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The Helmholtz equation
The Helmholtz equation reads

(—A— kz)u(x) = f(x).

with k(x) = % where w = angular frequency and
c(x) = medium velocity.

Setup
@ Rectangular domain in R"”, n = 2,3, with Dirichlet boundary
conditions. Regular mesh discretizations.
@ Damping layers for simulating an unbounded domain using the

perfectly matched layer or simply an imaginary contribution to k.
PML means that

i is replaced b ;i
Ox; P Y1+ iwlo(x;) Ox;

e High-frequency regime: domain size >> wavelength (e.g. ~ 100
wavelengths/domain)
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Issues for today

Denote A = wavelength,
h = grid spacing,
— . - . 2
G = # gridpoints per wavelength (ppw) = o

Issues for today:
@ Numerical dispersion: For standard schemes we need large G or high
order.
@ Multigrid: Improved performance at coarse meshes downto G = 3 at
the coarse level
@ A hybrid domain decomposition + multigrid solver.
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Numerical dispersion
In 1-D, propagating waves u = e’¢* satisfy
d? o i
iEx __
(*@ — k%)™ =0,

hencefz—k2:00r§::|:k::|:% and hence)\:%:%.

Using second order finite differences, the homogeneous Helmholtz equation

becomes
—Ui—1 + 2u; — Uj41

2
2 — k up = 0.
Inserting u; = €% leads to the equation
2 — 2cos(hf)
2-2c0s(h) e _ g @)

with solution bk
Eppo = £2h71 arcsin(j)

Since |€pp2| # k the numerical solution has wave length errors called numerical
dispersion. The relative error in g is called the phase slowness error. It will be
denoted by E(v, G), with v the direction in S"~1. The same can be done in 2-D
and 3-D.
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Effect of numerical dispersion

To show the effects of numerical dispersion, consider the equation
d2
s k2 i&x __ -4
( dX2 )

. . . _ _, k
The exact solution is given by u = sz e’ I,

Exact solution vs. solution with 1 % phase slowness error:

exact solution and solution with 1 % phase slowness error
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0
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We see that  phase error in solution = m E. We should require at
least £ < 1074,
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Compact stencil discretizations

Idea: Discretize using 3 x 3 x 3 cubic stencil s

def
(Hcompact U)iJ,k =

Aouij i

+ At (Uic1jk + Uir1jk + Uij—1.k
+ Ujjy1k Ui j k-1t Ui,j,k+1) -

+ AZ(Ui—l,j—lyk +...+ Ui,j+1,k+1)

+ As(Uim1jo1k—1 + o F Uittt ke1)

with Ag, ..., As chosen depending on G too minimize phase errors.

Many choices exist (Babuska et al., 1995; Jo, Shin and Suh, 1998; Operto et al.,
2007; Chen et al., 2012; Turkel et al., 2013).
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Interpolated optimized finite differences

@ Consider all symmetric second order discretizations. These are
described by five parameters oj, j = 1,...,5, with

Gas — (k)% o = — Jas + §(1— a4 — a5) - (ki hes

— g+ a5 — (kh)zéaz A= —3(1—as—as) — (kh)zé(l —a; —ap — a3)

Ao
A

o Let the a; slowly vary with 1/G using Hermite interpolation from
control values

@ Optimize the coefficients using nonlinear least squares with
0<1/G <0.4,ie. downto 2.5 ppw.

1/G ay % s % agz 0{%’5) ay % as %@
0.0000 | 0.517047 -0.128231 0.333081 0.002857 0.283241 -0.000089 0.694875 -0.032150 0.275886 0.003602
0.0125 | 0.523738 -0.038278 0.324029 0.014698 0.280697 -0.010244 0.706215 -0.107275 0.254147 0.003752
0.0250 | 0.530888 0.026484 0.313399 -0.058155 0.279935 -0.015825 0.708390 -0.066629 0.248576 0.016901
0.0500 | 0.537095  0.039560 0.303340 -0.063072 0.279560 -0.092408 0.708425 -0.094977 0.244634 -0.014794
0.1000 | 0.542482  0.090854 0.292077 -0.164698 0.278376 -0.146901 0.701350 -0.181811 0.244231 -0.005689
0.1500 | 0.546494 0.054652 0.280352 -0.260799 0.276818 0.040023 0.690703 -0.239478 0.243554 -0.027007
0.2000 | 0.549472  0.086849 0.266004 -0.399426 0.277537 0.090829 0.678083 -0.249610 0.241806 -0.063416
0.2500 | 0.550195 -0.047748 0.251441 -0.225406 0.278403 -0.007111 0.665015 -0.269271 0.238819 -0.060470
0.3000 | 0.549247 -0.003809 0.235504 -0.389836 0.278536 0.001697 0.653948 -0.162012 0.234406 -0.116501
0.3500 | 0.540024 -0.340977 0.225416 -0.096558 0.281206 0.188504 0.642841 -0.285104 0.229717 -0.102619
0.4000 | 0.521570 -0.406300 0.220498 -0.113976 0.287583 0.107225 0.630481 -0.205847 0.225579 -0.066426

(details on arXiv:1504.01609)
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Comparison of phase slowness errors

phase slowness errors for various 3-D schemes

phase slowness error

—e— |OFD(3-D)
——— QS-FEM(2-D)

0.05 0.1 0.15 0.2 0.25
1/G

QS-FEM (2-D) and IOFD (3-D) have small dispersion errors for G 2 4.
Numerical simulations support this.

Chris Stolk (Univ. of Amsterdam) Accelerating Helmholtz solvers using multigric i8I i g E 1 16 =AU TeT o) 8 /17



Simulations at constant k (2-D)

Polar plots FD2, 10ppw, 20wl IOFD, 6ppw, 500wl

polar plot FD2 at 10 ppw

polar plot IOFD at 6 ppw
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Multigrid

IOFD gives very small phase errors at coarse meshes. Can we use this
speed up the solution at finer meshes?
@ Multigrid with IOFD discretization used at the coarse level.
@ Two-grid cycle
» v iterations of w-Jacobi (or similar) (presmoothing)
» compute error and restrict to coarse mesh
> coarse grid correction: coarse level solve with error as r.h.s.
> interpolate correction to fine mesh and add it to solution
> v iterations of w-Jacobi (or similar) (postsmoothing)
@ the coarse grid correction handles small wave numbers, the smoothing
steps the large wave numbers

@ Two-grid cycle can be iterated or applied as preconditioner for
GMRES, and it can also be used recursively
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Testing multigrid with IOFD

Tested multigrid with IOFD used at the coarse level (S., Ahmed and Bhowmik,
SIAM J. Sci. Comput. 2014)

@ IOFD method at the coarse level was modified to minimize the phase
speed differences with the fine level discretization. Tested
IOFD-IOFD, FD2-I0OFD

@ Varied multigrid parameters
@ Convergence analysis in Fourier domain
@ Tested convergence in numerical simulations

@ Tested standard multigrid in the same way
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Two-grid convergence factors

Convergence factors describe the error reduction.

Can be computed using Fourier analysis on R” for k = constant.

A small uniform damping must be added Im k = a Re k, a = 0.0025 or
a = 0.01.

standard FD2-Galerkin FD2-OPT
a =0.01, 10 ppw a = 0.0025, 3.5 ppw
v=1 2 3 v=2 3 4

Jac0.6 >1 >1 >1 >1 >1 0.557
Jac0.7 >1 >1 >1 >1 0.685 0.307
Jac0.8 >1 >1 >1 >1 0.362 0.209
Jac0.9 >1 >1 >1 >1 >1 >1
Jacobi >1 >1 >1 >1 >1 >1

Multigrid with optimized FD works with 3.5 ppw at coarse level, and very
small damping. Standard multigrid requires 2 10 ppw and increased
damping.
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Two-grid iteration count for GMRES

Iterations for residual reduction by 10~® with PML bdy conditions.

Marmousi veIocnty model 2-D slice of SEG-EAGE model

2D slce of the SEG-EAGE salt model

‘W

om0 000 o0 w00 oo 7000 w0 000
x(m)

constant Marmousi salt model
2400 x 2400 | 4600 x 750 | 2700 x 836
ppw | freq its freq its | freq its
5 480 29 150 23 60 18
6 400 8 125 11 50 8
7 342.9 6 107.1 9 | 429 7
8 300 5 93.8 8 | 375 6
9 266.7 5 83.3 7 | 333 6
10 240 4 75 6 30 5

Conclusion: By using optimized FD as coarse level multigrid works well, even with
quite coarse meshes (downto 3 ppw at the coarse level),
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Multigrid with inexact coarse level solver

@ Use double sweep domain decomposition (S.,
J. Comp. Phys. 2013) as coarse level solver

@ Domain decomposition into thin layers,
using PML-based interface conditions and \
the “double sweep” approach. Converges
rapidly even with many subdomains. [

@ Cheaper than a direct solve and than direct
domain decomposition.

Iterations for convergence le-6 in Marmousi

Number of x-subdomains

N> Ny h(m) | 2= (M2) | —="5T30 T 100 | 300
600 x 212 | 16 125 4156

1175 x 400 | 8 25 5] 6| 6

2325 x 775 | 4 50 6] 6|6 | 7

4625 x 1505 | 2 100 6] 6|6 | 7

9225 x 3025 | 1 200 6 6] 6 | 7

Chris Stolk (Univ. of Amsterdam)

Accelerating Helmholtz solvers using multigricy LV s s [E 11 el [ AUVeT{ E 161s)

14 /17



Implementation

@ 3-D implementation using C++ and MPI on Lisa @ Surfsara: use up
to 256 cores on 16 nodes, 1 TB memory.

@ Subdomain solves are sequential. We use MUMPS on 16 or 32 cores,
and pipelining for further parallellization of the domain decomposition
method. Scalability of this procedure is an issue.
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Example: SEG-EAGE Salt model

frequency 6.25 7.87 9.91 125
size 338x338x106 | 426x426x132 | 536x536x166 | 676x676x210
# dof 1.3-107 2.5-107 5.0 - 107 1.0-108
cores 32 64 128 256

# of rhs. 1 2 4 8
iterations 12 12 13 15
time/rhs. 26 35 45 73

Fast compared to methods in the literature!
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Conclusions

@ An optimized, compact FD method with very small numerical
dispersion was constructed

@ In multigrid methods, good convergence with few points per
wavelength can be obtained by using coarse level discretizations with
accurate phase speeds. Downto 3 ppw at the coarse level.

@ When used in combination with double sweep domain
decompositions, this results in a very fast solver. Compared for
example to a two-grid + shifted Laplacian method (Calandra et al.,
2013) we gain roughly a factor 8 in speed.

Further questions
o Better parallellization of the subdomain solves

@ Can Shifted-Laplacian methods be used as approximate coarse level
solver?

@ Non-rectangular domains
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