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Application: geophysical survey

hard Marmousi Model
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Application: geophysical survey

hard Marmousi Model (2005)
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Application: geophysical survey

Cube with constant k (2015)
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1. Introduction

The Helmholtz equation without damping

−∆u(x, y)− k2(x, y)u(x, y) = g(x, y) in Ω

u(x, y) is the pressure field,

k(x, y) is the wave number,

g(x, y) is the point source function and

Ω is the domain. Absorbing boundary conditions are used on Γ.

∂u

∂n
− ιu = 0

n is the unit normal vector pointing outwards on the boundary.

Perfectly Matched Layer (PML) and Absorbing Boundary Layer (ABL)
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Problem description

• Second order Finite Difference stencil:




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• Linear system Au = g: properties

Sparse & complex valued

Symmetric & Indefinite for large k

• For high resolution a very fine grid is required: 10− 20 gridpoints

per wavelength → A is extremely large!
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2. Shifted Laplace Preconditioning

Equivalent linear system M−1
1 AM−1

2 x̃ = b̃, where M = M1 ·M2 is the

preconditioning matrix and

x̃ = M2x, b̃ = M1b.

Requirements for a preconditioner

• better spectral properties of M−1A

• cheap to perform M−1r.

Spectrum of A is {µi − k2}, with k a given constant and µi are the

eigenvalues of the Laplace operator. Note that µ1−k2 may be negative.
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Preconditioning (Laplace type)

Laplace operator Bayliss and Turkel, 1983

Definite Helmholtz Laird, 2000

Shifted Laplace Y.A. Erlangga, C. Vuik and C.W.Oosterlee, 2003

Shifted Laplace preconditioner (SLP)

M ≡ −∆− (β1 − iβ2)k
2, β1, β2 ∈ R.

→ β1, β2 = 0 : Bayliss and Turkel

→ β1 = −1, β2 = 0 : Laird

→ β1 = 1, β2 = 0.5 : Y.A. Erlangga, C. Vuik and C.W.Oosterlee
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Numerical experiments

Example with constant k in Ω

Iterative solver: Bi-CGSTAB

Preconditioner: Shifted-Laplace operator, discretized using the same

method as the Helmholtz operator.

k ILU(0.01) M0 M1 Mi

5 9 13 13 13

10 25 29 28 22

15 47 114 45 26

20 82 354 85 34

30 139 > 1000 150 52
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Eigenvalues for Complex preco k = 100

spectrum is independent of the grid size

75 grid points 150 grid points
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Inner iteration

Possible solvers for solution of Mz = r:

• ILU approximation of M

• inner iteration with ILU as preconditioner

• Multigrid

Multigrid components

- geometric multigrid

- Gauss-Seidel with red-black ordering

- matrix dependent interpolation, full weighting restriction

- Galerkin coarse grid approximation
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Numerical results for a wedge problem

k2 10 20 40 50 100

grid 322 642 1282 1922 3842

No-Prec 201(0.56) 1028(12) 5170(316) – –

ILU(A,0) 55(0.36) 348(9) 1484(131) 2344(498) –

ILU(A,1) 26(0.14) 126(4) 577(62) 894(207) –

ILU(M ,0) 57(0.29) 213(8) 1289(122) 2072(451) –

ILU(M ,1) 28(0.28) 116(4) 443(48) 763(191) 2021(1875)

MG(V(1,1)) 13(0.21) 38(3) 94(28) 115(82) 252(850)
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Spectrum as function of k
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3. Second Level Preconditioning

Deflation (or two-grid method), a projection preconditioner

P = I −AQ, with Q = ZE−1ZT and E = ZTAZ

where,

Z ∈ Rn×r, with deflation vectors Z = [z1, ..., zr], rank(Z) = r ≤ n

Along with a traditional preconditioner M , deflated preconditioned

system reads

PM−1Au = PM−1g.

Deflation vectors shifted the eigenvalues to zero.
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Deflation for Helmholtz

With choice of multigrid inter-grid transfer operator (Prolongation) as

deflation matrix, i.e. Z = I2hh and ZT = Ih2h then

Ph = Ih −AhQh, with Qh = I2hh A−1
2h I

h
2h and A2h = Ih2hAhI

2h
h

where

Ph can be interpreted as a coarse grid correction and

Qh as the coarse grid operator
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Deflation: ADEF1

Deflation can be implemented combined with SLP Mh,

M−1
h PhAhuh = M−1

h Phgh

Ahuh = gh is preconditioned by the two-level preconditioner M−1
h Ph.

For large problems, A2h is too large to invert exactly.

Inversion of A2h is sensitive, since Ph deflates the spectrum to zero.

To do: Solve A2h iteratively to a required accuracy on certain levels,

and shift the deflated spectrum to λmax
h by adding a shift in the two

level preconditioner. This leads to the ADEF1 preconditioner

P(h,ADEF1) = M−1
h Ph + λmax

h Qh
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Deflation: MLKM
Multi Level Krylov Method a, take Âh = M−1

h Ah, and define P̂h by

using Âh (instead of Ah) will be

P̂h = Ih − ÂhQ̂h,

where

Q̂h = I2hh Â−1
2h I

h
2h and Â2h = Ih2hÂhI

2h
h = Ih2h(M

−1
h Ah)I

2h
h

Construction of coarse matrix A2h at level 2h costs inversion of preconditioner at level h.

Approximate A2h

Ideal Practical

Â2h = Ih2h(M
−1
h Ah)I

2h
h Â2h = Ih2h(M

−1
h Ah)I

2h
h

Â2h ≈ Ih2hI
2h
h M−1

2h A2h

aErlangga, Y.A and Nabben R., ETNA 2008
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4. Numerical results

hard Marmousi Model
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Application: geophysical survey

hard Marmousi Model, PETSc solver

kh = 0.39, Bi-CGSTAB for SLP, FGMRES(20) for ADEF1(8,2,1)

Frequency f Solve Time Iterations

SLP-F ADEF1-F SLP-F ADEF1-F

1 1.22 5.07 13 7

10 10.18 9.43 112 13

20 72.16 60.32 189 22

40 550.20 426.79 354 39
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Application: geophysical survey

Cube with constant k
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Application: geophysical survey

Cube with constant k

Wave number Solve Time Iterations

k SLP-F ADEF1-F SLP-F ADEF1-F

5 0.04 0.32 7 8

10 0.48 2.32 9 9

20 8.14 17.28 20 9

40 228.29 155.52 70 10

60 1079.99 607.45 97 11
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Application: geophysical survey

Cube with constant k
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Application: geophysical survey

Cube with variable k

k CLSP(time) ADEF1(time) CLSP ADEF1

5 0.09 0.24 9 11

10 1.07 1.94 15 12

20 16.7 18.9 32 16

40 1304 214 331 24
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5. Conclusions
• Without deflation, when imaginary shift is increased in SLP,

spectrum remains bounded above 1, but lower part moves to zero.

• With deflation the convergence is nearly independent of the

imaginary shift.

• With deflation the convergence is initially weakly depending on k.

For very large k it scales again linearly.

• With deflation the CPU time is less than without deflation.

• The convergence of ADEF1 and the practical variant of MLKM are

similar.
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Fourier Analysis of two-level methods

Dirichlet boundary conditions for analysis.

With above deflation,

spec(PM−1A) = f(β1, β2, k, h)

is a complex valued function.

Setting kh = 0.625,

• Spectrum of PM−1A with shifts (1, 0.5) is clustered around 1 with

a few outliers.

• Spectrum remains almost the same, when the imaginary shift for

the preconditioner is varied from 0.5 to 1.



May 18, 2015 28

Delft Institute of Applied Mathematics

Fourier Analysis

ADEF1: Analysis shows spectrum clustered around 1 with few outliers.

k = 30 k = 120
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Fourier Analysis

Spectrum of Helmholtz preconditioned by MLKM b,

k = 160 and 20 gp/wl

Ideal Practical
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