discovery of basis functions using standard multigrid and local
orthogonalization (tested in 1D).
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