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Research

§ Numerical Methods
§ BEM, FEM, IGA, meshless methods (SPH), hybrid methods (MPM)

§ Fast Solvers
§ Krylov methods, multigrid, preconditioners, domain decomposition

§ Scientific Computing
§ High-performance computing, GPU, FPGA, quantum computing

§ Applications
§ CFD, CSM, multi-phase flows, inverse problems, medical imaging, 

computational finance, radar applications, scientific machine learning
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Numerical Simulations
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Numerical Simulations

§ Study the behavior of fluids, solids, stock market … by virtual experiments 
under changes to external parameters (geometry, material, …) in order to
§ predict future behaviour (weather, stock market, …)
§ optimize the shape of designs (aircraft wing, nozzles, …)
§ find back hidden parameters (inverse problems)
§ analyse what-if scenarios

Our interests
§ Development, analysis and implementation of new numerical methods
§ Use of methods in applications (in collaboration with domain experts)
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Design optimization of rotor profiles

8



Traditional workflow

???SimulationMeshModelReality

CAD Mesher CAEPerformance analysis, shape optimization, digital twin, …

© SimScale



Paradigm shift: Design-Through-Analysis

Reality CAD-integrated CAE pipeline

© SimScale



B-spline basis functions (quadratic, 𝑝 = 2)

Local support = fine grained control over curve

Locally 𝐶! = direct control of the curve

Globally 𝐶"

De Boor: Subroutine packages for calculating with B-Splines, TecRep LA-4728-MS, 1971



B-spline curves

Local support of 𝑁#,%

𝐶!
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Polygons are just linear B-spline curves
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Open-source software

14



Adjoint-based optimization
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“
𝜕𝐶𝐹𝐷
𝜕𝐷𝑒𝑠𝑖𝑔𝑛 ”



Twin-screw extruders

16

is noteworthy that the time spent for updating the mesh was less than 0.1 %. The simulations have been run
on 24 cores on the Intel Xeon based RWTH cluster using an MPI parallelization. For example, computing
one revolution for Config. 1 on mesh 2 using a time step of �t = 0.00625s takes 115s. The time spent for the
mesh update was only 0.02s.

Remark. The appeal of the presented methodology becomes apparent when performing mesh refinement studies as
well as time step size studies. The spline parameterization for the screw only has to be generated once at the beginning.
For a mesh refinement study only the ’sca↵olding’ needs to be regenerated which is a simple evaluation of the spline
parameterization. A time step refinement study is even simpler. Given a ’sca↵olding’ for instances of ⇥ in the interval
[0,⇡], we can simply compute the mesh at any time instance by interpolating between the generated instances. Thus, it
is not necessary to generate any new mesh in case one aims to adapt the time step size.

4.3. 3D Application Case
Within this section, we aim to show the functioning of the spline-based parameterization technique for real 3D
applications. Once again, we consider the temperature-dependent flow of a plastic melt through a complex
screw geometry. The plastic melt is modeled using the Cross-WLF model. The model parameters employed
are based on a polypropylene from the product portfolio of a leading raw material manufacturer. The
parameters are given in Table 8. The plastic melt has density ⇢ = 710 kg/m3, specific heat cp = 2400 J/(kg K)
and thermal conductivity 0 = 0.5 W/(m s).

(a) 2D cross section. (b) 3D sketch of extruder including in/outflow exten-
sion.

Figure 17: 3D mixing element.

Screw radius Rs 0.156 m
Center line distance Cl 0.262 m
Screw-screw clearance �s 0.004 m
Screw-barrel clearance �b 0.004 m
Pitch length pl 0.28 m

Table 7: Geometry parameters of a 3D mixing screw element for
temperature-dependent flow.

D1 1.2e+14 Pa s
⌧⇤ 25680.0 Pa
n 0.29 -
Tre f 263.15 K
A1 28.32 -
A2 51.60 K

Table 8: Cross-WLF parameters.

ns C-grid ns separator ns total nr na # elements nµ n⌫ total nslices ⇡
150 70 220 12 300 1584000 220 16 101

Table 9: Mesh discretization for 3D mixing elements.

The 2D screw geometry cross section is a simplified combination of the two 2D configurations of the previous
section, see Figure 17(a). The screw geometry parameters are given in Table 7. The 3D setup is shown in

21



Flexible floating structures
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Efficient multigrid solvers (not A\b)
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p-Multigrid as a preconditioner
As an alternative, the p-multigrid method can be applied as a preconditioner
within a BiCGSTAB method. In the preconditioning phase of each iteration,
a single multigrid cycle is applied. Numerical results can be found in Table
6. When applying Gauss-Seidel as a smoother, the number of iterations
needed with BiCGSTAB is significantly lower compared to the number of
p-multigrid multigrid cycles and even restores stability for higher values of
p (see Table 4). However, a dependence of the iteration numbers on p is
still present. When adopting ILUT as a smoother, the number of iterations
needed for convergence slightly decreases compared to the number of p-
multigrid multigrid cycles for all configurations and benchmarks. Furthermore,
the number of iterations is independent of both h and p.

p = 2 p = 3 p = 4 p = 5
ILUT GS ILUT GS ILUT GS ILUT GS

h = 2�6 2 13 2 18 2 41 2 78
h = 2�7 2 12 2 20 2 41 2 92
h = 2�8 3 13 2 19 2 43 2 95
h = 2�9 3 13 2 21 2 41 2 95

(a) Poissons’s equation on quarter annulus

h = 2�6 2 7 2 13 2 29 2 65
h = 2�7 2 8 2 13 2 29 2 70
h = 2�8 2 7 2 12 2 29 2 64
h = 2�9 2 7 2 14 2 28 2 72

(b) CDR-equation on unit square

h = 2�6 3 10 2 16 2 26 2 52
h = 2�7 3 10 2 17 2 32 2 57
h = 2�8 3 10 2 17 2 33 2 66
h = 2�9 4 11 2 18 2 36 2 64

(c) Poissons’s equation on L-shaped domain

h = 2�2 2 14 2 30 2 94 3 276
h = 2�3 2 16 2 40 2 105 2 229
h = 2�4 2 19 2 44 2 119 3 285
h = 2�5 2 19 2 49 3 136 3 310

(d) Poissons’s equation on the unit cube

Table 6: Number of iterations needed to achieve convergence with BiCGSTAB, using
p-multigrid as preconditioner.

24



Material Point Method
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Scientific computing

§ Divide-and-conquer § Offloading
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Scientific computing in the quanum era

§ Divide-and-conquer § Offloading
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LibKet: a cross-platform programming framework
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C/C++ 
Fortran

OpenMP,
MPI, …

CUDA, HIP,
OpenCL, …

AQASM, Circ, cQASM, 
Forest, OpenQASM, 

OpenQL, pyQuil, Qiskit, 
QDK, QuEST, QX, …Li
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Application: First bell state

#include <LibKet.hpp>

// Create quantum expression
auto expr = cnot(h(sel<1>()),

sel<3>(init()));

// Select quantum device
QDevice<ibmq_london, 5> device;

// Populate quantum kernel
device(expr);

// Execute quantum job
auto job = device.execute_async(…, [stream]);

// Wait for job and retrieve result
auto result = job->get();
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4 M. Möller and M. Schalkers

C and Python APIs are being implemented, which adopt just-in-time compila-
tion techniques to exploit the full potential of C++ template meta-programming
internally and expose |Lib〉’s functionality in C and Python-style to the outside.

A comprehensive overview of the |Lib〉 programming framework is given in
Fig. 1. It consists of three layers that provide components for application pro-
grammers (high-level (HL) API), quantum algorithm developers (mid-level (ML)
API), and QPU providers (low-level (LL) API), respectively.

HL Q-acceleration SDKs (C/C++, Python)

ML Q-expressions: algorithms and circuits

LL Q-abstraction: filters and gates
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Fig. 1. Overview of the cross-platform |Lib〉 programming framework.

Before we describe the different software layers in more detail we give a
short example on |Lib〉’s general usage. Consider the C++ code snippet given
in Listing 1 which puts the first and third qubit of a quantum register into the
maximally entangled first Bell state, where A is qubit 1 and B is qubit 3:

∣∣Φ+
〉

=
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) =
|00〉AB + |11〉AB√

2
. (1)

The easiest way to achieve this is to start from the computational basis |0〉 and
apply a Hadamard gate to one qubit followed by a controlled-NOT (CNOT) gate

|0〉A H •

|0〉B

This is realized by the quantum expression that is constructed in lines 8–9
of the code snippet, thereby demonstrating two of |Lib〉’s most essential compo-
nents, namely, Quantum Filters and Quantum Gates, which are implemented in
the namespaces LibKet::filters and LibKet::gates, respectively.

As the name suggests, filters select a subset of the quantum register; see
Sect. 4.1 for more details. Here, sel< 1 >() selects the first qubit for applying
the Hadamard gate. This sub-expression serves as first argument, the control, to
the binary CNOT gate, whose action is applied to the third qubit (sel<3>(...)).
The init() gate puts all qubits of the quantum register into the computational
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Before we describe the different software layers in more detail we give a
short example on |Lib〉’s general usage. Consider the C++ code snippet given
in Listing 1 which puts the first and third qubit of a quantum register into the
maximally entangled first Bell state, where A is qubit 1 and B is qubit 3:
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The easiest way to achieve this is to start from the computational basis |0〉 and
apply a Hadamard gate to one qubit followed by a controlled-NOT (CNOT) gate

|0〉A H •

|0〉B

This is realized by the quantum expression that is constructed in lines 8–9
of the code snippet, thereby demonstrating two of |Lib〉’s most essential compo-
nents, namely, Quantum Filters and Quantum Gates, which are implemented in
the namespaces LibKet::filters and LibKet::gates, respectively.

As the name suggests, filters select a subset of the quantum register; see
Sect. 4.1 for more details. Here, sel< 1 >() selects the first qubit for applying
the Hadamard gate. This sub-expression serves as first argument, the control, to
the binary CNOT gate, whose action is applied to the third qubit (sel<3>(...)).
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Application: First bell state

#include <LibKet.hpp>

// Create quantum expression
auto expr = cnot(h(sel<1>()),
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// Select quantum device
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// Populate quantum kernel
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// Execute quantum job
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Before we describe the different software layers in more detail we give a
short example on |Lib〉’s general usage. Consider the C++ code snippet given
in Listing 1 which puts the first and third qubit of a quantum register into the
maximally entangled first Bell state, where A is qubit 1 and B is qubit 3:
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apply a Hadamard gate to one qubit followed by a controlled-NOT (CNOT) gate
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This is realized by the quantum expression that is constructed in lines 8–9
of the code snippet, thereby demonstrating two of |Lib〉’s most essential compo-
nents, namely, Quantum Filters and Quantum Gates, which are implemented in
the namespaces LibKet::filters and LibKet::gates, respectively.

As the name suggests, filters select a subset of the quantum register; see
Sect. 4.1 for more details. Here, sel< 1 >() selects the first qubit for applying
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the binary CNOT gate, whose action is applied to the third qubit (sel<3>(...)).
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6 M. Möller and M. Schalkers

customize the execution process, run multiple quantum kernels concurrently and
perform non-blocking asynchronous kernel execution are given in Sect. 4.5.

1 BinaryQGate
2 | gate = QCNOT
3 | filter = QFilterSelect [ 1 3 ]
4 | expr0 = UnaryQGate
5 | | gate = QHadamard
6 | | filter = QFilterSelect [ 1 ]
7 | | expr = QFilterSelect [ 1 ]
8 | expr1 = UnaryQGate
9 | | gate = QInit

10 | | filter = QFilterSelect [ 3 ]
11 | | expr = QFilter

1 version 1.0
2 qubits 6
3 h q[1]
4 cnot q[1], q[3]

000000 001010
0

0.2
0.4
0.6
0.8

1

0.49 0.52

Listing 2: AST of quantum expression (left), resulting QASM code (right-top),
and probability amplitudes computed by QuTech’s QI simulator (right-bottom).

4 Implementation Details

In what follows, we address the individual |Lib〉 components and shed some light
on their internal realization and ways to extend them to support new backends.

4.1 Quantum Filter Chains

As stated before, |Lib〉’s quantum filters are meant to select subsets of qubits
from the global quantum register to which the following quantum operation is
being applied, which is comparable to matrix views in the Eigen library [8].

Since today’s and near-future quantum processors have a very limited number
of qubits, typically, between 5–50, we consider the assumption of a single global
quantum register and the absence of dynamic memory (de)allocation capabilities
most practical. Moreover, quantum computing follows the in-memory computing
paradigm, that is, data is stored and manipulated at fixed locations in memory.
This is in contrast to the classical von-Neuman computer architecture, where
data is transported between the randomly accessible main memory (RAM) and
the central processing unit (CPU), the latter performing the computations.

Table 1 lists all quantum filters supported by |Lib〉. All filtering operations
are applied relative to the given input, which makes it possible combine mul-
tiple filters to so-called filter chains. Consider, for instance, the filter chain
qubit<2>(shift<2>(range<2, 5>())), which selects the 6-th qubit from the
global register, more precisely, the pre-selected set of qubits passed as input.

Thanks to the use of C++ template meta-programming techniques, quan-
tum filters are evaluated at compile time and, hence, even complex filter chains
cause no overhead costs at run time. With the aid of gototag<Tag>() it is
possible to restore a previously stored filter configuration that has been tagged
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Towards a “QTOP-500”: n-qubit QFT benchmark

§ Execute n-qubit QFT for n=1..12 on different quantum simulators

26

12 M. Möller and M. Schalkers

desired information. For widely used data such as job identifier and duration, his-
togram of results, and the state with highest likelihood, each QDevice class spe-
cialization provides functionality to extract information from the JSON object
and convert it into |Lib〉-specific or intrinsic C++ types, e.g.

1 auto duration = ibmq.get<QResultType::duration >(result);
2 auto histogram = ibmq.get<QResultType::histogram>(result);

Let us finally remark that |Lib〉 also supports the native execution of quan-
tum kernels written in C++, e.g., for quantum simulators like QX [13] and
QuEST [11], using the multithreading capabilities that come with C++ 11.

5 Demonstration

|Lib〉 is a rather young project that is under continuous development. The correct
functioning of the core framework described in this paper has been verified by
extensive unit tests. A comprehensive presentation of computational examples is
beyond the scope of this paper and not possible within the given page limit. We
therefore restrict ourselves to a single test case, namely, the quantum expression
qft(init()) and apply it to a quantum register consisting of 1–12 qubits as a
first benchmark to measure the performance of different QPU backends.

Figure 3 depicts the run times measured for the following QPU backends:
Cirq [6] (v0.7.0, generic simulator), pyQuil [21] (v2.19.0, 9q-square-simulator),
QI [13] (v1.1.0), Qiskit [1] (v.0.17.0, qasm-simulator), and QuEST [11] (v3.1.1,
CPU-OpenMP simulator). All runs were performed with 1024 shots on a dual-
socket Intel Xeon E5-2687W Sandy Bridge EP system with 2 × 8 cores running
at 3.1 GHz with 128 GB of DDR3-1600 memory except for the QI runs, which
were executed on a remote system with unknown hardware specification.

Cirq QI QiskitpyQuil QuEST
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Fig. 3. Run times for the Quantum Fourier transformation executed with 1–12 qubits
(per group from left to right) on five different QPU simulator backends.
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a b s t r a c t 
The development of practical quantum computers that can be used to solve real-world problems is in full 
swing driven by the ambitious expectation that quantum supremacy will be able to outperform classical 
super-computers. Like with any emerging compute technology, it needs early adopters in the scientific 
computing community to identify problems of practical interest that are suitable as proof-of-concept ap- 
plications and to revise existing solution strategies and develop new ones that exploit the capabilities of 
the novel compute hardware. 

In this article we describe a conceptual framework for reducing the computational complexity 
of simulation-driven automated design optimization processes, which are nowadays widely used in 
computer-aided product development, by exploiting quantum supremacy. Our approach is based on the 
assumption that quantum computers will become part of hybrid high-performance computing platforms 
and can then be used as application-specific accelerator devices. 

© 2019 Elsevier B.V. All rights reserved. 
1. Introduction 

The era of accelerated computing started in the mid-20 0 0s, 
when CPU clock speeds approached the 4 GHz barrier and a fur- 
ther increase beyond this barrier would have required enormous 
effort s f or cooling the processor to prevent spurious malfunc- 
tioning and even permanent hardware damage from overheating. 
All major chip vendors followed the paradigm shift from chasing 
ultimate single-core performance towards developing parallel 
high-performance computing (HPC) technologies and flooded the 
market with multi-core CPUs and many-core accelerator cards like 
programmable GPUs and dedicated co-processor devices. 
1.1. Accelerated computing 

The key idea of accelerated computing is to offload computa- 
tionally expensive tasks from the host, a classical multi-core and 
possibly multi-socket CPU-based computer, to the attached accel- 
erator devices, which altogether form the so-called compute node. 
Modern HPC systems consist of hundreds and thousands of com- 
pute nodes, which are interconnected by high-speed networks. 
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In classical accelerated computing, the role of the host com- 
puter is threefold: Firstly, tasks that do not benefit from the 
compute capabilities of the accelerator devices such as in- and out- 
put of data from and to the global filesystem and intrinsically se- 
quential (parts of) algorithms are executed by the host. Secondly, 
the host is responsible for orchestrating the interplay of acceler- 
ator devices among each other and with the CPU and for man- 
aging the communication between the distributed compute nodes. 
Finally, since modern CPUs have up to 20–32 cores with integrated 
vector-processing units, heterogeneous HPC systems also use the 
massive compute power of the host to perform actual computa- 
tions. 

Most of today’s many-core accelerators are designed for exe- 
cuting parallelizable and/or vectorizable instructions of SIMD-type 
(single instruction multiple data) exceptionally fast. Consider, for 
instance, the multiplication of an m × n matrix with a column vec- 
tor of length n . Each matrix row gives rise to a separate dot prod- 
uct, i.e. an accumulated multiply-add operation that can be carried 
out in a parallel and, ideally, vectorized loop over all rows even 
on multiple devices with distributed memory architecture. This so- 
called divide-and-conquer approach is a common building block in 
classical HPC applications and it is supported by most program- 
ming models like OpenMP [1] and MPI [2] . 

Recently, application-specific accelerator technologies are 
emerging, which offer extra functionality that is not available 
in commodity hardware. Consider, for instance, Google’s tensor 
processing units [3] , which is an application-specific integrated 
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Introduction

Quantum computing technologies have become a hot topic 
that nowadays receives a lot of attention from researchers in 
academia as well as R&D departments of the global play-
ers in computing. Intel, for instance, plans to invest about 
$50 million over the next 10 years into research on quantum 
computing together with the Dutch research center QuTech1 
that is affiliated with Delft University of Technology, while 
IBM2 builds on more than three decades research effort 
in this field and offers a cloud service to let students and 
researchers get practical ‘Quantum Experience’.

It is clear that quantum computing has become the new 
‘race to the moon’ pursued with national pride and tremen-
dous investments. For instance, the European Commission 
is planning to launch a €1 billion flagship initiative on quan-
tum computing starting in 2018 with substantial funding for 
the next 20 years. This is already a follow-up investment in 
addition to the €550 million that have already been spent on 
individual initiatives in order to put Europe at the forefront 
to what is considered the second quantum revolution. While 
the first quantum revolution started in the early 1900s with 
the achievements of Plank, Bohr, and Einstein leading to a 
theoretical understanding of the behaviour of light and mat-
ter at extremely small scales, it is now considered timely to 
bring the technology to the next maturity level and build 
real quantum computers in order to exploit their theoretical 
superiority over today’s classical Von-Neumann computers 
in practical applications.

Abstract Quantum computing technologies have become 
a hot topic in academia and industry receiving much atten-
tion and financial support from all sides. Building a quantum 
computer that can be used practically is in itself an outstand-
ing challenge that has become the ‘new race to the moon’. 
Next to researchers and vendors of future computing tech-
nologies, national authorities are showing strong interest 
in maturing this technology due to its known potential to 
break many of today’s encryption techniques, which would 
have significant and potentially disruptive impact on our 
society. It is, however, quite likely that quantum computing 
has beneficial impact on many computational disciplines. In 
this article we describe our vision of future developments 
in scientific computing that would be enabled by the advent 
of software-programmable quantum computers. We thereby 
assume that quantum computers will form part of a hybrid 
accelerated computing platform like GPUs and co-processor 
cards do today. In particular, we address the potential of 
quantum algorithms to bring major breakthroughs in applied 
mathematics and its applications. Finally, we give several 
examples that demonstrate the possible impact of quantum-
accelerated scientific computing on society.
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Abstract. This paper introduces a new cross-platform programming
framework for developing quantum-accelerated scientific computing
applications and executing them on most of today’s cloud-based quan-
tum computers and simulators. It makes use of C++ template meta-
programming techniques to implement quantum algorithms as generic,
platform-independent expressions, which get automatically synthesized
into device-specific compute kernels upon execution. Our software frame-
work supports concurrent and asynchronous execution of multiple quan-
tum kernels via a CUDA-inspired stream concept. AQ2

Keywords: Quantum-accelerated scientific computing · Template
meta-programming · Hybrid software development framework

1 Introduction

The development of practically usable quantum computing technologies is in full
swing involving global players like Alibaba, Atos, Google, IBM, and Microsoft
and specialists in this field such as Rigetti Computing and D-Wave. These parties
compete for technology lead and, finally, simply the raw number of qubits they
can provide through their quantum processing units (QPUs), which can be either
hardware quantum computers or quantum computer simulators running on clas-
sical high-performance computing hardware. This situation resembles the very
early days of GPU-accelerated computing when the first generation of general-
purpose programmable graphics cards became available but their productive use
in scientific applications was largely hindered by the non-availability of software
development kits (SDKs) and easy-to-use domain-specific software libraries and,
even more severe, the lack of standardized non-proprietary development envi-
ronments that would lower the dependence on a particular GPU vendor.

Today’s quantum software landscape can be grouped into three main cate-
gories: quantum SDKs [1,6,15,19,22], stand-alone quantum simulators [5,11,13],
and quantum assembly (QASM) [2,3,12] or instruction languages (QUIL) [21].
c© Springer Nature Switzerland AG 2020
V. V. Krzhizhanovskaya et al. (Eds.): ICCS 2020, LNCS 12142, pp. 1–14, 2020.
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Ongoing projects

§ Quantum Linear Solvers
[S. Sigurdson]

§ Quantum Linear Solvers with 
application to CFD / CSM
[E. Cappanera & G. Balducci]

§ Quantum-accelerated optimization 
for graph problems [J. Bus]

§ Quantum Machine Learning
[C. Swart & M. v Loenen]
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Scientific machine learning

General-purpose ML
§ GP-ANN learns to mimic behavior by massive, time-consuming training
§ no guarantee of physically correct results (e.g., negative densities)

Scientific ML
§ integrate prior knowledge (e.g. physic laws) into network architecture

Ongoing projects
§ Matrix decompositions via SML [S. Veldkamp]
§ Physics-informed neural networks for ideal MHD equations [J. Bouma]
§ SML for solving PDE problems [F. v Ruiten & S. Ul Haq]
§ Optimization in optics using SML [J. Imhoff]
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Summary
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§ Research at NAG
§ Numerical Methods
§ Fast Solvers
§ Scientific Computing
§ Applications

§ If you are interested in collaboration please contact me/us à

§ Thank you!


