Algebraic Multigrid for Two-dimensional Time-Harmonic Magnetic Field Computations

Domenico Lahaye

Advisors: Prof. Dr. Ir. S. Vandewalle and Prof. Dr. -Ing. K. Hameyer

Motivation

Develop fast solution procedures for the system of linear equations

$$\mathcal{A}\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} f\\ g \end{pmatrix}$$

 $\bowtie \mathcal{A}$ complex and $\mathcal{A} = \mathcal{A}^T$

$$\bowtie \mathcal{A} = \begin{pmatrix} A & B \\ B^T & C \end{pmatrix}$$

* A is large sparse complex, $A = A^T$

* B and C small and dense

- \bowtie Context of the Research
- \bowtie Problem Description
- ⋈ Solution Techniques
- ⋈ Step 1 : Stationary Problems
- ⋈ Step 2 : Time-Harmonic Problems
- ⋈ Step 3 : Field-Circuit Coupled Problems
- \bowtie Implementation Issues
- \bowtie Conclusions

 \bowtie collaboration:

- * Scientific Computing Group (Department of Computer Science)
- * Division Electrical Energy (Department of Electrical Engineering)

▶ aim: develop software for the numerical simulation of electromagnetic devices

- main emphasis: efficient solvers for linear systems resulting from discretized
 partial differential equations
- ► typical applications: electrical machines, transformers, power lines, induction furnaces, ...

- \bowtie Context of the Research
- ⋈ Problem Description
- ⋈ Solution Techniques
- ⋈ Step 1 : Stationary Problems
- ⋈ Step 2 : Time-Harmonic Problems
- ⋈ Step 3 : Coupled Problems
- \bowtie Implementation Issues
- \bowtie Conclusions

- * Magnetic field problem
- * Electrical circuit problem
- * Coupled problem

Problem Description

Magnetic Field Problem

$$\bowtie \text{ Field equation} \quad \nabla \times (\nu \nabla \times \mathbf{A}) + \sigma \frac{\partial \mathbf{A}}{\partial t} = -\sigma \nabla \phi \quad \mathbf{B} = \nabla \times \mathbf{A}$$
$$\mathbf{E} = -\nabla \phi - \frac{\partial \mathbf{A}}{\partial t}$$

 \bowtie Modelling assumptions

* Time-harmonic

$$\mathbf{A}(\mathbf{x},t) = \mathsf{Re}[\,\widehat{\mathbf{A}}(\mathbf{x})\,\mathsf{exp}(j\,\omega t)\,]$$

* Two dimensional $\widehat{A}(x)$

$$\hat{A}(\mathbf{x}) = (0, 0, \hat{A}_z(x, y))$$

$$\bowtie \mathsf{PDE} \qquad -\frac{\partial}{\partial x} \left(\nu \frac{\partial \hat{A}_z}{\partial x} \right) - \frac{\partial}{\partial y} \left(\nu \frac{\partial \hat{A}_z}{\partial y} \right) + j \ \omega \sigma \ \hat{A}_z = -\sigma \frac{\partial \hat{\phi}}{\partial z}$$

Electrical Circuit Problem

- ▶ parts of the computational domain are electrically conducting
- \bowtie time-varying currents induce magnetic fields
- A description of the interconnection of the conducting parts is required to model the electromagnetic interaction

 \bowtie electrical circuit described by Kirchhoff Current (I) and Voltage (V) Laws

$$C \begin{pmatrix} I \\ V \end{pmatrix} = \begin{pmatrix} I_0 \\ V_0 \end{pmatrix}$$
 with C the electrical circuit matrix

Problem Description (3)

Magnetic Field-Electrical Circuit Coupled Problem

coupling through electrically induced magnetic effects in the conductors
 finite element discretization for the magnetic field, resulting in

$$\mathcal{A}\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 0\\ g \end{pmatrix} \quad \text{ with } \quad \mathcal{A} = \begin{pmatrix} A & B\\ B^T & C \end{pmatrix} \quad \mathcal{A} \text{ complex } \quad \mathcal{A} = \mathcal{A}^T$$

- * A discretized field problem large, sparse
- * C electrical circuit matrix $\dim(C) \ll \dim(A)$, dense
- * B coupling matrix sparse with dense blocks or dense

- \bowtie Context of the Research
- ⋈ Problem Description
- ⋈ Solution Techniques
- ⋈ Step 1 : Stationary Problems
- ⋈ Step 2 : Time-Harmonic Problems
- ⋈ Step 3 : Coupled Problems
- \bowtie Implementation Issues
- \bowtie Conclusions

- * Multigrid
- * Algebraic Multigrid

exploit PDE background of the linear problem
 multigrid methods = smoother + coarse grid correction
 two-grid scheme

Algebraic Multigrid for $A^h x^h = b^h$

 \bowtie Setup phase * construction of C/F splitting and interpolation

- * strength of coupling between nodes coded in A^h exploited
- * matrix dependent interpolation: $(I_h^H)_{ij} \sim A_{ij}^h/A_{ii}^h$

* Galerkin coarsening:
$$A^H = I_h^H A^h I_H^h$$

- * apply recursively using A^H as input
- ⋈ Solve phase ∗ multigrid cycling

 \Rightarrow only A^h required as input!

- \bowtie Context of the Research
- ⋈ Problem Description
- \bowtie Solution Techniques
- ⋈ Step 1 : Stationary Problems
- ⋈ Step 2 : Time-Harmonic Problems
- ⋈ Step 3 : Coupled Problems
- \bowtie Implementation Issues
- \bowtie Conclusions

- * Problem Description
- * Numerical Results

Stationary Field Problems

 $A \, x = b$

Matrix properties: *A is real and sparse *A is symmetric positive definite

Algebraic multigrid: * Ruge-Stüben code (RAMG) developed in the '80s * its successor developed by Stüben in the '90s (SAMG)

Krylov acceleration: Conjugate Gradient method

Numerical Results for Stationary Problems

Permanent Magnet Machine

* adaptive mesh refinement

6

* nonlinear PDE

Numerical Results for Stationary Problems

Numerical Results for Stationary Problems (2)

 \bowtie Number of iterations for $\ensuremath{\mathsf{RAMG}}$

Numerical Results for Stationary Problems

Numerical Results for Stationary Problems (3)

 \bowtie CPU-time measurements for RAMG

Numerical Results for Stationary Problems

- \bowtie Context of the Research
- \bowtie Problem Description
- \bowtie Solution Techniques
- ⋈ Step 1 : Stationary Problems
- ⋈ Step 2 : Time-Harmonic Problems
- ⋈ Step 3 : Coupled Problems
- \bowtie Implementation Issues
- \bowtie Conclusions

- * Problem description
- * Extension of AMG
- Numerical results

$$A x = b$$
 with $A = A_R + j A_I$ $j^2 = -1$

Matrix properties: *A is complex and symmetric $*A_R$ has properties of system matrix in stationary problems

⋈ Krylov acceleration: ∗ CG for complex symmetric systems (COCG)

$$A^{h} x^{h} = b^{h}$$
 with $A^{h} = A^{h}_{R} + j A^{h}_{I}$ $j^{2} = -1$

 \bowtie Algorithm:

- * based on real part of $A^h \Rightarrow C/F$ -splitting + interpolation $I_h^H \Rightarrow I_h^H$ is real
- * given I_h^H , set $I_H^h = (I_h^H)^T$, and construct $A^H = I_H^h (A_R^h + j A_I^h) I_h^H$

Motivation: A^H has properties of coarse grid discretization A^H inherits complex symmetry from A^h

▶ Implementation: version of SAMG for systems of coupled differential equations

Rewrite
$$A^h x^h = b^h$$
 as $\mathcal{A}^h \begin{pmatrix} x_R^h \\ x_I^h \end{pmatrix} = \begin{pmatrix} b_R^h \\ b_I^h \end{pmatrix}$ where $\mathcal{A}^h = \begin{pmatrix} A_R^h & -A_I^h \\ A_I^h & A_R^h \end{pmatrix}$

 \bowtie setup phase:

* C/F-splitting + I_h^H based on diagonal block of $\mathcal{A}^h \Rightarrow$ real part of A^h

* Galerkin coarsening:
$$\mathcal{I}_{H}^{h} = \begin{pmatrix} I_{H}^{h} & 0\\ 0 & I_{H}^{h} \end{pmatrix} \qquad \mathcal{A}^{H} = \mathcal{I}_{h}^{H} \mathcal{A}^{h} \mathcal{I}_{H}^{h}$$

 \bowtie solve phase:

 $*2 \times 2$ block smoothers coupling real and imaginary component at each node

Numerical Results for Time-Harmonic Problems

Numerical Results for Time-Harmonic Problems

Numerical Results for Time-Harmonic Problems (2)

 \bowtie CPU-time of ILU/COCG and AMG/BiCGSTAB

Numerical Results for Time-Harmonic Problems

- \bowtie Context of the Research
- \bowtie Problem Description
- \bowtie Solution Techniques
- ⋈ Step 1 : Stationary Problems
- ⋈ Step 2 : Time-Harmonic Problems
- ⋈ Step 3 : Coupled Problems
- ⋈ Implementation Issues
- \bowtie Conclusions

- * Extension of AMG
- * Numerical results

Two-grid scheme

$$\mathcal{A}^{h}\begin{pmatrix} x^{h} \\ y \end{pmatrix} = \begin{pmatrix} f^{h} \\ g \end{pmatrix} \quad \text{with} \quad \mathcal{A}^{h} = \begin{pmatrix} A^{h} & B^{h} \\ (B^{h})^{T} & C \end{pmatrix} \quad \text{and} \quad A^{h} = A^{h}_{R} + j A^{h}_{I}$$

\bowtie Setup phase

- * coarsen the field variables: $A_R^h \Rightarrow C/F$ splitting $+ I_H^h \Rightarrow A^H = I_h^H A^h I_H^h$
- * transfer all circuit variables to coarser grid
- * Galerkin coarsening of the coupled problem

$$\mathcal{A}^{H} = \begin{pmatrix} I_{h}^{H} & 0\\ 0 & I \end{pmatrix} \ \mathcal{A}^{h} \ \begin{pmatrix} I_{H}^{h} & 0\\ 0 & I \end{pmatrix} = \begin{pmatrix} A^{H} & B^{H}\\ (B^{H})^{T} & C \end{pmatrix} \quad \text{with} \quad B^{H} = I_{h}^{H}B^{h}$$

Extension of AMG for Coupled Problems (2)

Two-grid scheme

$$\mathcal{A}^{h}\begin{pmatrix} x^{h} \\ y \end{pmatrix} = \begin{pmatrix} f^{h} \\ g \end{pmatrix} \quad \text{with} \quad \mathcal{A}^{h} = \begin{pmatrix} A^{h} & B^{h} \\ (B^{h})^{T} & C \end{pmatrix} \quad \text{and} \quad A^{h} = A^{h}_{R} + j A^{h}_{I}$$

 \bowtie Solve phase

* smooth only the field variables: $S^h = \begin{pmatrix} S^h & 0 \\ 0 & I \end{pmatrix}$

* corrections for the field and circuit variables computed on the coarse grid

$$\mathcal{A}^{H}\begin{pmatrix} e_{x} \\ e_{y} \end{pmatrix} = \begin{pmatrix} r_{x} \\ r_{y} \end{pmatrix} \quad \text{with} \quad \mathcal{A}^{H} = \begin{pmatrix} A^{H} & B^{H} \\ (B^{H})^{T} & C \end{pmatrix}$$

Numerical Results for Coupled Problems

Model of an 40kW induction machine

* 4 mesh refinement steps

* 148 circuit relations

Numerical Results for Coupled Problems

Number of iterations of block Jacobi and generalized AMG algorithms

Numerical Results for Coupled Problems (2)

Numerical Results for Coupled Problems (3)

 \bowtie CPU-time of ILU/COCG and block-Jacobi/COCG

Numerical Results for Coupled Problems (4)

▷ CPU-time of block Jacobi/COCG and generalized AMG/COCG

- \bowtie Context of the Research
- ⋈ Problem Description
- \bowtie Solution Techniques
- ⋈ Step 1 : Stationary Problems
- ⋈ Step 2 : Time-Harmonic Problems
- ⋈ Step 3 : Coupled Problems
- ⋈ Implementation Issues
- \bowtie Conclusions

Implementation Issues

The AMG-PETSc interface

Ievel 1 interface: RAMG/SAMG available as preconditioner in PETSc (PETSc: Smith '97)

Features * acceleration by Krylov subspace methods available in PETSc

Level 1 interface with RAMG now available in the PETSc distribution

level 2 interface: * SAMG constructs multigrid hierarchy * PETSc components do the multigrid cycling

Features * cycling phase extensible to problem dependent requirements

Conclusions

- We presented algebraic multigrid based solvers for stationary and time-harmonic magnetic field and magnetic field-electrical circuit coupled problems
- (Algebraic) Multigrid is not a particular algorithm, but rather a general methodology suitable for a broad range of problems
- Algebraic multigrid methods deliver a speedup and outperform by far previously implemented solvers
- Algebraic multigrid solvers have been coupled with a finite element simulation package in such a way to allow their use in practical engineering problems

