Multiwavelet troubled cell indicator for discontinuity detection of discontinuous Galerkin schemes

> Thea Vuik Delft University of Technology

Collaboration with Jennifer Ryan, University of East Anglia

August 26, 2013

Г

Motivation

Flow around Space Shuttle

Solution linear advection equation

▲□▶▲舂▶▲콜▶▲콜▶ 콜 ∽੧<)

2 Limiters and troubled cell indicators

- Multiwavelet troubled cell indicator
- 5 Numerical examples

- 2 Limiters and troubled cell indicators
- 3 Multiwavelets
- 4 Multiwavelet troubled cell indicator
- 5 Numerical examples

Discontinuous Galerkin

Hyperbolic partial differential equation: $u_t + f(u)_x = 0; x \in [-1, 1], t > 0.$

• DG approximation: for $x \in I_j$, write,

$$u_h(x) = \sum_{\ell=0}^k u_j^{(\ell)} \phi_\ell(\xi_j), \quad \xi_j = \frac{2}{\Delta x} (x - x_j)$$

- approximation space: orthonormal Legendre polynomials $\int_{-1}^1 \phi_\ell(x) \phi_m(x) dx = \delta_{\ell m}$
- k: highest polynomial degree of the approximation

2 Limiters and troubled cell indicators

3 Multiwavelets

4 Multiwavelet troubled cell indicator

5 Numerical examples

6 Conclusion

Limiters

Limiter:

- Helps to control spurious oscillations
- Reduces polynomial order in nonsmooth regions
- May flatten local extrema (diffusive property)

Troubled cell indicator:

• Helps to limit at discontinuities only

Troubled cell indicators

Examples of troubled cell indicators for DG:

- minmod based TVB limiter (Cockburn and Shu, Math. Comput. 1989)
 KXRCF indicator (Krivodonova et al., Appl. Numer. Math. 2004)
- Harten's subcell resolution (Qiu and Shu, SIAM J. Sci. Comput. 2005)

These indicators use local information (neighbouring cells) Our new multiwavelet approach uses global information

- Discontinuous Galerkir
- 2 Limiters and troubled cell indicators

3 Multiwavelets

- 4 Multiwavelet troubled cell indicator
- 5 Numerical examples

6 Conclusion

Multiwavelets

Multiwavelets (Alpert, SIAM J. Math. Anal. 1993):

- specific set of piecewise polynomials
- based on orthonormal Legendre polynomials
- possible to decompose function into several levels

Relation between DG and multiwavelets (2^n elements) :

$$u_h(x) = \sum_{j=0}^{2^n-1} \sum_{\ell=0}^k u_j^{(\ell)} \phi_\ell(\xi_j) = S^0(x) + \sum_{m=0}^{n-1} D^m(x)$$

Multiwavelet decomposition

Discontinuous example

Most details are visible in $D^{n-1}(x)$

Example: use n = 6: 2^6 elements

- Discontinuous Galerkin
- 2 Limiters and troubled cell indicators

3 Multiwavelets

- 4 Multiwavelet troubled cell indicator
 - Numerical examples

6 Conclusion

Multiwavelet troubled cell indicator

- Troubled cells: focus on highest level $D^{n-1}(x)$
- Compute absolute average \bar{D}_i^{n-1} on element I_j
- Element *I_j* is troubled cell if,

$$ar{D}_j^{n-1} \geq C \cdot \max\left\{ar{D}_i^{n-1}, i=0,\ldots,2^n-1
ight\}, C \in [0,1]$$

• Indication of troubled cells: compute $D^{n-1}(x)$ only

Choice of C

 I_j is troubled cell if,

$$ar{D}_j^{n-1} \geq C \cdot \max\left\{ar{D}_i^{n-1}, i=0,\ldots,2^n-1
ight\}, C \in [0,1]$$

Parameter C: defines strictness of indicator,

- C = 0: every element is detected
- C = 0.2: select largest 80% of averages
- C = 0.8: select largest 20% of averages

Multiwavelet troubled cell indicator

- Global detector, more accurate than local detector (Zaide and Roe, 20th AIAA CFD Conf. 2011)
- Limiter: mechanism to control limited regions Now: troubled cell indicator as switch
- Moment limiter (Krivodonova, J. Comput. Phys. 2007)
 Only a choice, other limiters possible

- 1 Discontinuous Galerkin
- 2 Limiters and troubled cell indicators
- 3 Multiwavelets
- 4 Multiwavelet troubled cell indicator
- 5 Numerical examples

6 Conclusion

Sod's shock tube (J. Comput. Phys. 1978)

Density in Sod's shock tube at T = 0 (left) and T = 2 (right)

Sod: time history

Results: focus on detected troubled cells

Sod: detected troubled cells

Detected troubled cells, C = 0.9 (left) or C = 0.5 (right)

Sod: detected troubled cells

Detected troubled cells, C = 0.1 (left) or KXRCF (right)

Sine entropy wave

Solution (left) and detected troubled cells, C = 0.05 (right)

(Shu and Osher, J. Comput. Phys. 1989)

Sine entropy wave

KXRCF (left) and Harten's (right) troubled cell indicator

Blast waves

TUDelft

Solution at T = 0.038

(Woodward and Colella, J. Comput. Phys. 1984)

Blast: detected troubled cells

Detected troubled cells, C = 0.001 (left) or Harten (right)

Two-dimensional approach

In two-dimensions, the multiwavelet expansion is:

$$S^{0}(x,y) + \sum_{m_{x}=0}^{n_{x}-1} \sum_{m_{y}=0}^{n_{y}-1} \left\{ D^{\alpha,\mathbf{m}}(x,y) + D^{\beta,\mathbf{m}}(x,y) + D^{\gamma,\mathbf{m}}(x,y) \right\}$$

number of elements: $2^{n_x} \times 2^{n_y}$

- α mode: multiwavelets in y-direction
- β mode: multiwavelets in x-direction
- γ mode: multiwavelets both x- and y-direction

Double Mach reflection

(Woodward and Colella, J. Comput. Phys. 1984)

Detected troubled cells

Detected troubled cells at T = 0.2, C = 0.05

Different troubled cells are detected by modes

Computation time

Compare computation time, double Mach reflection:

- More accurate result: don't limit continuous regions
- Decrease of computation time

	limit everywhere	C = 0.05
512 imes 128	57	50
1024 imes 256	493	441

Computation time in minutes, T = 0.2, k = 1

- 1 Discontinuous Galerkin
- 2 Limiters and troubled cell indicators
- 3 Multiwavelets
- 4 Multiwavelet troubled cell indicator
- 5 Numerical examples

Conclusion

- Global troubled cell indicator, switch in limiter
- Multiwavelet decomposition: $D^{n-1}(x)$ detects discontinuity
- Parameter C defines strictness of detector
- More accurate than existing detectors
- Two-dimensional detection in different modes
- Decrease of computation time

Future work:

- \rightarrow How to choose parameter C
- $\rightarrow\,$ Applying to unstructured meshes

Multiwavelets

Basis spans piecewise polynomials on $[-1,0] \cup [0,1]$, degree ≤ 2

Continuous example

