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The Helmholtz equation
The Helmholtz equation reads

(−∆− k2)u(x) = f (x).

with k(x) = ω
c(x) , where ω = angular frequency and

c(x) = medium velocity.

Setup

Rectangular domain in Rn, n = 2, 3, with Dirichlet boundary
conditions. Regular mesh discretizations.

Damping layers for simulating an unbounded domain using the
perfectly matched layer or simply an imaginary contribution to k .
PML means that

∂

∂xj
is replaced by

1

1 + iω−1σ(xj)

∂

∂xj
.

High-frequency regime: domain size� wavelength (e.g. ∼ 100
wavelengths/domain)
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Issues for today

Denote λ = wavelength,
h = grid spacing,
G = # gridpoints per wavelength (ppw) = 2π

hk .

Issues for today:

Numerical dispersion: For standard schemes we need large G or high
order.

Multigrid: Improved performance at coarse meshes downto G = 3 at
the coarse level

A hybrid domain decomposition + multigrid solver.
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Numerical dispersion
In 1-D, propagating waves u = e iξx satisfy

(− d2

dx2
− k2)e iξx = 0,

hence ξ2 − k2 = 0 or ξ = ±k = ±ωc and hence λ = 2π
|ξ| = 2π

k .

Using second order finite differences, the homogeneous Helmholtz equation
becomes

−ui−1 + 2ui − ui+1

h2
− k2ui = 0.

Inserting ui = e iξxi leads to the equation

2− 2 cos(hξ)

h2
− k2 = 0 ((*))

with solution

ξFD2 = ±2h−1 arcsin(
hk

2
)

Since |ξFD2| 6= k the numerical solution has wave length errors called numerical
dispersion. The relative error in ξ

ω is called the phase slowness error. It will be
denoted by E (ν,G ), with ν the direction in Sn−1. The same can be done in 2-D
and 3-D.
Chris Stolk (Univ. of Amsterdam) Accelerating Helmholtz solvers using multigrid TUDelft Helmholtz Workshop 4 / 17



Effect of numerical dispersion
To show the effects of numerical dispersion, consider the equation

(− d2

dx2
− k2)e iξ·x = δ

The exact solution is given by u = −i
2k e

ik|x |.

Exact solution vs. solution with 1 % phase slowness error:
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error in solution 2

We see that phase error in solution = distance
λ · E . We should require at

least E . 10−4.
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Compact stencil discretizations

Idea: Discretize using 3× 3× 3 cubic stencil

(Hcompactu)i,j,k
def
=

A0ui,j,k

+ A1

(
ui−1,j,k + ui+1,j,k + ui,j−1,k

+ ui,j+1,k + ui,j,k−1 + ui,j,k+1

)
+ A2

(
ui−1,j−1,k + . . .+ ui,j+1,k+1

)
+ A3

(
ui−1,j−1,k−1 + . . .+ ui+1,j+1,k+1

)

Accelerating 3D convolution using streaming architectures
on FPGAs

Next: Multiple Stencil Operators Up: Exploration of Design Options Previous: Exploration of Design
Options 

Different Stencils
Our target application uses a a 7-point `star' stencil (Figure 2(a)) to perform the 8th order finite difference.
In our exploration, beside the `star' stencil, we also consider a 3-by-3-by-3 `cube' stencil (Figure 2(b)),
which performs a 6th order finite difference (Spotz and Carey 1996).

 
star,cube 

Figure 2. Different 3D stencils: `star' vs. `cube'. 

   

In software implementations, the `cube' and the `star' stencils provide a similar performance. For the
FPGA implementations, the resource costs for the `star' and the `cube' stencils are different. The upper
part of Table 3 shows the straightforward implementations of `star' and `cube' stencils for a 120x120x120
array. The `cube' consumes 20% more DSP48E arithmetic units than `star', as it involves more
multiplications. Meanwhile, the memory cost (BRAM) of the `cube' is one third of the `star', as the data
buffering requirement decreases from 6 slices to 2 slices.

Normal Stencils `star' `cube'

FPGA #slices 5618 7072

resource #BRAMs 87 30

costs #DSP48Es 50 60

Optimized Stencils `star' `cube'

FPGA #slices 5207 6256

resource #BRAMs 87 30

cost #DSP48Es 32 18

with A0, . . . ,A3 chosen depending on G too minimize phase errors.

Many choices exist (Babuska et al., 1995; Jo, Shin and Suh, 1998; Operto et al.,

2007; Chen et al., 2012; Turkel et al., 2013).
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Interpolated optimized finite differences
Consider all symmetric second order discretizations. These are
described by five parameters αj , j = 1, . . . , 5, with

A0 = 6α4 − (kh)2α1 A2 = − 1
2α5 + 1

2 (1− α4 − α5)− (kh)2 1
12α3

A1 = − α4 + α5 − (kh)2 1
6α2 A3 = − 3

4 (1− α4 − α5)− (kh)2 1
8 (1− α1 − α2 − α3)

Let the αj slowly vary with 1/G using Hermite interpolation from
control values

Optimize the coefficients using nonlinear least squares with
0 ≤ 1/G ≤ 0.4, i.e. downto 2.5 ppw.

10 A DISPERSION MINIMIZING SCHEME FOR THE 3-D HELMHOLTZ EQUATION

1/G ↵1
@↵1

@(1/G) ↵2
@↵2

@(1/G) ↵3
@↵3

@(1/G)

0.00 0.690457 0.108782 0.285770 -0.219394 0.833361 -0.003066
0.05 0.693489 0.013868 0.278037 -0.094242 0.832105 -0.047970
0.10 0.691798 -0.078442 0.276388 0.021035 0.828594 -0.093390
0.15 0.685399 -0.175575 0.280535 0.139309 0.822575 -0.150175
0.20 0.674651 -0.256238 0.289330 0.213914 0.813406 -0.219891
0.25 0.664492 -0.162723 0.292235 -0.075894 0.803248 -0.173237
0.30 0.658743 -0.079357 0.280634 -0.368742 0.798744 0.013056
0.35 0.649567 -0.289126 0.268790 -0.109125 0.799467 0.006063
0.40 0.632408 -0.404639 0.263741 -0.088077 0.802679 0.125676

Table 1. Coe�cients two-dimensional IOFD

1/G ↵1
@↵1

@(1/G) ↵2
@↵2

@(1/G) ↵3
@↵3

@(1/G) ↵4
@↵4

@(1/G) ↵5
@↵5

@(1/G)

0.0000 0.517047 -0.128231 0.333081 0.002857 0.283241 -0.000089 0.694875 -0.032150 0.275886 0.003602
0.0125 0.523738 -0.038278 0.324029 0.014698 0.280697 -0.010244 0.706215 -0.107275 0.254147 0.003752
0.0250 0.530888 0.026484 0.313399 -0.058155 0.279935 -0.015825 0.708390 -0.066629 0.248576 0.016901
0.0500 0.537095 0.039560 0.303340 -0.063072 0.279560 -0.092408 0.708425 -0.094977 0.244634 -0.014794
0.1000 0.542482 0.090854 0.292077 -0.164698 0.278376 -0.146901 0.701350 -0.181811 0.244231 -0.005689
0.1500 0.546494 0.054652 0.280352 -0.260799 0.276818 0.040023 0.690703 -0.239478 0.243554 -0.027007
0.2000 0.549472 0.086849 0.266004 -0.399426 0.277537 0.090829 0.678083 -0.249610 0.241806 -0.063416
0.2500 0.550195 -0.047748 0.251441 -0.225406 0.278403 -0.007111 0.665015 -0.269271 0.238819 -0.060470
0.3000 0.549247 -0.003809 0.235504 -0.389836 0.278536 0.001697 0.653948 -0.162012 0.234406 -0.116501
0.3500 0.540024 -0.340977 0.225416 -0.096558 0.281206 0.188504 0.642841 -0.285104 0.229717 -0.102619
0.4000 0.521570 -0.406300 0.220498 -0.113976 0.287583 0.107225 0.630481 -0.205847 0.225579 -0.066426

Table 2. Coe�cients three-dimensional IOFD

more expensive) also qualifies. So in these situations the improved phase speed accuracy
obtained by using QS-FEM or IOFD can be expected to have some impact in terms of
lower cost compared to FE8 and in terms of improved accuracy compared to CHO6 and
other compact stencil methods. The latter will be confirmed in the examples in the next
section.

5. Numerical examples

In this section we present two numerical experiments, first in a constant medium, and
then in a smoothly varying medium. We will present two-dimensional examples with large
domain sizes on the order of hundreds of wavelengths.

As mentioned, phase speed errors typically lead to phase shift errors in the solutions.
Considering wave propagation over 500 wavelengths as an example, it follows from (31) and
the surrounding discussion that these phase shifts errors for IOFD should be negligibly
small for meshes with five or six points per wavelength, and still quite small for four
and three points per wavelength. For other methods these errors should show up much
stronger. In our first example we will verify this numerically, assuming a constant velocity
model.

To simulate a point source at a given grid point, we will use the associated column of the
mass matrix given in (11) (with the ↵j as described in the previous section). An unbounded
domain is simulated by adding a damping layer around the domain of interest, with a
nonzero imaginary contribution to k that quadratically increases from the boundary of
the domain of interest. The discrete equation is computed using a Matlab implementation
and exported to disk, and the resulting linear systems are solved using the MUMPS parallel
direct solver [1] on a few nodes of the Lisa cluster of surfsara (www.surfsara.nl), or, for the

(details on arXiv:1504.01609)
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Comparison of phase slowness errors
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phase slowness errors for various 3−D schemes

 

 
FE1
FE2
FE3
FE4
FE6
FE8
FD2
FD4
FD6
FD8
OPT4
CHO6
IOFD(3−D)
QS−FEM(2−D)

QS-FEM (2-D) and IOFD (3-D) have small dispersion errors for G & 4.
Numerical simulations support this.
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Simulations at constant k (2-D)

Polar plots
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Multigrid

IOFD gives very small phase errors at coarse meshes. Can we use this
speed up the solution at finer meshes?

Multigrid with IOFD discretization used at the coarse level.

Two-grid cycle
I ν iterations of ω-Jacobi (or similar) (presmoothing)
I compute error and restrict to coarse mesh
I coarse grid correction: coarse level solve with error as r.h.s.
I interpolate correction to fine mesh and add it to solution
I ν iterations of ω-Jacobi (or similar) (postsmoothing)

the coarse grid correction handles small wave numbers, the smoothing
steps the large wave numbers

Two-grid cycle can be iterated or applied as preconditioner for
GMRES, and it can also be used recursively
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Testing multigrid with IOFD

Tested multigrid with IOFD used at the coarse level (S., Ahmed and Bhowmik,

SIAM J. Sci. Comput. 2014)

IOFD method at the coarse level was modified to minimize the phase
speed differences with the fine level discretization. Tested
IOFD-IOFD, FD2-IOFD

Varied multigrid parameters

Convergence analysis in Fourier domain

Tested convergence in numerical simulations

Tested standard multigrid in the same way
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Two-grid convergence factors

Convergence factors describe the error reduction.
Can be computed using Fourier analysis on Rn for k = constant.
A small uniform damping must be added Im k = αRe k, α = 0.0025 or
α = 0.01.

standard FD2-Galerkin FD2-OPT
α = 0.01, 10 ppw α = 0.0025, 3.5 ppw

ν = 1 2 3 ν = 2 3 4
Jac0.6 > 1 > 1 > 1 > 1 > 1 0.557
Jac0.7 > 1 > 1 > 1 > 1 0.685 0.307
Jac0.8 > 1 > 1 > 1 > 1 0.362 0.209
Jac0.9 > 1 > 1 > 1 > 1 > 1 > 1
Jacobi > 1 > 1 > 1 > 1 > 1 > 1

Multigrid with optimized FD works with 3.5 ppw at coarse level, and very
small damping. Standard multigrid requires & 10 ppw and increased
damping.
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Two-grid iteration count for GMRES
Iterations for residual reduction by 10−6 with PML bdy conditions.

Marmousi velocity model 2-D slice of SEG-EAGE model
Marmousi model

x(m)

y(
m

)
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constant Marmousi salt model
2400× 2400 4600× 750 2700× 836

ppw freq its freq its freq its
5 480 29 150 23 60 18
6 400 8 125 11 50 8
7 342.9 6 107.1 9 42.9 7
8 300 5 93.8 8 37.5 6
9 266.7 5 83.3 7 33.3 6

10 240 4 75 6 30 5

Conclusion: By using optimized FD as coarse level multigrid works well, even with
quite coarse meshes (downto 3 ppw at the coarse level).
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Multigrid with inexact coarse level solver

Use double sweep domain decomposition (S.,
J. Comp. Phys. 2013) as coarse level solver

Domain decomposition into thin layers,
using PML-based interface conditions and
the “double sweep” approach. Converges
rapidly even with many subdomains.

Cheaper than a direct solve and than direct
domain decomposition.

Iterations for convergence 1e-6 in Marmousi

Nx × Ny h (m) ω
2π

(Hz)
Number of x-subdomains
3 10 30 100 300

600× 212 16 12.5 4 5 6

1175× 400 8 25 5 6 6

2325× 775 4 50 6 6 6 7

4625× 1525 2 100 6 6 6 7

9225× 3025 1 200 6 6 6 7
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Implementation

3-D implementation using C++ and MPI on Lisa @ Surfsara: use up
to 256 cores on 16 nodes, 1 TB memory.

Subdomain solves are sequential. We use MUMPS on 16 or 32 cores,
and pipelining for further parallellization of the domain decomposition
method. Scalability of this procedure is an issue.
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Example: SEG-EAGE Salt model

Velocity: SEG-EAGE salt model, 670× 670× 210 points, h = 20 m.

x

z

SEG EAGE salt model
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frequency 6.25 7.87 9.91 12.5
size 338x338x106 426x426x132 536x536x166 676x676x210
# dof 1.3 · 107 2.5 · 107 5.0 · 107 1.0 · 108

cores 32 64 128 256
# of rhs. 1 2 4 8
iterations 12 12 13 15
time/rhs. 26 35 45 73

Fast compared to methods in the literature!
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Conclusions

An optimized, compact FD method with very small numerical
dispersion was constructed

In multigrid methods, good convergence with few points per
wavelength can be obtained by using coarse level discretizations with
accurate phase speeds. Downto 3 ppw at the coarse level.

When used in combination with double sweep domain
decompositions, this results in a very fast solver. Compared for
example to a two-grid + shifted Laplacian method (Calandra et al.,

2013) we gain roughly a factor 8 in speed.

Further questions

Better parallellization of the subdomain solves

Can Shifted-Laplacian methods be used as approximate coarse level
solver?

Non-rectangular domains

Chris Stolk (Univ. of Amsterdam) Accelerating Helmholtz solvers using multigridTUDelft Helmholtz Workshop 17 / 17


