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Motivation

Develop fast solution procedures for the system of linear equations

A

(
x
y

)
=

(
f
g

)

./ A complex and A = AT

./ A =

(
A B

BT C

) ∗ A is large sparse complex, A = AT

∗ B and C small and dense
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Context of the Research

./ collaboration:

∗ Scientific Computing Group (Department of Computer Science)

∗ Division Electrical Energy (Department of Electrical Engineering)

./ aim: develop software for the numerical simulation of electromagnetic devices

./ main emphasis: efficient solvers for linear systems resulting from discretized
partial differential equations

./ typical applications: electrical machines, transformers, power lines, induction
furnaces, ...

Context of the Research Domenico Lahaye



Structure of the Presentation

./ Context of the Research
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Problem Description

Magnetic Field Problem

./ Field equation ∇× (ν ∇× A) + σ
∂A

∂t
= −σ ∇φ B = ∇× A

E = −∇φ −
∂A

∂t

./ Modelling assumptions ∗ Time-harmonic A(x, t) = Re[ Â(x) exp(j ωt) ]

∗ Two dimensional Â(x) = (0,0, Âz(x, y))

./ PDE −
∂

∂x

(
ν

∂Âz

∂x

)
−

∂

∂y

(
ν

∂Âz

∂y

)
+ j ω σ Âz = −σ

∂φ̂

∂z
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Problem Description (2)

Electrical Circuit Problem

./ parts of the computational domain are electrically conducting

./ time-varying currents induce magnetic fields

./ a description of the interconnection of the conducting parts is required to model
the electromagnetic interaction

./ electrical circuit described by Kirchhoff Current (I) and Voltage (V ) Laws

C

(
I
V

)
=

(
I0
V0

)
with C the electrical circuit matrix
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Problem Description (3)

Magnetic Field-Electrical Circuit Coupled Problem

./ coupling through electrically induced magnetic effects in the conductors

./ finite element discretization for the magnetic field, resulting in

A

(
x
y

)
=

(
0
g

)
with A =

(
A B

BT C

)
A complex A = A

T

∗ A discretized field problem large, sparse

∗ C electrical circuit matrix dim(C) � dim(A), dense

∗ B coupling matrix sparse with dense blocks or dense
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Multigrid methods

./ exploit PDE background of the linear problem

./ multigrid methods = smoother + coarse grid correction

./ two-grid scheme
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Algebraic Multigrid for Ah xh = bh

./ Setup phase ∗ construction of C/F splitting and interpolation

∗ strength of coupling between nodes coded in Ah exploited

∗ matrix dependent interpolation: (IH
h )ij ∼ Ah

ij/A
h
ii

∗ Galerkin coarsening: AH = IH
h Ah Ih

H

∗ apply recursively using AH as input

./ Solve phase ∗ multigrid cycling

⇒ only Ah required as input!
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Stationary Field Problems

A x = b

./ Matrix properties: ∗ A is real and sparse
∗ A is symmetric positive definite

./ Algebraic multigrid: ∗ Ruge-Stüben code (RAMG) developed in the ’80s
∗ its successor developed by Stüben in the ’90s (SAMG)

./ Krylov acceleration: Conjugate Gradient method
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Numerical Results for Stationary Problems

Permanent Magnet Machine

∗ adaptive mesh refinement

∗ nonlinear PDE
‘
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Numerical Results for Stationary Problems (2)

./ Number of iterations for RAMG
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∗ multigrid behavior

∗ CG accelerates and
stabilizes convergence
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Numerical Results for Stationary Problems (3)

./ CPU-time measurements for RAMG
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factor 15
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Time Harmonic Field Problems

A x = b with A = AR + j AI j 2 = −1

./ Matrix properties: ∗ A is complex and symmetric
∗ AR has properties of system matrix in stationary problems

./ Krylov acceleration: ∗ CG for complex symmetric systems (COCG)

Time Harmonic Field Problems Domenico Lahaye



Extension of AMG to Time-Harmonic Problems

Ah xh = bh with Ah = Ah
R + j Ah

I j 2 = −1

./ Algorithm:
∗ based on real part of Ah ⇒ C/F−splitting + interpolation IH

h
⇒ IH

h is real

∗ given IH
h , set Ih

H = (IH
h )T , and construct AH = Ih

H (Ah
R + j Ah

I ) IH
h

./ Motivation: AH has properties of coarse grid discretization
AH inherits complex symmetry from Ah

./ Implementation: version of SAMG for systems of coupled differential equations
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Implementation of AMG for Time-Harmonic Problems

Rewrite Ah xh = bh as A
h

(
xh

R
xh

I

)
=

(
bh
R

bh
I

)
where A

h =

(
Ah

R −Ah
I

Ah
I Ah

R

)

./ setup phase:
∗ C/F -splitting + IH

h based on diagonal block of Ah ⇒ real part of Ah

∗ Galerkin coarsening: Ih
H =

(
Ih
H 0

0 Ih
H

)
AH = IH

h Ah Ih
H

./ solve phase:
∗ 2×2 block smoothers coupling real and imaginary component at each node
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Numerical Results for Time-Harmonic Problems

Half model of an 400kW induction machine
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Numerical Results for Time-Harmonic Problems (2)

./ CPU-time of ILU/COCG and AMG/BiCGSTAB
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Extension of AMG for Coupled Problems

Two-grid scheme

A
h

(
xh

y

)
=

(
fh

g

)
with A

h =

(
Ah Bh

(Bh)T C

)
and Ah = Ah

R + j Ah
I

./ Setup phase

∗ coarsen the field variables: Ah
R ⇒ C/F splitting + Ih

H ⇒ AH = IH
h Ah Ih

H

∗ transfer all circuit variables to coarser grid

∗ Galerkin coarsening of the coupled problem

A
H =

(
IH
h 0

0 I

)
A

h

(
Ih
H 0
0 I

)
=

(
AH BH

(BH)T C

)
with BH = IH

h Bh
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Extension of AMG for Coupled Problems (2)

Two-grid scheme

A
h

(
xh

y

)
=

(
fh

g

)
with A

h =

(
Ah Bh

(Bh)T C

)
and Ah = Ah

R + j Ah
I

./ Solve phase

∗ smooth only the field variables: Sh =

(
Sh 0
0 I

)

∗ corrections for the field and circuit variables computed on the coarse grid

A
H

(
ex

ey

)
=

(
rx

ry

)
with A

H =

(
AH BH

(BH)T C

)
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Numerical Results for Coupled Problems

Model of an 40kW induction machine

∗ 4 mesh refinement steps

∗ 148 circuit relations
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Numerical Results for Coupled Problems (2)

./ Number of iterations of block Jacobi and generalized AMG algorithms
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Numerical Results for Coupled Problems (3)

./ CPU-time of ILU/COCG and block-Jacobi/COCG
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Numerical Results for Coupled Problems (4)

./ CPU-time of block Jacobi/COCG and generalized AMG/COCG
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Implementation Issues

The AMG-PETSc interface

./ level 1 interface: RAMG/SAMG available as preconditioner in PETSc
(PETSc: Smith ’97)

Features ∗ acceleration by Krylov subspace methods available in PETSc

Level 1 interface with RAMG now available in the PETSc distribution

./ level 2 interface: ∗ SAMG constructs multigrid hierarchy
∗ PETSc components do the multigrid cycling

Features ∗ cycling phase extensible to problem dependent requirements
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Conclusions

./ We presented algebraic multigrid based solvers for stationary and time-harmonic
magnetic field and magnetic field-electrical circuit coupled problems

./ (Algebraic) Multigrid is not a particular algorithm, but rather a general method-
ology suitable for a broad range of problems

./ Algebraic multigrid methods deliver a speedup and outperform by far previously
implemented solvers

./ Algebraic multigrid solvers have been coupled with a finite element simulation
package in such a way to allow their use in practical engineering problems
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