High-order isogeometric methods: Curse or blessing?

Matthias Möllera

Joint work with R. Tielena, J. Liua,*,
H. Schuttelaarsa, K. Vuika, D. G"{o}ddekeb

a Delft University of Technology, DIAM

b University of Stuttgart, IANS

INdAM: Geometric Challenges in Isogeometric Analysis
Rome, January 31, 2020

*CSC Scholarship
Outline

• Part 1: Solution **accuracy**
 • interplay of approximation and round-off error
 • towards an a-posteriori hp-adaptation strategy

• Part 2: Solver **efficiency**
 • p-multigrid method with ILUT smoother
 • discussion of choices and numerical examples

• Conclusion and outlook
Part 1: Solution accuracy
Model problem #1

Poisson equation in bounded domain Ω with Lipschitz continuous boundary Γ with $f \in L^2(\Omega)$ and $h \in L^2(\Gamma_N)$:

\[-\Delta u = f \quad \text{in } \Omega\]
\[u = g \quad \text{on } \Gamma_D\]
\[\partial_n u = h \quad \text{on } \Gamma_N\]

If Ω is convex, $g = 0$, and $\Gamma_N = \emptyset$ then [Nečas 1967]

\[u \in H^2(\Omega) \quad \text{and} \quad \|u\|_{2,\Omega} \leq c(\Omega) \|f\|_{0,\Omega}\]

Otherwise $u \in H^1_{g,D}(\Omega) := \{v \in H^1(\Omega) : v = w + g, w \in H^1_{0,D}(\Omega)\}$
A-priori error analysis

Weak form: Find $u \in H^1_{g,D}(\Omega)$ such that

$$(\nabla u, \nabla w) = (f, w) + (h, w)_{\Gamma_N} \quad \forall w \in H^1_{0,D}(\Omega)$$

Optimal approximation property of the FEM

$$\inf_{v_h \in V_h^{(p)}} \| u - v_h \|_{0, \Omega} = O(h^{p+1})$$

$$\inf_{v_h \in V_h^{(p)}} \| \nabla_h (u - v_h) \|_{0, \Omega} = O(h^p)$$
A-priori error analysis

Weak form: Find \(u \in H^1_{g,D}(\Omega) \) such that

\[
(\nabla u, \nabla w) = (f, w) + (h, w)_{\Gamma_N} \quad \forall w \in H^1_{0,D}(\Omega)
\]

Optimal approximation property of the FEM

\[
\inf_{v_h \in V_h^{(p)}} \| u - v_h \|_{0,\Omega} = O(h^{p+1})
\]

\[
\inf_{v_h \in V_h^{(p)}} \| \nabla_h (u - v_h) \|_{0,\Omega} = O(h^p)
\]

A word of caution: *asymptotic* convergence for \(h \to 0 \) is combated by round-off errors in practical computations w/ finite-precision arithmetic
Interplay of approximation and round-off errors

![Graph showing the interplay of approximation and round-off errors. The graph plots the number of DoFs against absolute error. Key points include: E_T, E_R, N_c, N_{opt}, E_{min}, E_c, α_T, α_R, β_T, and β_R. The graph illustrates the relationship between the number of DoFs and the absolute error, highlighting the optimal number of DoFs for minimizing error.]
Interplay of approximation and round-off errors

Best *computable* solution u_h is obtained for:

$$N_{\text{opt}} = \left(\frac{\alpha_T \beta_T}{\alpha_R \beta_R} \right)^{\frac{1}{\beta_T + \beta_R}}$$

with smallest possible error

$$E_{\text{min}} = \alpha_T \left(\frac{1}{N_{\text{opt}}} \right)^{\beta_T} + \alpha_R \left(\frac{1}{N_{\text{opt}}} \right)^{\beta_R}$$

J. Liu, MM, H. Schuttelaars, arXiv: 1912.08004
Best *computable* solution u_h is obtained for

$$N_{\text{opt}} = \left(\frac{\alpha T \beta T}{\alpha R \beta R} \right)^{\frac{1}{\beta T + \beta R}}$$

with smallest possible error

$$E_{\text{min}} = \alpha T \left(\frac{1}{N_{\text{opt}}} \right)^{\beta T} + \alpha R \left(\frac{1}{N_{\text{opt}}} \right)^{\beta R}$$

- How sensitive are $\alpha_T, \beta_T, \alpha_R, \beta_R$ to problem parameters?

J. Liu, MM, H. Schuttelaars, arXiv: 1912.08004
Interplay of approximation and round-off errors

Best *computable* solution u_h is obtained for*

$$N_{\text{opt}} = \left(\frac{\alpha T \beta T}{\alpha R \beta R} \right)^{\frac{1}{\beta T + \beta R}}$$

with smallest possible error

$$E_{\text{min}} = \alpha T \left(\frac{1}{N_{\text{opt}}} \right)^{\beta T} + \alpha R \left(\frac{1}{N_{\text{opt}}} \right)^{\beta R}$$

- How sensitive are $\alpha_T, \beta_T, \alpha_R, \beta_R$ to problem parameters?
- Can we develop an a-posteriori hp–adaptation strategy?

J. Liu, MM, H. Schuttelaars, arXiv: 1912.08004
P_2-FEM in 1d: $u(x) = (2\pi c_1)^{-2} \sin(2\pi c_1 x)$, $f(x) = \sin(2\pi c_1 x)$, $\Omega = (0,1)$

solution

first derivative

second derivative

Top row without scaling; bottom row with scaling $f/\|u\|$ and $u_h/\|u\|$
Analysis of further influence factors

- Type of boundary conditions: *no influence*
- Imposition of Dirichlet boundary conditions: *no influence*
- Computer precision: α_R changes, β_R remains constant

All results (also using mixed FEM) were produced with deal.II code*

Analysis of further influence factors

- Type of boundary conditions: *no influence*
- Imposition of Dirichlet boundary conditions: *no influence*
- Computer precision: α_R changes, β_R remains constant
- Solution strategy: *moderate influence*

All results (also using mixed FEM) were produced with deal.II code*

A-posteriori \(hp\)-adaptation strategy

Input: initial geometry with mesh width \(h\) and approximation order \(p\), tolerances for \(E_{\text{min}}\) and maximum mesh refinement steps

1. **Normalization**: compute \(u_h\) on coarse mesh and scale \(f/\|u_h\|\)

2. **Approximation error prediction**: compute \(u_h, u_h/2, \ldots\) on coarse meshes until asymptotic convergence rate is observed \(\rightarrow \alpha_T, \beta_T\)

3. **Round-off error prediction**: use lookup table from previous simulations or use manufactured solution that can be resolved exactly by \(P_p\)-FEM (possibly using lower precision) \(\rightarrow \alpha_R, \beta_R\)

4. **Effective error prediction**: compute \(N_{\text{opt}}\) and \(E_{\text{min}}\)

Output: \(N_{\text{opt}}\) and \(E_{\text{min}}\). If the estimated error satisfies the required tolerance compute \(u_{\text{opt}}\) otherwise repeat procedure with \(p := p + 1\) or switch to mixed FEM formulation
Model problem #2

Helmholtz equation:

\[((0.01 + x)(1.01 - x)u_x)_x - (0.01i)u(x) = 1.0 \text{ in } (0, 1)\]
\[u(0) = 0\]
\[u_x(1) = 0\]
Model problem #2

Helmholtz equation:

\[
((0.01 + x)(1.01 - x)u_x)_x - (0.01i)u(x) = 1.0 \quad \text{in } (0, 1)
\]

\[
u(0) = 0
\]

\[
u_x(1) = 0
\]
Is this of practical relevance?

Yes …

- since high-order methods can improve the 'effective' accuracy of solutions by orders of magnitudes
- since \(h \)-refinement is only effective in a small range of refinements for (very) high-order methods and should therefore be used with care

\(S_p^{p-1} \)-IGA solutions of model problem #1 with \(\Omega = (0, 1) \)
Is this of practical relevance?

Yes ...

- since high-order methods can improve the 'effective' accuracy of solutions by orders of magnitudes
- since h-refinement is only effective in a small range of refinements for (very) high-order methods and should therefore be used with care
- since the same phenomenon is observed already for moderately refined meshes in 2d (and 3d)

S_p^{p-1}-IGA solutions of model problem #1 with $\Omega = (0, 1)^2$
Part 2: Solver efficiency
Efficient solvers for IGA discretizations

h-multigrid methods enhanced with
- boundary corrected mass-Richardson smoother [Hofreither 2017]
- hybrid smoother [Sogn 2018]
- multiplicative Schwarz smoother [de la Riva 2018]
- ...

Preconditioners based on
- Schwarz methods [Beirão da Veiga 2012]
- Sylvester equation [Sangalli 2016]
- BPX for (T)HB [Bracco et al. 2019]
- ...

14 / 30
Basics of multigrid methods [Strang 2006]

Repeat until converged u_{fine} is reached

1. **Iterate** on $A_{fine}u_{fine} = f_{fine}$ to reach \tilde{u}_{fine}
2. **Restrict** the residual $r_{fine} := f_{fine} - A_{fine}\tilde{u}_{fine}$ to the coarse level by applying the restriction operator, i.e. $r_{coarse} = I_{fine}^{coarse}r_{fine}$
3. **Solve** for the coarse level correction $A_{coarse}E_{coarse} = r_{coarse}$
4. **Prolongate** E_{coarse} back to the fine level by $E_{fine} = I_{coarse}^{fine}E_{coarse}$
5. **Add** the correction, i.e. $\hat{u}_{fine} := \tilde{u}_{fine} + E_{fine}$
6. **Iterate** on $A_{fine}\hat{u}_{fine} = f_{fine}$ to reach u_{fine}

Step 3 calls the multigrid procedure recursively until a coarse level is reached, where the error equation can be solved 'exactly'.
Motivation for using p-multigrid methods

The linear system $A_{h,p} u_{h,p} = f_{h,p}$

- becomes more difficult to solve for increasing p
- reduces to C^0-FEM for $p = 1$ (where h-multigrid works fine)

In contrast to h-multigrid methods

- the #DoFs does not reduce significantly on coarser p-levels
- the stencil reduces significantly on coarse p-levels
- the spaces are not nested, i.e. $(S_{h,p}^{p-1} \not\subset S_{h,p-1}^{p-2} \not\subset \ldots)$
V-cycle p-multigrid variants

- ILUT or GS smoothing is applied at each level (\bullet)
- LU decomposition is applied as direct coarse level solver
Prolongation and restriction

Prolongation in \(h \)

\[I_{2h,1}^{h,1} \text{ is linear interpolation} \]

Restriction in \(h \)

\[I_{h,1}^{2h,1} = \frac{1}{2} \left(I_{2h,1}^{h,1} \right)^T \]

Prolongation in \(p \)

\[I_{h,p}^{h,p-1} := (M_p^p)^{-1}M_{p-1}^p \]

Restriction in \(p \)

\[I_{h,p}^{h,p-1} := (M_{p-1}^{p-1})^{-1}M_p^{p-1} \]

Let \(\phi_i^q \) denote the \(i^{th} \) basis function from \(S_{h,q}^{q-1} \). Then define

\[(M_q^r)_{(i,j)} := \int_{\hat{\Omega}_h} \phi_i^q(\xi) \phi_j^r(\xi) c(\xi) \, d\hat{\Omega} \]

Replace \(M_q^q \) by its row-sum lumped counterpart (\(\rightarrow \) diagonal matrix)
ILUT smoother [Saad 1994]

Setup: Incomplete LU factorization of $A_{h,p} \approx L_{h,p} U_{h,p}$ thereby

1. dropping all elements lower than tolerance $\tau = 10^{-13}$
2. keeping only the N (= average number of non-zero entries in each row of $A_{h,p}$) largest elements in each row

Application: perform $s = 1, \ldots, \nu$ smoothing steps

$$e^{(s)}_{h,p} = (L_{h,p} U_{h,p})^{-1}(f_{h,p} - A_{h,p} u^{(s)}_{h,p})$$

$$u^{(s+1)}_{h,p} = u^{(s)}_{h,p} + e^{(s)}_{h,p}$$
Model problem #1, revisited

Obtaining coarse level operators

- Galerkin projection $\mathbf{A}^G_{h,p-1} = \mathcal{I}^{h,p-1}_h \mathbf{A}_{h,p} \mathcal{I}^{h,p}_h$
- re-discretization of $\mathbf{A}_{h,p}$ on each level

Poisson equation on quarter annulus with radii 1 and 2, $g = 0$, $\Gamma_N = \partial [1, 2]$, f such that

$$u(x,y) = -\left(x^2 + y^2 - 1\right)\left(x^2 + y^2 - 4\right)xy^2$$

$$p = 2\kappa (\mathbf{A}^G_{h,1} - \mathbf{A}^{RD}_{h,1})$$

$$h = 2 - 4\cdot 10^{-0.0078}$$

$$h = 2 - 4\cdot 10^{-0.78}$$

$$h = 2 - 4\cdot 10^{-0.91}$$

$$h = 2 - 5\cdot 10^{-0.56}$$

$$h = 2 - 6\cdot 10^{-0.99}$$

$$h = 2 - 7\cdot 10^{-1.18}$$

$$h = 2 - 8\cdot 10^{-1.07}$$

$$h = 2 - 9\cdot 10^{-1.61}$$

$$h = 2 - 10\cdot 10^{-2.07}$$
Model problem #1, revisited

Obtaining coarse level operators

- Galerkin projection $A_{h,p-1}^G = I_{h,p}^h A_{h,p} I_{h,p-1}^h$
- re-discretization of $A_{h,p}$ on each level

Poisson equation on quarter annulus with radii 1 and 2, $g = 0$, $\Gamma_N = \emptyset$, f such that $u(x, y) = -(x^2 + y^2 - 1)(x^2 + y^2 - 4)xy^2$

<table>
<thead>
<tr>
<th>$p = 2$</th>
<th>$\kappa(A_{h,1}^G)$</th>
<th>$\kappa(A_{h,1}^{RD})$</th>
<th>$p = 3$</th>
<th>$\kappa(A_{h,2}^G)$</th>
<th>$\kappa(A_{h,2}^{RD})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h = 2^{-4}$</td>
<td>$6.00 \cdot 10^7$</td>
<td>$9.78 \cdot 10^2$</td>
<td>$h = 2^{-4}$</td>
<td>$7.00 \cdot 10^9$</td>
<td>$1.56 \cdot 10^3$</td>
</tr>
<tr>
<td>$h = 2^{-5}$</td>
<td>$4.79 \cdot 10^9$</td>
<td>$4.19 \cdot 10^3$</td>
<td>$h = 2^{-5}$</td>
<td>$6.15 \cdot 10^{10}$</td>
<td>$6.71 \cdot 10^3$</td>
</tr>
<tr>
<td>$h = 2^{-6}$</td>
<td>$2.94 \cdot 10^{10}$</td>
<td>$1.76 \cdot 10^4$</td>
<td>$h = 2^{-6}$</td>
<td>$4.99 \cdot 10^{11}$</td>
<td>$2.84 \cdot 10^4$</td>
</tr>
<tr>
<td>$h = 2^{-7}$</td>
<td>$5.48 \cdot 10^{10}$</td>
<td>$7.28 \cdot 10^4$</td>
<td>$h = 2^{-7}$</td>
<td>$7.58 \cdot 10^{12}$</td>
<td>$1.18 \cdot 10^5$</td>
</tr>
</tbody>
</table>
V-cycle p-multigrid variants, revisited

- **Setup**: Assembly of $A_{h,p}$, $I_{h,p}^{h,p-1}$, $I_{h,p}^{h,p}$ each
 - ILUT factorization of $A_{h,p}$
 - Gauss-Seidel 'setup'
- **V-cycle**: Application of smoother, rest/prol each
 - $O\left(N_{dof}p^3d\right)$ flops
 - $O\left(N_{dof}p^2d\right)$ flops
 - $O\left(N_{dof}p^d\right)$ flops
V-cycle p-multigrid variants, revisited

- **Setup**: Assembly of $A_{h,p}$, $I_{h,p}^{h,p-1}$, $I_{h,p}^{h,p}$ each
 - $O(N_{dof}p^{3d})$ flops
- ILUT factorization of $A_{h,p}$
 - $O(N_{dof}p^{2d})$ flops
- Gauss-Seidel ’setup’
 - $O(N_{dof})$ flops
- **V-cycle**: Application of smoother, rest/prol each
 - $O(N_{dof}p^d)$ flops
- Numerical tests show same V-cycle counts for both variants
The final V-cycle p-multigrid variant

- ILUT ($p > 1$) / GS smoothing ($p = 1$) is applied at each level (●)
- LU decomposition is applied as direct coarse level solver
Model problem #1: V-cycle counts

V-cycle p-multigrid as a solver

<table>
<thead>
<tr>
<th></th>
<th>$p = 2$</th>
<th></th>
<th>$p = 3$</th>
<th></th>
<th>$p = 4$</th>
<th></th>
<th>$p = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ILUT*</td>
<td>GS</td>
<td>ILUT*</td>
<td>GS</td>
<td>ILUT*</td>
<td>GS</td>
<td>ILUT*</td>
</tr>
<tr>
<td>$h = 2^{-6}$</td>
<td>4</td>
<td>30</td>
<td>3</td>
<td>62</td>
<td>3</td>
<td>176</td>
<td>3</td>
</tr>
<tr>
<td>$h = 2^{-7}$</td>
<td>4</td>
<td>29</td>
<td>3</td>
<td>61</td>
<td>3</td>
<td>172</td>
<td>3</td>
</tr>
<tr>
<td>$h = 2^{-8}$</td>
<td>5</td>
<td>30</td>
<td>3</td>
<td>60</td>
<td>3</td>
<td>163</td>
<td>3</td>
</tr>
<tr>
<td>$h = 2^{-9}$</td>
<td>5</td>
<td>32</td>
<td>3</td>
<td>61</td>
<td>3</td>
<td>163</td>
<td>3</td>
</tr>
</tbody>
</table>

V-cycle h-multigrid shows similar convergence behavior

*ILUT ($p > 1$), GS ($p = 1$)
Model problem #1: V-cycle counts

V-cycle p-multigrid as preconditioner in BiCGStab

<table>
<thead>
<tr>
<th></th>
<th>$p = 2$</th>
<th></th>
<th>$p = 3$</th>
<th></th>
<th>$p = 4$</th>
<th></th>
<th>$p = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ILUT*</td>
<td>GS</td>
<td>ILUT*</td>
<td>GS</td>
<td>ILUT*</td>
<td>GS</td>
<td>ILUT*</td>
</tr>
<tr>
<td>$h = 2^{-6}$</td>
<td>2 13</td>
<td>2 18</td>
<td>2 41</td>
<td>2 78</td>
<td>2 41</td>
<td>2 92</td>
<td>2 43</td>
</tr>
<tr>
<td>$h = 2^{-7}$</td>
<td>2 12</td>
<td>2 20</td>
<td>2 41</td>
<td>2 92</td>
<td>2 43</td>
<td>2 95</td>
<td>2 41</td>
</tr>
<tr>
<td>$h = 2^{-8}$</td>
<td>3 13</td>
<td>2 19</td>
<td>2 43</td>
<td>2 95</td>
<td>2 41</td>
<td>2 95</td>
<td>2 41</td>
</tr>
<tr>
<td>$h = 2^{-9}$</td>
<td>3 13</td>
<td>2 21</td>
<td>2 41</td>
<td>2 95</td>
<td>2 41</td>
<td>2 95</td>
<td>2 41</td>
</tr>
</tbody>
</table>

V-cycle h-multigrid shows similar convergence behavior

*ILUT ($p > 1$), GS ($p = 1$)
Model problem #1: CPU times for $h = 2^{-6}$
Model problem #1: CPU times for $h = 2^{-7}$

![Bar chart showing CPU times for different methods and problem sizes.](chart.png)
Model problem #1: CPU times for $h = 2^{-8}$
Model problem #1: CPU times for $h = 2^{-9}$

- **CPU time in seconds**

- **Assembly**, **Factorize**, **Solve**

- **$p = 2$**, **$p = 3$**, **$p = 4$**, **$p = 5$**
Model problem #3

Convection-diffusion-reaction equation in $\Omega = (0,1)^2$

$$-\nabla \cdot \left(\begin{bmatrix} 1.2 & -0.7 \\ -0.4 & 0.9 \end{bmatrix} \nabla u \right) + \begin{bmatrix} 0.4 \\ -0.2 \end{bmatrix} \cdot \nabla u + 0.3 u = f \quad \text{in } \Omega$$

$$u = 0 \quad \text{on } \Gamma$$

with f such that $u(x, y) = \sin(\pi x) \sin(\pi y)$
Model problem #3: V-cycle counts

V-cycle p-multigrid as a solver

<table>
<thead>
<tr>
<th></th>
<th>$p = 2$</th>
<th></th>
<th>$p = 3$</th>
<th></th>
<th>$p = 4$</th>
<th></th>
<th>$p = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ILUT</td>
<td>GS</td>
<td>ILUT</td>
<td>GS</td>
<td>ILUT</td>
<td>GS</td>
<td>ILUT</td>
</tr>
<tr>
<td>$h = 2^{-6}$</td>
<td>5</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>4</td>
</tr>
<tr>
<td>$h = 2^{-7}$</td>
<td>5</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td>4</td>
</tr>
<tr>
<td>$h = 2^{-8}$</td>
<td>5</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>4</td>
</tr>
<tr>
<td>$h = 2^{-9}$</td>
<td>5</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>4</td>
</tr>
</tbody>
</table>

V-cycle h-multigrid shows similar convergence behavior
Model problem #3: V-cycle counts

V-cycle \(p \)-multigrid as preconditioner in BiCGStab

<table>
<thead>
<tr>
<th>(h)</th>
<th>(p = 2)</th>
<th>(p = 3)</th>
<th>(p = 4)</th>
<th>(p = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ILUT</td>
<td>GS</td>
<td>ILUT</td>
<td>GS</td>
</tr>
<tr>
<td>(2^{-6})</td>
<td>(2)</td>
<td>(7)</td>
<td>(2)</td>
<td>(13)</td>
</tr>
<tr>
<td>(2^{-7})</td>
<td>(2)</td>
<td>(8)</td>
<td>(2)</td>
<td>(13)</td>
</tr>
<tr>
<td>(2^{-8})</td>
<td>(2)</td>
<td>(7)</td>
<td>(2)</td>
<td>(12)</td>
</tr>
<tr>
<td>(2^{-9})</td>
<td>(2)</td>
<td>(7)</td>
<td>(2)</td>
<td>(14)</td>
</tr>
</tbody>
</table>

V-cycle \(h \)-multigrid shows similar convergence behavior
Conclusion and outlook

1. **a-posteriori hp-adaptation strategy** to find \((h, p)\) pair that ensures *computable* approximations with prescribed accuracy

2. **\(p\)-multigrid method with ILUT smoother** as efficient solver
Conclusion and outlook

1. **a-posteriori hp-adaptation strategy** to find \((h, p)\) pair that ensures *computable* approximations with prescribed accuracy
 - integration as fully automated procedure in simulation code
 - further analysis of influence factors, i.e. iterative solvers
 - use of number formats that are less sensitive to round-off errors

2. **\(p\)-multigrid method with ILUT smoother** as efficient solver
Conclusion and outlook

1. **a-posteriori hp-adaptation strategy** to find \((h, p)\) pair that ensures *computable* approximations with prescribed accuracy
 - integration as fully automated procedure in simulation code
 - further analysis of influence factors, i.e. iterative solvers
 - use of number formats that are less sensitive to round-off errors

2. **\(p\)-multigrid method with ILUT smoother** as efficient solver
 - application to biharmonic equation and within NSE solver
 - extension to block-ILUT smoother for multi-patch IGA
 - optimization of assembly procedure in G+Smo
Conclusion and outlook

1. **a-posteriori hp-adaptation strategy** to find \((h, p)\) pair that ensures *computable* approximations with prescribed accuracy
 - integration as fully automated procedure in simulation code
 - further analysis of influence factors, i.e. iterative solvers
 - use of number formats that are less sensitive to round-off errors

2. **p-multigrid method with ILUT smoother** as efficient solver
 - application to biharmonic equation and within NSE solver
 - extension to block-ILUT smoother for multi-patch IGA
 - optimization of assembly procedure in G+Smo

High-order methods, are they a curse or a blessing?
Conclusion and outlook

1. **a-posteriori hp-adaptation strategy** to find \((h, p)\) pair that ensures *computable* approximations with prescribed accuracy
 - integration as fully automated procedure in simulation code
 - further analysis of influence factors, i.e. iterative solvers
 - use of number formats that are less sensitive to round-off errors

2. **\(p\)-multigrid method with ILUT smoother** as efficient solver
 - application to biharmonic equation and within NSE solver
 - extension to block-ILUT smoother for multi-patch IGA
 - optimization of assembly procedure in G+Smo

High-order methods, are they a curse or a blessing? ... a challenge!

Thank you very much!