Multi-level Krylov: the Next Generation Helmholtz Solver

Fast Helmholtz Solvers Seminar, TU Delft, May 18th, 2015

Kees Vuik

http://ta.twi.tudelft.nl/users/vuik/

May 18, 2015

Delft Institute of Applied Mathematics

1

Delft University of Technology

hard Marmousi Model

May 18, 2015

2

hard Marmousi Model (2005)

3

Delft Institute of Applied Mathematics

May 18, 2015

Cube with constant k (2015)

4

Contents

- 1. Introduction
- 2. Shifted Laplace Preconditioning
- 3. Second-level preconditioning
- 4. Numerical experiments
- 5. Conclusions

1. Introduction

The Helmholtz equation without damping

 $-\Delta \mathbf{u}(x,y) - k^2(x,y)\mathbf{u}(x,y) = \mathbf{g}(x,y) \text{ in } \Omega$

 $\mathbf{u}(x,y)$ is the pressure field,

 $\mathbf{k}(x,y)$ is the wave number,

 $\mathbf{g}(x,y)$ is the point source function and

 Ω is the domain. Absorbing boundary conditions are used on $\Gamma.$

$$\frac{\partial \mathbf{u}}{\partial n} - \iota \mathbf{u} = 0$$

n is the unit normal vector pointing outwards on the boundary.

Perfectly Matched Layer (PML) and Absorbing Boundary Layer (ABL)

May 18, 2015

Delft Institute of Applied Mathematics

Problem description

• Second order Finite Difference stencil:

$$\begin{array}{ccc}
-1 \\
-1 & 4 - k^2 h^2 & -1 \\
-1 & -1
\end{array}$$

- Linear system Au = g: properties
 Sparse & complex valued
 Symmetric & Indefinite for large k
- For high resolution a very fine grid is required: 10 20 gridpoints per wavelength $\rightarrow A$ is extremely large!

Delft Institute of Applied Mathematics

May 18, 2015

2. Shifted Laplace Preconditioning

Equivalent linear system $M_1^{-1}AM_2^{-1}\tilde{x} = \tilde{b}$, where $M = M_1 \cdot M_2$ is the preconditioning matrix and

$$\tilde{x} = M_2 x, \quad \tilde{b} = M_1 b.$$

Requirements for a preconditioner

- better spectral properties of $M^{-1}A$
- cheap to perform $M^{-1}r$.

Spectrum of A is $\{\mu_i - k^2\}$, with k a given constant and μ_i are the

eigenvalues of the Laplace operator. Note that $\mu_1 - k^2$ may be negative.

May 18, 2015

Preconditioning (Laplace type)

Laplace operator Bayliss and Turkel, 1983
Definite Helmholtz Laird, 2000
Shifted Laplace Y.A. Erlangga, C. Vuik and C.W.Oosterlee, 2003

Shifted Laplace preconditioner (SLP)

$$M \equiv -\Delta - (\beta_1 - \mathbf{i}\beta_2)k^2, \ \beta_1, \beta_2 \in \mathbb{R}.$$

- $ightarrow eta_1, eta_2 = 0$: Bayliss and Turkel
- $ightarrow eta_1 = -1, eta_2 = 0$: Laird
- $\rightarrow \beta_1 = 1, \beta_2 = 0.5$: Y.A. Erlangga, C. Vuik and C.W.Oosterlee

May 18, 2015

Numerical experiments

Example with constant k in Ω

Iterative solver: Bi-CGSTAB

Preconditioner: Shifted-Laplace operator, discretized using the same method as the Helmholtz operator.

k	ILU(0.01)	M_0	M_1	M_i
5	9	13	13	13
10	25	29	28	22
15	47	114	45	26
20	82	354	85	34
30	139	> 1000	150	52

May 18, 2015

10

Eigenvalues for Complex preco k = 100

May 18, 2015

Inner iteration

Possible solvers for solution of Mz = r:

- ILU approximation of *M*
- inner iteration with ILU as preconditioner
- Multigrid

May 18, 2015

Multigrid components

- geometric multigrid
- Gauss-Seidel with red-black ordering
- matrix dependent interpolation, full weighting restriction
- Galerkin coarse grid approximation

12

Numerical results for a wedge problem

k_2	10	20	40	50	100
grid	32^{2}	64^{2}	128^{2}	192^{2}	384^{2}
No-Prec	201(0.56)	1028(12)	5170(316)	—	—
ILU(A, 0)	55(0.36)	348(9)	1484(131)	2344(498)	—
ILU(A, 1)	26(0.14)	126(4)	577(62)	894(207)	—
ILU(M, 0)	57(0.29)	213(8)	1289(122)	2072(451)	—
ILU(M, 1)	28(0.28)	116(4)	443(48)	763(191)	2021(1875)
MG(V(1,1))	13(0.21)	38(3)	94(28)	115(82)	252(850)

Delft Institute of Applied Mathematics

A

Spectrum as function of k

3. Second Level Preconditioning

Deflation (or two-grid method), a projection preconditioner

P = I - AQ, with $Q = ZE^{-1}Z^T$ and $E = Z^TAZ$

where,

 $Z \in \mathbb{R}^{n \times r}$, with deflation vectors $Z = [z_1, ..., z_r]$, $rank(Z) = r \le n$

Along with a traditional preconditioner M, deflated preconditioned system reads

 $PM^{-1}Au = PM^{-1}g.$

Deflation vectors shifted the eigenvalues to zero.

15

May 18, 2015

Deflation for Helmholtz

With choice of multigrid inter-grid transfer operator (Prolongation) as deflation matrix, i.e. $Z = I_h^{2h}$ and $Z^T = I_{2h}^h$ then

 $P_h = I_h - A_h Q_h$, with $Q_h = I_h^{2h} A_{2h}^{-1} I_{2h}^h$ and $A_{2h} = I_{2h}^h A_h I_h^{2h}$

where

- P_h can be interpreted as a coarse grid correction and
- Q_h as the coarse grid operator

Deflation: ADEF1

Deflation can be implemented combined with SLP M_h ,

 $M_h^{-1}P_hA_hu_h = M_h^{-1}P_hg_h$

 $A_h u_h = g_h$ is preconditioned by the two-level preconditioner $M_h^{-1} P_h$.

For large problems, A_{2h} is too large to invert exactly. Inversion of A_{2h} is sensitive, since P_h deflates the spectrum to zero.

To do: Solve A_{2h} iteratively to a required accuracy on certain levels, and shift the deflated spectrum to λ_h^{max} by adding a shift in the two level preconditioner. This leads to the **ADEF1** preconditioner

 $P_{(h,ADEF1)} = M_h^{-1} P_h + \lambda_h^{max} Q_h$

May 18, 2015

Deflation: MLKM

Multi Level Krylov Method ^{*a*}, take $\hat{A}_h = M_h^{-1}A_h$, and define \hat{P}_h by using \hat{A}_h (instead of A_h) will be

$$\hat{P}_h = I_h - \hat{A}_h \hat{Q}_h,$$

where

$$\hat{Q}_h = I_h^{2h} \hat{A}_{2h}^{-1} I_{2h}^h$$
 and $\hat{A}_{2h} = I_{2h}^h \hat{A}_h I_h^{2h} = I_{2h}^h (M_h^{-1} A_h) I_h^{2h}$

Construction of coarse matrix A_{2h} at level 2h costs inversion of preconditioner at level h. Approximate A_{2h}

Ideal	Practical
$\hat{A}_{2h} = I_{2h}^h (M_h^{-1} A_h) I_h^{2h}$	$\hat{A}_{2h} = I_{2h}^h (M_h^{-1} A_h) I_h^{2h}$
	$\hat{A}_{2h} \approx I_{2h}^{h} I_{h}^{2h} M_{2h}^{-1} A_{2h}$

^aErlangga, Y.A and Nabben R., ETNA 2008

May 18, 2015

Delft Institute of Applied Mathematics

4. Numerical results

hard Marmousi Model

May 18, 2015

hard Marmousi Model, PETSc solver

kh = 0.39, Bi-CGSTAB for SLP, FGMRES(20) for ADEF1(8,2,1)

Frequency f	Solve Time		Iterations	
	SLP-F	ADEF1-F	SLP-F	ADEF1-F
1	1.22	5.07	13	7
10	10.18	9.43	112	13
20	72.16	60.32	189	22
40	550.20	426.79	354	39

May 18, 2015

Cube with constant k

May 18, 2015

21

Cube with constant k

Wave number	Solve Time		Iterations	
k	SLP-F	ADEF1-F	SLP-F	ADEF1-F
5	0.04	0.32	7	8
10	0.48	2.32	9	9
20	8.14	17.28	20	9
40	228.29	155.52	70	10
60	1079.99	607.45	97	11

May 18, 2015

Cube with constant k

Deltt Institute of Applied Mathematics

Cube with variable k

k	CLSP(time)	ADEF1(time)	CLSP	ADEF1
5	0.09	0.24	9	11
10	1.07	1.94	15	12
20	16.7	18.9	32	16
40	1304	214	331	24

May 18, 2015

24

5. Conclusions

- Without deflation, when imaginary shift is increased in SLP, spectrum remains bounded above 1, but lower part moves to zero.
- With deflation the convergence is nearly independent of the imaginary shift.
- With deflation the convergence is initially weakly depending on k.
 For very large k it scales again linearly.
- With deflation the CPU time is less than without deflation.
- The convergence of ADEF1 and the practical variant of MLKM are similar.

References

- Y.A. Erlangga and C.W. Oosterlee and C. Vuik A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems SIAM J. Sci. Comput.,27, pp. 1471-1492, 2006
- Y.A. Erlangga and R. Nabben. On a multilevel Krylov method for the Helmholtz equation preconditioned by shifted Laplacian. ETNA, 2008.
- H. Knibbe and C.W. Oosterlee and C. Vuik GPU implementation of a Helmholtz Krylov solver preconditioned by a shifted Laplace multi-grid method. Journal of Computational and Applied Mathematics, 236, pp. 281-293, 2011
- A.H. Sheikh, D. Lahaye and C. Vuik. On the convergence of shifted Laplace preconditioner combined with multi-grid deflation. Numerical Linear Algebra with Applications, 20, pp. 645-662, 2013
- http://ta.twi.tudelft.nl/nw/users/vuik/numanal/sheikh.pdf Thesis

http://ahsheikh.github.io/adef1.html Software

http://ta.twi.tudelft.nl/nw/users/vuik/pub_it_helmholtz.html Publications

May 18, 2015

26

Fourier Analysis of two-level methods

Dirichlet boundary conditions for analysis. With above deflation,

 $\operatorname{spec}(PM^{-1}A) = f(\beta_1, \beta_2, k, h)$

is a complex valued function.

Setting kh = 0.625,

May 18, 2015

- Spectrum of $PM^{-1}A$ with shifts (1, 0.5) is clustered around 1 with a few outliers.
- Spectrum remains almost the same, when the imaginary shift for the preconditioner is varied from 0.5 to 1.

Fourier Analysis

<u>ADEF1:</u> Analysis shows spectrum clustered around 1 with few outliers.

k = 30 k = 120

May 18, 2015

Fourier Analysis

Spectrum of Helmholtz preconditioned by <u>MLKM</u> b , k = 160 and 20 gp/wl Ideal Practical

^bTwo-level

May 18, 2015

TUDelft

29