Hardware-Oriented Numerics for PDEs
Solving Compressible Flow Problems by Isogeometric Analysis

Matthias Möller (m.moller@tudelft.nl)
Delft Institute of Applied Mathematics, Delft University of Technology, Netherlands

Acknowledgements

Core team
J. Hinz, A. Jaeschke (Lodz), F. Khatami, R. van Nieuwpoort, D. Pouw

Collaborators
N. Gauger & M. Sagebaum (CoDiPack), B. Jüttler & A. Mantzaflaris (G+Smo), C. Sand (Armadillo), K. Iglberger (Blaze), P. Gottschling (MTL4), D. Demidov (VexCL), K. Rupp (ViennaCL), C. Strydis (EMC Rotterdam), G. Gaydadjiev (Maxeler) and many others

Financial support by EC
Overview

1. From Numerical Analysis to Hardware-Oriented Numerics
2. Computational Building Blocks: Smart Fast Expression Templates
3. Application: Compressible flow solver
4. Isogeometric Analysis
5. Applications: Flow Problems, Meshing, and Optimization
Given a problem $p \in \mathcal{P}$:

1. Find a method $m \in \mathcal{M}$ that solves problem p

2. Find an algorithm $a \in \mathcal{A}$ that realizes method m

QoI: errors, rate of convergence, FLOP, stability, monotonicity, ...
Given a problem \(p \in P \):

1. Find a method \(m \in M \) that solves problem \(p \)

2. Find an algorithm \(a \in A \) that realizes method \(m \)

QoI: errors, rate of convergence, FLOP, stability, monotonicity, . . .

Given a hardware \(h \in H \):

3. Find an implementation \(i \in I \) that realizes algorithm \(a \)

QoI: FLOPS, memory bandwidth, parallel speed-up, . . .
Given a problem $p \in \mathcal{P}$: $-\Delta u = f + \text{bc's}$

1. Find a method $m \in \mathcal{M}$ that solves problem p
 continuous Galerkin P_1-FEM

2. Find an algorithm $a \in \mathcal{A}$ that realizes method m
 matrix-free CG solver with element-wise Gaussian quadrature

QoI: errors, rate of convergence, FLOP, stability, monotonicity, . . .

Given a hardware $h \in \mathcal{H}$:

3. Find an implementation $i \in \mathcal{I}$ that realizes algorithm a
 OpenMP parallelized SHMEM C++ code using Eigen library

QoI: FLOPS, memory bandwidth, parallel speed-up, . . .
Numerical Analysis: Past, Present, and Future(?)

Given a *problem* \(p \in \mathcal{P} \):

1. Find a *method* \(m \in \mathcal{M} \) that solves problem \(p \)
 - continuous Galerkin \(P_1 \)-FEM

2. Find an *algorithm* \(a \in \mathcal{A} \) that realizes method \(m \)
 - matrix-free CG solver with element-wise Gaussian quadrature

Given a *hardware* \(h \in \mathcal{H} \):

3. Find an *implementation* \(i \in \mathcal{I} \) that realizes algorithm \(a \)
 - OpenMP parallelized SHMEM C++ code using Eigen library

THE metric that matters: time to solution for prescribed accuracy
Hardware-Oriented Numerics

State of the art

Given a problem $p \in \mathcal{P}$ and a target hardware $h \in \mathcal{H}$:

1. Find an *optimal combination* $(m, a, i)_{p,h} \in \mathcal{M} \times \mathcal{A} \times \mathcal{I}$ that solves problem p on hardware h in shortest time with prescribed accuracy.
Hardware-Oriented Numerics

State of the art

Given a problem \(p \in \mathcal{P} \) and a set of target hardware \(\{ h_1, h_2, \ldots \} \subset \mathcal{H} \):

1. Find \textit{optimal combinations} \((m, a, i)_{p, h_k} \in \mathcal{M} \times \mathcal{A} \times \mathcal{I}\) that solve problem \(p \) on hardware \(h_k \) in shortest time with prescribed accuracy.
Hardware-Oriented Numerics

State of the art

Given a problem $p \in \mathcal{P}$ and a set of target hardware $\{h_1, h_2, \ldots\} \subset \mathcal{H}$:

1. Find optimal combinations $(m, a, i)_{p, h_k} \in \mathcal{M} \times \mathcal{A} \times \mathcal{I}$ that solve problem p on hardware h_k in shortest time with prescribed accuracy

Next step

2. Develop a strategy that automatically inspects the available hardware and chooses the optimal combinations $(m, a, i)_{p, h_k}$ for multi-physics problems $\{p_1, p_2, \ldots\} \subset \mathcal{P}$ and target hardware $\{h_1, h_2, \ldots\} \subset \mathcal{H}$.
Hardware-Oriented Numerics

State of the art

Given a problem \(p \in \mathcal{P} \) and a set of target hardware \(\{ h_1, h_2, \ldots \} \subset \mathcal{H} \):

1. Find optimal combinations \((m, a, i)_{p,h_k} \in \mathcal{M} \times \mathcal{A} \times \mathcal{I} \) that solve problem \(p \) on hardware \(h_k \) in shortest time with prescribed accuracy.

Next step

2. Develop a strategy that automatically inspects the available hardware and chooses the optimal combinations \((m, a, i)_{p,h_k} \).

Future vision

3. Automatically determine and schedule optimal combinations \((m, a, i)_{p_j,h_k} \in \mathcal{M} \times \mathcal{A} \times \mathcal{I} \) for multi-physics problems \(\{p_1, p_2, \ldots \} \subset \mathcal{P} \) and target hardware \(\{h_1, h_2, \ldots \} \subset \mathcal{H} \).
HPC hardware

Current and (most probably) future HPC hardware is diversified:

- multi-core CPUs
- many-core MICs and GPUs
- FPGAs
HPC hardware

Current and (most probably) future HPC hardware is diversified:

- multi-core CPUs
- many-core MICs and GPUs
- FPGAs

There are good reasons (performance-per-watt, low-latency) to believe that the future of HPC lies in heterogeneous and hybrid technologies:

- CPUs + accelerators
HPC hardware

Current and (most probably) future HPC hardware is diversified:

- multi-core CPUs
- many-core MICs and GPUs
- FPGAs

There are good reasons (performance-per-watt, low-latency) to believe that the future of HPC lies in heterogeneous and hybrid technologies:

- CPUs + accelerators
- Stand-alone Xeon Phi
HPC hardware

Current and (most probably) future HPC hardware is diversified:

multi-core CPUs many-core MICs and GPUs FPGAs

There are good reasons (performance-per-watt, low-latency) to believe that the future of HPC lies in heterogeneous and hybrid technologies:

CPUs + accelerators Stand-alone Xeon Phi Hybrid CPU/FPGA
HPC hardware and beyond

Quantum Computing

Strong effort in the Netherlands to establish quantum computers and algorithms as key technology in future scientific computing

Application in PDE-constrained optimization

- \exists QA to estimate $x^T M x$ s.t. $Ax = b$ in $\text{poly}(\log N, \log(1/\varepsilon))$
- best classical algorithm requires $O(N \sqrt{\kappa})$
Can we come up with a **unified programming approach** to exploit the performance of the different hardware architectures automatically with minimal effort for code development and maintenance?
Computational building blocks

- Highly optimized dense and sparse linear algebra libraries

\[y \leftarrow \alpha \ast x + y, \quad y \leftarrow A^{-1} \ast x \]

BLAS/LAPACK implementation of \(y \leftarrow A^{-1}(x - y) \)

- Call `xSCAL(n, -1.0, y, 1)`
- Call `xAXPY(n, 1.0, x, 1, y, 1)`
- Call `xGESV(n, 1, A, n, IPIV, y, 1, INFO)`

Here: 3 function calls, 5× fetching data, 3× storing data.

Ideal: no call (inlining!), 3× fetching data, 1× storing data.

And it’s the memory transfer that is the bottleneck!
Computational building blocks

- Highly optimized dense and sparse linear algebra libraries

\[y \leftarrow \alpha \times x + y, \quad y \leftarrow A^{-1} \times x \]

- Expression template libraries (ETLs)

\[y \leftarrow A \times ((m. \times m)./(\rho) + p) \]

Note: against common belief, the use of ETLs does not automagically lead to high-performance C++ code
Computational building blocks

• Highly optimized dense and sparse linear algebra libraries

\[y \leftarrow \alpha \ast x + y, \quad y \leftarrow A^{-1} \ast x \]

• Expression template libraries (ETLs)

\[y \leftarrow A \ast ((m. \ast m)./(\rho) + p) \]

• Smart and fast expression template libraries which combine classical ETL concepts with vector intrinsics, node-level parallelization, cache-size/architecture optimized compute kernels
Computational building blocks

- Highly optimized dense and sparse linear algebra libraries
 \[y \leftarrow \alpha \times x + y, \quad y \leftarrow A^{-1} \times x \]

- Expression template libraries (ETLs)
 \[y \leftarrow A \times ((m. \times m) / (\rho) + p) \]

- **Smart and fast expression template libraries** which combine classical ETL concepts with vector intrinsics, node-level parallelization, cache-size/architecture optimized compute kernels

- **Just-in-time compilation** (’reconfigurable computing’)
SFET concept

Code that you write\(^1\)

\[
\text{vex::vector<\text{float}> x, y, z; z = x * y;}
\]

OpenCL compute kernel generated by VexCL

\[
\text{kernel void vexcl_kernel(...) { for(size_t idx = get_global_id(0);}
\text{idx < n; idx += get_global_size(0)) {}
\text{prm_1[idx] = prm_2[idx] * prm_3[idx]; }}
\]

\(^1\)https://github.com/ddemidov/vexcl
SFET concept

Code that you write

```cpp
ve::vector<float> x, y, z;  
z = x * y;
```

CUDA compute kernel generated by VexCL

```cpp
extern "C" __global__ void vexcl_kernel(...) {
    for (size_t idx = blockDim.x * blockIdx.x + threadIdx.x,
         grid_size = blockDim.x * gridDim.x;
         idx < n;
         idx += grid_size) {
        prm_1[idx] = prm_2[idx] * prm_3[idx]; }
}
```

1https://github.com/ddemidov/vexcl
SFET concept

Code that you write

```
vex::vector<float> x, y, z;    z = x * y;
```

MaxJ compute kernel to be generated by VexCL (D.Pouw)

```java
class vexcl_kernel extends Kernel {
    public vexcl_kernel(...) {
        DFEVar x = io.input("x", dfeFloat(8, 24));
        DFEVar y = io.input("y", dfeFloat(8, 24));

        DFEVar result = x * y;
        io.output("z", result, dfeFloat(8, 24));
    }
}
```

1. https://github.com/ddemidov/vexcl
Compressible Euler equations

Divergence form
\[\partial_t U + \nabla \cdot F(U) = 0 \]

Quasi-linear form
\[\partial_t U + A(U) \cdot \nabla U = 0 \]

Conservative\(^a\) variables, inviscid fluxes, flux-Jacobian matrices

\[U = \begin{bmatrix} \rho \\ \rho \mathbf{v} \\ \rho E \end{bmatrix}, \quad F = \begin{bmatrix} \rho \mathbf{v} \\ \rho \mathbf{v} \otimes \mathbf{v} + I p \\ \mathbf{v}(\rho E + p) \end{bmatrix}, \quad A = \frac{\partial F}{\partial U} \]

Equation of state (here for an ideal gas)
\[p = (\gamma - 1) \left(\rho E - \frac{1}{2} \rho \| \mathbf{v} \|^2 \right), \quad \gamma = C_p/C_v \]

\(^a\)Similar formulations exist for primitive and entropy variables
Compressible Euler equations

Divergence form

\[\partial_t U + \nabla \cdot F(U) = 0 \]

Quasi-linear form

\[\partial_t U + A(U) \cdot \nabla U = 0 \]

Conservative\(^a\) variables, inviscid fluxes, flux-Jacobian matrices

\[U = \begin{bmatrix} u_1 \\ \vdots \\ u_{d+2} \end{bmatrix}, \quad F = \begin{bmatrix} f_1^1 & \cdots & f_1^d \\ \vdots & \ddots & \vdots \\ f_{d+2}^1 & \cdots & f_{d+2}^d \end{bmatrix}, \quad A = \frac{\partial F}{\partial U} \]

Notation

\[f_k = \begin{bmatrix} f_k^1, \ldots, f_k^d \end{bmatrix}, \quad f^k = \begin{bmatrix} f_1^k \\ \vdots \\ f_{d+2}^k \end{bmatrix} \]

\(^a\)Similar formulations exist for primitive and entropy variables
Fluid Dynamics Building Blocks

High-level
- SFET’s for conservative/primitive variables, EOS, inviscid/viscous fluxes, flux Jacobians, and Riemann solvers

Low-level
- Unified wrapper function API to core functionality of ETL’s: make_temp, tag, tie, +, -, *, /, abs, sqrt, ...

2https://gitlab.com/mmoelle1/FDBB.git
FDBB at work

Implementation of v^2

```cpp
// EOS for ideal gas (gamma=1.4)
typedef fdbb::fdbbEOSIdealGas<T> eos;

// Conservative variables in 3d
typedef fdbb::fdbbVariables<eos,3,
  fdbb::EnumVar::conservative> var;

// VexCL backend
vex::vector<T> u1, u2, u3, u4, u5, v;

// Generic implementation
v = var::v_mag2(u1, u2, u3, u4, u5);
```
FDBB μ-benchmark

- All tests were run under CentOS Linux 6.7, GCC 5.3.0, nvcc 7.5.17 with thread pinning (`likwid-pin -c N:0-15 benchmark`)

- CPU benchmarks
 - 2x Intel E5-2670 (16 cores), 2.60GHz, 20MB Cache, 64GB RAM
 - ETL’s: Armadillo, Blaze, Blitz++, Eigen, IT++, uBLAS

- GPU benchmarks
 - 1x NVIDIA Tesla K20Xm, ECC off, 6GB (Driver: 352.93)
 - ETL’s: ArrayFire and VexCL with CUDA backend enabled
y \leftarrow (m_x \ast m_x + m_y \ast m_y + m_z \ast m_z) / (\rho \ast \rho)

7 flop
\[y \leftarrow (m_x \cdot m_x + m_y \cdot m_y + m_z \cdot m_z) / (\rho \cdot \rho) \]
Given we have a highly tuned SFET library (and FDBB), how can we design a **compressible flow solver** based on SpMV and at the same time flexible enough for practical applications?
Compressible Euler equations

Galerkin ansatz ("find solution U s.t. for all W")

$$\int_\Omega W \partial_t U - \nabla W \cdot F(U) \, d\Omega + \int_\Gamma WF^b(U, \cdot) \, ds = 0$$

with boundary fluxes

$$F^b = \begin{cases} [0, pn_1, pn_2, pn_3, 0]^T & \text{at solid walls} \\ \frac{1}{2}(F_n(U_-) + F_n(U_+)) - \frac{1}{2}|A_n(\text{Roe}(U_-, U_+))| & \text{otherwise} \end{cases}$$

\(^3\)C.A.J. Fletcher, CMAME 37 (1983) 225–244.
Compressible Euler equations

Galerkin ansatz ("find solution U s.t. for all W")

$$\int_{\Omega} W \partial_t U - \nabla W \cdot F(U) \, d\Omega + \int_{\Gamma} W F^b(U, \cdot) \, ds = 0$$

with boundary fluxes

$$F^b = \begin{cases} [0, pn_1, pn_2, pn_3, 0]^T & \text{at solid walls} \\ \frac{1}{2}(F_n(U_-) + F_n(U_+)) - \frac{1}{2}|A_n(\text{Roe}(U_- , U_+))| & \text{otherwise} \end{cases}$$

Fletcher’s group formulation3

$$U_h = \sum_A (I \otimes \varphi_A(x)) U_A(t), \quad F_h = \sum_A (I \otimes \varphi_A(x)) F_A(t), \quad F_A = F(U_A)$$

Compressible Euler equations

Semi-discretized problem

\[
\begin{bmatrix}
M & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & M & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & M
\end{bmatrix}
\begin{bmatrix}
\dot{u}_1 \\
\vdots \\
\dot{u}_{d+2}
\end{bmatrix}
+ \begin{bmatrix}
\vdots \\
\vdots \\
C \\
\vdots \\
\vdots \\
\vdots
\end{bmatrix}
\begin{bmatrix}
f_1^T \\
\vdots \\
f_{d+2}^T
\end{bmatrix}
+ \begin{bmatrix}
\vdots \\
\vdots \\
S \\
\vdots \\
\vdots \\
\vdots
\end{bmatrix}
\begin{bmatrix}
f_1^b \\
\vdots \\
f_{d+2}^b
\end{bmatrix}
= 0
\]

Read the above as

\[
Cf_k^T = [C^1, \ldots, C^d]
\begin{bmatrix}
f_k^1 \\
\vdots \\
f_k^d
\end{bmatrix}
= \sum_{l=1}^{d} C^k f_k^l \quad \text{for } k = 1, \ldots, d + 2
\]

and the same for \(Sf_k^b^T\)
Compressible Euler equations

Semi-discretized problem

\[
\begin{bmatrix}
M & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & M & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
M & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\end{bmatrix}
\begin{bmatrix}
\dot{u}_1 \\
\vdots \\
\dot{u}_{d+2}
\end{bmatrix}
+ \begin{bmatrix}
C & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & C & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
C & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
\end{bmatrix}
\begin{bmatrix}
f^T_{1} \\
\vdots \\
f^T_{d+2}
\end{bmatrix}
+ \begin{bmatrix}
S & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & S & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
S & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
\end{bmatrix}
\begin{bmatrix}
f^T_{b1} \\
\vdots \\
f^T_{bd+2}
\end{bmatrix}
= 0
\]

Constant coefficient matrices

\[
M = \left[\int_{\Omega} \varphi_A \varphi_B \, d\Omega \right] \quad C = \left[-\int_{\Omega} \nabla \varphi_A \varphi_B \, d\Omega \right] \quad S = \left[\int_{\Gamma} \varphi_A \varphi_B \mathbf{n} \, ds \right]
\]
Compressible Euler equations

Semi-discretized problem

\[
\begin{bmatrix}
M & \vdots \\
\vdots & \ddots & \vdots \\
& & M
\end{bmatrix}
\begin{bmatrix}
\dot{u}_1 \\
\vdots \\
\dot{u}_{d+2}
\end{bmatrix}
+\begin{bmatrix}
C & \vdots \\
\vdots & \ddots & \vdots \\
& & C
\end{bmatrix}
\begin{bmatrix}
f_1^T \\
\vdots \\
f_{d+2}^T
\end{bmatrix}
+\begin{bmatrix}
S & \vdots \\
\vdots & \ddots & \vdots \\
& & S
\end{bmatrix}
\begin{bmatrix}
f_1^{b^T} \\
\vdots \\
f_{d+2}^{b^T}
\end{bmatrix}
= 0
\]

Constant coefficient matrices

\[
M = \left[\int_\Omega \varphi_A \varphi_B \, d\Omega\right] \quad C = \left[-\int_\Omega \nabla \varphi_A \varphi_B \, d\Omega\right] \quad S = \left[\int_\Gamma \varphi_A \varphi_B n \, ds\right]
\]

whereby

\[
-\int_\Omega \nabla \varphi_A \varphi_B \, d\Omega = \int_\Omega \varphi_A \nabla \varphi_B \, d\Omega + \int_\Gamma \varphi_A \varphi_B n \, ds \quad \Rightarrow \quad C + C^T = S
\]
Stabilization by algebraic flux correction

\[(I \otimes m_A) \dot{U}_A + \sum_B \left(c_{AB} \cdot F_B + s_{AB} \cdot F_B^b \right) + \sum_{B \in J_A} D_{AB}(U_B - U_A) = \sum_{B \in J_A} \alpha_{AB} F_{AB}\]

1. Perform row-sum mass lumping to decouple the degrees of freedom
2. Add discrete artificial dissipation to prevent spurious oscillations
3. Decompose anti-diffusion into fluxes and apply a limited correction

Details:
Stabilization by algebraic flux correction

\[
(\mathcal{I} \otimes m_A) \dot{U}_A + \sum_B \left(c_{AB} \cdot F_B + s_{AB} \cdot F_B^b \right) + \sum_{B \in \mathcal{J}_A} D_{AB} (U_B - U_A) = \sum_{B \in \mathcal{J}_A} \alpha_{AB} F_{AB}
\]

Compute kernels

- block-VV and block-SpMV
- edge-loops over non-zero entries of sparsity graph

\[
\mathcal{I}_A := \{ B : \text{supp}\varphi_A \cap \text{supp}\varphi_B \neq \emptyset \} , \quad \mathcal{J}_A := \mathcal{I}_A \setminus \{ A \}
\]

- symmetric operators \(D_{AB} \) and \(\alpha_{AB} \)
- skew-symmetric fluxes \(U_B - U_A \) and \(F_{AB} \)

⇒ can be expressed as block-SpMV
Illustration of Zalesak’s flux limiter4

- Mass-lumped low-order predictor yields nodal bounds \tilde{u}_A^{\min}
- AFC-corrected solution is allowed to vary within the bounds

4S. Zalesak, JCP 1979, 31(3), 335–362
Double Mach reflection5

Test: Roe-linearization + FCT, structured mesh, Q_1 finite elements

$T = 0.2$, Crank Nicolson time stepping ($\theta = 0.5$)

\[
U_L = \begin{bmatrix} 8.0 \\ 8.25 \cos 30^\circ \\ -8.25 \sin 30^\circ \\ 116.5 \end{bmatrix}
\]

\[
U_R = \begin{bmatrix} 1.4 \\ 0.0 \\ 0.0 \\ 1.0 \end{bmatrix}
\]

5P.R. Woodward, P. Colella, JCP 54, 115 (1984), 115–173.
Double Mach reflection

Low-order, \(h = 1/512, \Delta t = 1.25 \cdot 10^{-5} \)

FCT, \(\alpha_{ij}(\rho, p) \), \(h = 1/512, \Delta t = 1.25 \cdot 10^{-5} \)
Double Mach reflection

\[\text{FCT, } \alpha_{ij}(\rho, \rho E), \ h = 1/512, \ \Delta t = 1.25 \cdot 10^{-5} \]

\[\text{FCT, } \alpha_{ij}(\rho, p), \ h = 1/512, \ \Delta t = 1.25 \cdot 10^{-5} \]
The presented approach is applicable to unstructured meshes and general FE spaces except for AFC which is limited to \(P_1 \) and \(Q_1 \).

Is there a way to extend AFC to higher-order approximations?
Polynomial spaces

Definition

The space of polynomials of degree \(p \) over the interval \([a, b]\) is

\[
\Pi^p([a, b]) := \{ q(x) \in C^\infty([a, b]) : q(x) = \sum_{i=0}^{p} c_i x^i, c_i \in \mathbb{R} \}
\]

Example: \(\Pi^2([0, 1]) \)

- Canonical basis

 \[B = \{ 1, x, x^2 \} \]

- Polynomials

 \[q(x) = c_0 + c_1 x + c_2 x^2 \]
Spline space

Definition

Let $\mathcal{P} = \{a = x_1 < \cdots < x_{p+1} = b\}$ be a partition of the interval Ω_0 and $\mathcal{M} = \{1 \leq m_i \leq p + 1\}$ a set of positive integers. The polynomial spline of degree p is defined as $s : \Omega_0 \mapsto \mathbb{R}$ if

$$s|_{[x_i,x_{i+1}]} \in \Pi^p([x_i,x_{i+1}]), \quad i = 1, \ldots, k$$

$$\frac{d^j}{dx^j}s_{i-1}(x_i) = \frac{d^j}{dx^j}s_i(x_i), \quad i = 2, \ldots, k, \quad j = 0, \ldots, p - m_i$$

Polynomial splines of degree p form the spline space $S(\Omega_0, p, \mathcal{M}, \mathcal{P})$.
Knot vectors

Definition

A knot vector is a sequence of non-decreasing values \(\xi_i \in [a, b] \subset \mathbb{R} \) in the parameter space \(\Omega_0 = [a, b] \)

\[
\Xi = (\xi_1, \xi_2, \ldots, \xi_{n+p+1})
\]

where

- \(p \) is the polynomial order of the B-splines
- \(n \) is the number of B-spline functions
- \(\xi_i \) is the \(i \)-th knot with knot index \(i \)

Knots \(\xi_i \) can have multiplicity \(1 \leq m_i \leq p + 1 \). The knot vector is called open if the first and last knot have multiplicity \(p + 1 \).
B-spline basis functions

Cox-de Boor recursion formula

\[N_{i,0}(\xi) = \begin{cases}
1 & \text{if } \xi_i \leq \xi < \xi_{i+1} \\
0 & \text{otherwise}
\end{cases} \]

\[N_{i,p}(\xi) = \frac{\xi - \xi_i}{\xi_{i+p} - \xi_i} N_{i,p-1}(\xi) + \frac{\xi_{i+p+1} - \xi}{\xi_{i+p+1} - \xi_{i+1}} N_{i+1,p-1}(\xi) \]
B-spline basis functions

Constant basis functions corresponding to $\Xi = \{0, 0, 0, 1, 2, 3, 3, 3\}$
B-spline basis functions

Constant basis functions corresponding to $\Xi = \{0, 0, 0, 1, 2, 3, 3, 3\}$
B-spline basis functions

Constant basis functions corresponding to $\Xi = \{0, 0, 0, 1, 2, 3, 3, 3\}$
B-spline basis functions

Linear basis functions corresponding to \(\Xi = \{0, 0, 0, 1, 2, 3, 3, 3\} \)
B-spline basis functions

Linear basis functions corresponding to \(\Xi = \{0, 0, 0, 1, 2, 3, 3, 3\} \)
B-spline basis functions

Linear basis functions corresponding to $\Xi = \{0, 0, 0, 1, 2, 3, 3, 3\}$
B-spline basis functions

Linear basis functions corresponding to $\Xi = \{0, 0, 0, 1, 2, 3, 3, 3\}$
B-spline basis functions

Linear basis functions corresponding to $\Xi = \{0, 0, 0, 1, 2, 3, 3, 3\}$
B-spline basis functions

Quadratic basis functions corresponding to \(\Xi = \{0, 0, 0, 1, 2, 3, 3, 3\} \)
B-spline basis functions

Quadratic basis functions corresponding to $\Xi = \{0, 0, 0, 1, 2, 3, 3, 3\}$
B-spline basis functions

Quadratic basis functions corresponding to \(\Xi = \{0, 0, 0, 1, 2, 3, 3, 3\} \)
B-spline basis functions

Quadratic basis functions corresponding to \(\Xi = \{0, 0, 0, 1, 2, 3, 3, 3\} \)
B-spline basis functions

Quadratic basis functions corresponding to \(\Xi = \{0, 0, 0, 1, 2, 3, 3, 3\} \)
B-spline basis functions

Quadratic basis functions corresponding to \(\Xi = \{0, 0, 0, 1, 2, 3, 3, 3\} \)
Properties of B-spline basis functions

Compact support

\[\text{supp } N_{i,p}(\xi) = [\xi_i, \xi_{i+p+1}), \quad i = 1, \ldots, n \]

- System matrices are sparse like in the standard FEM
- Support grows with the polynomial order so that system matrices have a slightly broader stencil due to the coupling of degrees of freedom over multiple element layers (good for HPC)
Properties of B-spline basis functions

- **Compact support**
 \[\text{supp } N_{i,p}(\xi) = [\xi_i, \xi_{i+p+1}), \quad i = 1, \ldots, n \]

- **Strict positiveness**
 \[N_{i,p}(\xi) > 0 \quad \text{for } \xi \in (\xi_i, \xi_{i+p+1}), \quad i = 1, \ldots, n \]

- Consistent mass matrix has no negative off-diagonal entries
- Lumped mass matrix is not singular (no zero diagonal entries)
Properties of B-spline basis functions

Compact support

\[\text{supp } N_{i,p}(\xi) = [\xi_i, \xi_{i+p+1}), \quad i = 1, \ldots, n \]

Strict positiveness

\[N_{i,p}(\xi) > 0 \quad \text{for } \xi \in (\xi_i, \xi_{i+p+1}), \quad i = 1, \ldots, n \]

Partition of unity

\[\sum_{i=1}^{n} N_{i,p}(\xi) = 1 \quad \text{for all } \xi \in [a, b] \]
Properties of B-spline basis functions

Derivatives

Derivative is a B-spline of order $p - 1$

$$\frac{d}{d\xi} N_{i,p}(\xi) = \frac{p}{\xi_{i+p} - \xi_i} N_{i,p-1}(\xi) - \frac{p}{\xi_{i+p+1} - \xi_{i+1}} N_{i+1,p-1}(\xi)$$

Expression for k^{th} derivative

$$\frac{d^k}{d^k\xi} N_{i,p}(\xi) = \frac{p!}{(p - k)!} \sum_{j=0}^{k} \alpha_{k,j} N_{i+j,p-k}(\xi)$$

with recursively defined coefficients $\alpha_{k,j}$

\(^{a}\text{L. Piegl, W. Tiller. The NURBS book (1997).}\)
Spline curves

Geometric mapping \(G : \Omega_0 \mapsto \Omega_h \simeq \Omega \)

\[
G(\xi) = \sum_{i=1}^{n} N_{i,p}(\xi) B_i \quad \text{set of control points } B_i \in \mathbb{R}^d, d \geq 1
\]

- \(C^{p-m_i} \) continuous curve (\(m_i \) is the multiplicity of knot \(\xi_i \))
- Convex hull property
- Variation diminishing property
- Knot insertion (h-adaptivity), order elevation (p-adaptivity) preserve shape of geometry
Geometric mapping $G : \Omega_0 \mapsto \Omega_h \simeq \Omega$

$$G(\xi, \eta) = \sum_{i=1}^{n} \sum_{j=1}^{m} N_{i,p}(\xi) N_{j,q}(\eta) B_{i,j} \quad B_{i,j} \in \mathbb{R}^d, \ d \geq 2$$
Spline surfaces

Geometric mapping \(\mathbf{G} : \Omega_0 \mapsto \Omega_h \simeq \Omega \)

\[
\mathbf{G}(\xi) = \sum_A \hat{\varphi}_A(\xi) \mathbf{B}_A \quad \mathbf{B}_A \in \mathbb{R}^d, \quad d \geq 2, \text{ multi-index } A
\]

- Computational 'mesh' is a multi-variate parameterization of \(\Omega_h \). It can be canonically generated from the geometry by knot insertion and/or order elevation \((\hat{\varphi}_A, \mathbf{B}_A) \rightarrow (\tilde{\varphi}_A, \mathbf{\tilde{B}}_A)\)
Marriage of geometry and discretization

Geometric mapping

\[G(\xi) = \sum_A \tilde{\phi}_A(\xi) B_A \] 'push-forward' \(G : \Omega_0 \mapsto \Omega_h \)

Ansatz space

\[V_h = \text{span}\{ \varphi_A(x) = \tilde{\varphi}_A \circ G^{-1}(x) \} \] 'pull-back' \(G^{-1} : \Omega_h \mapsto \Omega_0 \)
Bézier extraction is commonly promoted as 'the' way to integrate isogeometric analysis into classical finite element codes. But doesn't this contradict the concept of hardware-oriented numerics?

Our research is based on genuine IgA tools:

- C++ library \texttt{G+Smo}, developed at JKU/RICAM, Linz
- Python library \texttt{Nutils} by Evalf Computing, Delft
Application: Convection-diffusion equation

Convection skew to the mesh

Quadratic bi-variate B-spline basis functions.
Application: Convection-diffusion equation

Convection skew to the mesh

AFC SUPG

Quadratic bi-variate B-spline basis functions.
Application: Convection-diffusion equation

Convection skew to the mesh

AFC

SUPG

Quadratic bi-variate B-spline basis functions.
Application: Compressible Euler equations

Convection of isentropic vortex

Quadratic bi-variate B-spline basis functions.

\[\rho, \quad v_x, \quad v_y \]

\(^6 \text{H-C. Yee, N. Sandham, M. Djomehri, JCP 150 (1999) 199-238.} \)
Application: Compressible Euler equations

Sod’s shock tube problem

Quadratic bi-variate B-spline basis functions.

\[\rho \quad v_x \quad p \]

Application: IgA on evolving manifolds

Gray-Scott reaction-diffusion model

\[
\begin{align*}
 u_t + u(\ln \sqrt{g_t})_t - d_1 \Delta u &= F(1 - u) - uv^2 \\
 v_t + v(\ln \sqrt{g_t})_t - d_2 \Delta v &= -(F + H)v + uv^2 \\
 s &= Kn
\end{align*}
\]

MSc-thesis project by J. Hinz

Application: IgA on evolving manifolds

Phenomenological human brain development model

- multi-patch geometry $\Omega_h \simeq \Omega$ approximated by quadratic (hierarchical) B-spline basis functions
- C^{p-1} continuity along patch boundaries due to periodic basis functions
- C^0 continuity in the vicinity of the triple points
Application: IgA on evolving manifolds

Phenomenological human brain development model

- multi-patch geometry $\Omega_h \approx \Omega$ approximated by quadratic (hierarchical) B-spline basis functions
- C^{p-1} continuity along patch boundaries due to periodic basis functions
- C^0 continuity in the vicinity of the triple points
Application: IgA on evolving manifolds

Phenomenological human brain development model

new since it has been applied to model plant growth [21] but it seems to be the first to tackle the very old and controversial problem of brain folding in terms of reaction diffusion coupled to surface deformation. However the question about the origin of the morphogens used in our model remains open. In [14] the activation/inhibition process is supposed to model the mechanical tensions due to white matter fibers so the morphogenetic approach becomes indirect and extrinsic. On the contrary we prefer to view the folding process as the result of an intrinsic phenomenon, promoted by morphogens that decide the cytoarchitechtony. Different cytoarchitechtonic areas would correspond to different gyri and the limits between areas to sulci. This idea, suggested one century ago by Broadmann, has been recently pointed out in [36]. Moreover in [15], the GIP model supposes that the morphogens responsible for the patterning of subventricular zone could be some specific genes such as $Pax6$, $Ngn2$, $Id4$. Our model supports this hypothesis since mutations in the $Pax6$ gene for instance can be responsible for polymicrogyria [37], so the parameters F and k of the model could reflect different gene expression of $Pax6$.

Figure 6. Three modes of variability and their correspondence on real anatomies.

First column: Three different modes of variability for the main fold observed on Fig. 5. We can see that the main sulcus, in one part at top left, is interrupted by a gyrus surrounded in white at middle left, and interrupted by two gyrus at bottom left. Second column: Two different modes of variability for the superior temporal sulcus on experimental data. Top: the superior temporal sulcus (STS) in pink is in one part. Middle: the STS is in two parts. Bottom: the STS is in three parts.

doi:10.1371/journal.pcbi.1000749.g006

Figure 7. Different modes of the main fold.

The histogram shows the different modes - i.e. the number of connected components - of the main fold.

doi:10.1371/journal.pcbi.1000749.g007
Create a valid mapping (\(=\) diffeomorphism, e.g., \(\det J > 0\) on \(\Omega_0\))

\[
\mathbf{G} : \Omega_0 \mapsto \Omega_h \simeq \Omega
\]

starting from the boundary parameterization \(\bigcup_i \gamma_i\) of \(\Omega\) by solving

\[
\begin{cases}
\Delta x(\xi, \eta) &= 0 \\
\Delta y(\xi, \eta) &= 0
\end{cases}
\text{s.t. } | \mathbf{S}_{\partial \Omega_i} = \gamma_i |.
\]

Theory: \(\Omega_h\) must be convex for \(\mathbf{G}\) to be a diffeomorphism.

\(^8\)PhD project by J. Hinz
Application: Isogeometric ’mesh generation’

Create a valid mapping (= diffeomorphism, e.g., det $J > 0$ on Ω_0)

$$G : \Omega_0 \mapsto \Omega_h \simeq \Omega$$

starting from the boundary parameterization $\bigcup_i \gamma_i$ of Ω by solving

$$\begin{cases}
\Delta \xi(x, y) = 0 \\
\Delta \eta(x, y) = 0
\end{cases} \quad \text{s.t.} \quad S^{-1}\big|_{\gamma_i} = \partial \Omega_i$$

for the inverse mapping $G^{-1} : \Omega_h \mapsto \Omega_0$. Inversion yields

$$\begin{cases}
g_{22} x_{\xi \xi} - 2g_{12} x_{\xi \eta} + g_{11} x_{\eta \eta} = 0 \\
g_{22} y_{\xi \xi} - 2g_{12} y_{\xi \eta} + g_{11} y_{\eta \eta} = 0
\end{cases} \quad \text{s.t.} \quad G|_{\partial \Omega_i} = \gamma_i,$$

where $g_{11} = x_{\xi}^2 + y_{\xi}^2$, $g_{12} = x_{\xi} x_{\eta} + y_{\xi} y_{\eta}$ and $g_{22} = x_{\eta}^2 + y_{\eta}^2$.

PhD project by J. Hinz
Boundary reparameterization
Application: Isogeometric 'mesh generation'\(^9\)

1. Boundary reparameterization

2. Defect detection, e.g., where \(\det J(\xi^*) < 0\) or using the dual-weighted residual approach by Becker and Rannacher and refine the parameterization locally (THB-splines by Giannelli \textit{et al.})

\(^9\)PhD project by J. Hinz
Application: Isogeometric ’mesh generation’9

1. Boundary reparameterization

2. Defect detection, e.g., where \(\det J(\xi^*) < 0 \) or using the dual-weighted residual approach by Becker and Rannacher and refine the parameterization locally (THB-splines by Giannelli \textit{et al.})

3. Possible extensions:
 - optimization of ’mesh properties’
 - multi-patch segmentation
 - 4th order PDE-problem

9PhD project by J. Hinz
Application: Isogeometric 'mesh generation'9

9PhD project by J. Hinz
Application: Adjoint-based optimization

Proof-of-concept: AD of G+Smo using CoDiPack

\[-\Delta u + \nabla \cdot (\mathbf{v} u) = f \quad \text{in } \Omega_h, \quad u \equiv 1 \quad \text{on } \partial \Omega_h\]

with exact solution \(u \equiv 1 \).

Goal: Maximize area \(A = \| u_h \|_{L^2(\Omega_h)} \) of geometry \(\Omega_h \) while preserving the circumference \(C = \| u_h \|_{L^2(\Gamma_h)} \) of the initial geometry \(\Omega_0 = [0, 1]^2 \).

Gradient based optimization using IpOpt with cost functional

\[L = -A + \eta |C_0 - C| \]

\(^{10}\)PhD project by A. Jaeschke (Lodz)
Conclusion and outlook

1. Open-source Fluid Dynamic Building Blocks library
 https://gitlab.com/mmoelle1/FDBB.git
2. IgA-based solver for compressible flows
3. Isogeometric ’mesh generation’
4. Proof-of-concept AD of G+Smoo code

Ongoing and future work:

- Distributed JIT compilation of multi-patch geometries
- Embedding of linear algebra SFETs into CoDiPack
- Extension towards FPGAs (reconfigurable computing)
Appendix

Further applications of the AFC framework
Idealized Z-pinch implosion model11

- Generalized Euler system coupled with scalar tracer equation

\[
\frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho \mathbf{v} \\ \rho E \\ \rho \lambda \end{bmatrix} + \nabla \cdot \begin{bmatrix} \rho \mathbf{v} \\ \rho \mathbf{v} \otimes \mathbf{v} + p \mathbf{I} \\ \rho E \mathbf{v} + p \mathbf{v} \\ \rho \lambda \mathbf{v} \end{bmatrix} = \begin{bmatrix} 0 \\ \mathbf{f} \\ \mathbf{f} \cdot \mathbf{v} \\ 0 \end{bmatrix}
\]

- Equation of state

\[p = (\gamma - 1) \rho (E - 0.5|\mathbf{v}|^2)\]

- Non-dimensional Lorentz force

\[
\mathbf{f} = (\rho \lambda) \left(\frac{I(t)}{I_{\text{max}}} \right)^2 \hat{e}_r \frac{\rho \lambda}{r_{\text{eff}}}, \quad 0 \leq \lambda \leq 1
\]

11 J.W. Banks, J.N. Shadid, IJNMF 2009, 61(7), 725–751
Idealized Z-pinch implosion
Idealized Z-pinch implosion
Idealized Z-pinch implosion
Idealized Z-pinch implosion

![Diagram of idealized Z-pinch implosion with labels for Time: 0.60, FCT, and Low-order, and a color scale for density ranging from 5.0e-01 to 9.4e+05]
Idealized Z-pinchant implosion
Idealized Z-pinch implosion
Idealized Z-pinch implosion
Idealized Z-pinch implosion
Idealized Z-pinch implosion