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1. Theoretical Assignment

In this assignment, we motivate that functions with jumps are not allowed as finite element basis
functions (in fact we motivate (a rigorous proof can be based on the weak derivative, see Bræss for
instance) why functions with jumps are not in H1(Ω)). Although the analysis can be generalised
to general domains in Rd , we will deal with a case in a unit circle Ω = {(x,y) ∈ R2 : x2 + y2 < 1}
and with a jump along the circle {(x,y) ∈ R2 : x2 + y2 = R2}, with 0 < R < 1. Due to the circular
geometry, we use polar coordinates to deal with the problem. To this extent, we write the prescription
of uε : Ω→ [0,1] in polar coordinates (r,θ). Let ûε = ûε(r,θ) be given by the following expression:

ûε(r,θ) =



1, r < R− ε,

1
2
(1− r−R

ε
), R− ε ≤ r ≤ R+ ε,

0, r > R+ ε,

(1)

where ε > 0 is chosen such that R−ε ≥ 0 and R+ε ≤ 1. Further, we introduce the heaviside function
u : Ω→ [0,1] by

u(x,y) =

{
1, (x,y) ∈ {(x,y) ∈ R2 : x2 + y2 < R2},
0, (x,y) ∈ {(x,y) ∈ R2 : x2 + y2 > R2}.

(2)

a Assume that f is differentiable. Show that

||∇ f ||2 = (
∂ f
∂ r

)2 +
1
r2 (

∂ f
∂θ

)2.

You may use ∇ f = ∂ f
∂ r er +

1
r

∂ f
∂θ

eθ , where er and eθ are unit vectors in the r-and θ -direction,
respectively.

b Show that
I(ε) :=

∫
Ω

||∇uε ||2dΩ =
πR
ε

.

Remark: From the above relation, it is clear that for a fixed R, we can make I(ε) arbitrarily
large. Herewith it is reasonable to assert that

∫
Ω
||∇u||2dΩ does not exist. Hence functions

in H(Ω) are not allowed to have any jumps. Note that one wants to interchange the limit
ε→ 0 and integration, which is not allowed formally because the requirements of the Lebesgue
convergence theorem are not satisfied. A more rigorous proof is based on the weak derivative.

2. Theoretical Assignment

In this assignment, we show that, despite that functions in H1(Ω) are not allowed to have any jumps,
functions in H1(Ω) are not necessarily continuous if the dimensionality is higher than one. To this
extent, we deal with a circle Ω = Bε(0) = {(x,y) ∈ R2 : x2 + y2 < ε2}, with 0 < ε < 2. The circular
geometry allows a treatment with polar coordinates.

a Show that the function f (x,y) = ln(ln( 2
||x|| )) (||x|| := (x2 + y2)

1
2 ) is not continuous in entire Ω.



b Show that the L2-norm of f (x,y) = ln(ln( 2
||x|| )) is finite, that is show that∫

Ω

f 2(x,y)dΩ < ∞.

Hint: Use polar coordinates and use the substitution u = ln( 2
r ), where r =

√
x2 + y2, and use

a converging mayorant inspired by ln(u)< u for u > 1.

c Show that the function f (x,y) = ln(ln( 2
||x|| )) satisfies∫

Ω

||∇ f (x,y)||2dΩ =
2π

ln( 2
ε
)
, for 0 < ε < 2.

Hint: Use the substitution u = ln( 2
r ).

Remark: After having answered these questions, it can be concluded in spite of ln(ln( 2
||x|| )) /∈

C0(Ω), we have ln(ln( 2
||x|| ))∈H1(Ω). Hence functions in H1(Ω) are not necessarily continuous

if the dimensionality is higher than one.

3. Programming Assignment

Consider the following convection-diffusion problem:

−D
d2u
dx2 + v

du
dx

= 1, u(0) = 1, D
du
dx

(1)+κ(u(1)−u∞) = 0. (3)

Here D, κ , u∞ and v are positive constants. The interval [0,1] is divided into n elements (where n
is a given positive integer), such that ei = [xi,xi+1], for i ∈ {1, . . . ,n}. So element ei has end points
(also called vertices) xi and xi+1, where we require x1 = 0 and xn = 1 and h = 1/(n− 1). Hence
there are n gridpoints and n− 1 unknowns (or degrees of freedom) because the solution is known
on x0. In this lab assignment, the participant develops a finite-element code for 1D in Matlab from
scratch for the case of an non-homogeneous essential (Dirichlet) boundary condition, as well as a
non-homogeneous Robin condition. The treatment is formal in terms of topology, element matrices
and vectors such that the student gets the idea of how finite-element packages are constructed, also
regarding the implementation of an essential boundary condition. Once the mesh and topology have
been adapted to multi-dimensional problems, then it is relatively straightforward to adjust the code
to higher dimensional problems.

Assignment 1 Determine the exact solution to the boundary value problem. ♦

Assignment 2 Derive a weak form of the above problem (see equation (3)), where the order of the
spatial derivative is minimised. Take care of the boundary conditions. ♦

We are going to solve this differential equation by the use of Galerkin’s Finite Element method.

Assignment 3 Write the Galerkin formulation of the weak form as derived in the previous assign-
ment for a general number of elements given by n (hence xn = 1). Give the Galerkin equations, that
is, the linear system in terms of

Su = f , (4)

all expressed in the basis-functions, f (x), λ and D. Make a distinction between the first equation (at
x = 0 = x1) and the remaining equations. Take special care of the second equation in terms of the
essential boundary condition. ♦

Assignment 4 Write a matlab routine, called GenerateMesh.m that generates an equidistant distri-
bution of meshpoints over the interval [0,1], where x1 = 0 and xn = 1 and h = 1

n−1 . You may use x =
linspace(0,1,n). ♦



Further, we need to know which vertices belong to a certain element i.

Assignment 5 Write a routine, called GenerateTopology.m, that generates a two dimensional array,
called elmat, which contains the indices of the vertices of each element, that is

elmat(i,1) = i
elmat(i,2) = i+1 , for i ∈ {1, . . . ,n−1}. (5)

♦

Next we compute the element matrix Selem. In this case, the matrix is the same for each element
(because the grid spacing is the same everywhere), that is, if we consider element ei. First we treat
the internal line elements, and subsequently, we assess the boundary conditions (boundary point
element at x = 1 and the Dirichlet boundary condition at x = 0).

Assignment 6 Derive the element matrix, Selem over a generic internal line element ei on paper. ♦

Assignment 7 Write a matlab routine, called GenerateElementMatrix.m, in which Selem (2× 2-
matrix) is generated. ♦

Subsequently, we are going to sum the connections of the vertices in each element matrix, over all
the elements. The result is an n-by-n matrix, called S.

Assignment 8 Write a matlab routine, called AssembleMatrix.m, that performs this summation,
such that S is first initialised as a zero n-by-n matrix and perform

S(elmat(i,k),elmat(i, l)) = S(elmat(i,k),elmat(i, l))+Selem(k, l), (6)

for k, l ∈ {1,2} over all elements i ∈ {1, . . . ,n−1}. Note that GenerateElementMatrix.m needs to be
called for each element. Note that we have n−1 elements. ♦

Next, we treat the boundary element at x = 1.

Assignment 9 Compute the boundary element matrix, Sbelem, at x = 1 = ben (just one entry). ♦

Assignment 10 Write a matlab routine, called GenerateBoundaryElementMatrix.m, in which Sbelem
(1×1-matrix in one dimension) is generated (just one entry, so you can use a scalar here). ♦

Assignment 11 We incorporate the Robin boundary condition at x = 1 into the code.
Extend the matlab routine AssembleMatrix.m with the following lines on the bottom:

GenerateBoundaryElementMatrix

S(n,n) = S(n,n)+Sbelem;
(7)

♦

Now, you developed a routine for the assembly of the large matrix S from the element matrices Selem
for each element. This procedure is common for the construction of the large discretisation matrices
needed in Finite Element methods. The procedure, using the array elmat looks a bit overdone and
complicated. However, this approach facilitates the application to multi-dimensional problems. The
next step is to generate a large right-hand side vector using the similar principles. First, we need the
element vector. We start with the internal line-elements.

Assignment 12 Derive the element vector over a generic internal line-element ei on paper. ♦



To assemble the right-hand side vector, we proceed as follows

Assignment 13 Implementation of the right-hand vector:

a Write a matlab routine, called GenerateElementVector.m, that gives the vector felem (column
vector of length 2). Here felem(1) and felem(2) respectively provide information about node
i and node i+ 1, which are the vertices of element ei. This is needed for all elements. Use
f (x) = 1 here.

b Write a matlab routine, called AssembleVector.m, that performs the following summation after
setting f = zeros(n,1) by:

f (elmat(i,k)) = f (elmat(i,k))+ felem(k), (8)

for k ∈ {1,2} over all elements i ∈ {1, . . . ,n−1}.

♦

Next, we implement the natural boundary condition at x = 1 into the right-hand side vector.

Assignment 14 Derive the boundary element vector, fbelem, for the boundary x = 1 = ben (Note that
in this simple one-dimensional case this vector has a length one). ♦

Assignment 15 Write a matlab routine, called GenerateBoundaryElementVector.m, in which fbelem
(vector of length one, hence you can use a scalar) is generated. ♦

Assignment 16 We incorporate the Robin boundary condition at x = 1 into the code. Extend the
matlab routine AssembleVector.m with the following lines on the bottom:

GenerateBoundaryElementVector

f (n) = f (n)+ fbelem;
(9)

♦

We are almost done . . . , next we implement the Dirichlet boundary condition at x = 0.

Assignment 17 The essential boundary condition u(0) = 1 is implemented by adjusting the set of
equations such that the first equation becomes u1 = 1, to this extent, we set S11 = 1 and f (1) = 1
as the first equation and S(1, :) = 0 (the remaining elements of the first row are set to zero instead
of deleting the entire row as in the book). Furthermore, one likes to preserve symmetry of the dis-
cretisation matrix and to this extent, the entries of the first column of S, except S(1,1) are set zero as
well. However, before we do this, it follows from the Galerkin equations (see Assignment 2) that the
second term of the right-hand side, that is, f (2), needs to be adjusted to

f (2)−→ f (2)−S(2,1)∗1. (10)

This needs to be done before the first row and first column of the matrix S are adjusted. We proceed as
follows. Write a matlab routine ProcessEssentialBoundaryConditions.m that contains the following
statements:

f (2) = f (2)−S(2,1)∗1;

S(:,1) = 0; S(1, :) = 0; S(1,1) = 1;

f (1) = 1;

(11)

♦



Assignment 18 Run the assembly routines and the routine ProcessEssentialBoundaryConditions.m
to get the matrix S and vector f for n = 100. ♦

Assignment 19 Write the main program that gives the finite-element solution. Call the main pro-
gram femsolve1d.m. The program femsolve1d.m should consist of

clear all
GenerateMesh
GenerateTopology
AssembleMatrix
AssembleVector
ProcessEssentialBoundaryConditions
u = S\ f
plot(x,u) ♦

Now, you wrote the backbone of a simple Finite Element program for a one dimensional model
problem where a ’complicated’ Robin boundary condition, as well as an essential boundary condition
has been implemented. The discretisation matrix and right-hand side vector have been constructed.

Assignment 20 Compute the Finite Element solution u for v = 1, D = 1, K = 1, u∞ = 0 and n = 100.
Plot the solution. Is this what you would expect? Compare your solution for various number of
gridnodes to the exact solution. ♦

Assignment 21 Compute the Finite Element solution u for v = 1, D = 1, u∞ = 0 and n = 1000. Use
several curves for different K: K = 1, 10, 100, 1000. Plot the solution. Is this what you would
expect? ♦

Assignment 22 Choose D= 10−6, v= 1, u∞ = 0, K = 1000. Perform some experiments with several
values of n (n = 10, 100, 1000). Plot the solutions for the various numbers of gridnodes in one plot
and compare your solution to the exact solution. Explain what you see. Is this what you expect? ♦

Assignment 23 Next, implement the SUPG method to tackle the spurious oscillations. Use the same
parametric values as the previous assignment and compare the solution at various resolutions (n =
10, 100, 1000). You need to derive the new weak form, new Galerkin equations and new element
matrix. ♦

You just wrote a simple finite-element code in one dimension and with two different boundary con-
ditions, in such a way that an extension to two- and three dimensional Finite Element programs is
rather straightforward. Further, you considered convection–diffusion and a SUPG method. All you
need to know is, which mesh points are vertices of each element. The latter distribution is commonly
called the topology of the elements. In higher dimensions, the treatment of the boundary needs to be
a little more formal than in the current treatment.

4. Theoretical Assignment

Let u = [ux uy]
T , then we consider the following Stokes’ flow problem in a rectangle Ω with non-

overlapping boundary segments Γ1, Γ2 and Γ3:

− 1
Re ∆u+∇p = f(x,y), in Ω,

∇ ·u = 0, in Ω,

u = u0, on ∂Ω.

(12)



a Show that the solution to the above problem is unique in u and that the pressure p is determined
up to a constant. Hint: Use contraposition. Consider the difference between two different
solutions in both PDEs. Use integration by parts. It might be easier to write out the vectorial
components. (A real existence and uniqueness proof can be based on the LBB-condition).

b Next we consider the continuous penalisation method, applied to the above system, which reads
as

− 1
Re ∆uε +∇pε = f(x,y), in Ω,

∇ ·uε + ε pε = 0, in Ω,

uε = u0, on ∂Ω.

(13)

Show that u−uε , p− pε satisfies

− 1
Re ∆(u−uε)+∇(p− pε) = 0, in Ω,

∇ · (u−uε)− ε pε = 0, in Ω,

u−uε = 0, on ∂Ω.

(14)

c Show that that equation (14) implies∫
Ω

||∇(u−uε
x)||2 + ||∇(u−uε

y)||2dΩ+ ε

∫
Ω

(pε)2dΩ = ε

∫
Ω

ppε dΩ. (15)

d Poincaré’s (Lax-Friedrichs) Inequality says that under the present circumstances, there is an
α > 0 such that ∫

Ω

||∇u||2dΩ≥ α

∫
Ω

u2dΩ.

Use this assertion, with |ab| ≤ 1
2 (a

2+b2), to finally assert that uε→ u and ∇pε→∇p as ε→ 0.

Now you have demonstrated that the penalty method is consistent, in the sense that the numerical
solution pair (uε , pε)→ (u, p) as ε → 0 (converges to the solution of the original Stokes problem).

5. Programming Assignment

We consider Biot’s model for poro-elasticity. This model is used for the simulation of the interaction
between fluid flow in a porous medium and the mechanical deformation of the medium. The problem
is notorious for its saddle-point nature, like Stokes’s flow model. We consider the following partial
differential equations:

−µ∆u− (λ +µ)
∂

∂x
(

∂u
∂x

+
∂v
∂y

)+
∂ p
∂x

= 0, in Ω, t > 0,

−µ∆v− (λ +µ)
∂

∂y
(

∂u
∂x

+
∂v
∂y

)+
∂ p
∂y

= 0, in Ω, t > 0,

∂

∂ t
(

∂u
∂x

+
∂v
∂y

)− κ

µ
∆p = f (x,y), in Ω, t > 0.

(16)



We consider Ω = (0,8)× (0,8). The boundary conditions are given by

p = 0, on ∂Ω\ (Γ1∪Γ3),

n ·∇p = 0, on Γ1∪Γ2,

σn =−σ0, on Γ1,

σn = 0, on Γ2,

σn+κu = 0, on ∂Ω\ (Γ1∪Γ2),

(17)

where
Γ1 = {(x,y) ∈ ∂Ω||x| ≤ 0.8, y = 8},

Γ2 = {(x,y) ∈ ∂Ω||x|> 0.8, y = 8},

Γ3 = {(x,y) ∈ ∂Ω|y = 0}.
and

σ = λ tr(ε)I +2µε =

(
(λ +2µ) ∂u

∂x +λ
∂v
∂y µ( ∂v

∂x +
∂u
∂y )

µ( ∂v
∂x +

∂u
∂y ) (λ +2µ) ∂v

∂y +λ
∂u
∂x

)
.

a Derive the weak formulation.
b Derive the Galerkin equations in the form

∑
j

Suu
i j u j +∑

j
Suv

i j u j +∑
j

Sup
i j p j = f u

j ,

for the three PDE’s and write the matrices Suu, etc, in terms of integrals over Ω and its boundary
regarding the basis functions.

c Derive the internal element matrices for all the PDEs.
d Derive the boundary element matrices for all the PDEs.
e Subsequently, we consider a stabilisation, which changes the last PDE into

∂

∂ t
(

∂u
∂x

+
∂v
∂y

)− κ

µ
∆p−β∆(

∂ p
∂ t

) = f (x,y), in Ω, t > 0, (18)

with β = ∆x2+∆y2

4(λ+2µ) . Repeat parts a–d.

We use the programs supplied on http://ta.twi.tudelft.nl/users/vermolen/SpecialTopics. All input val-
ues are listed in InputParameters.m. SpecialTopicsMesh.m, SpecialTopicsComp.m, SpecialTopic-
sPost.m are, respectively, used for the generation of the mesh, execution of the calculation program,
and the postprocessing.

f Use the files from Program 1 (based on linear elements) to simulate the problem over the first
five time-steps, use ∆t = 1, 10−2, 10−4, 10−6, 10−8. What do you observe? Is this what you
expect?

g Use the files from Program 2 (based on Taylor-Hood elements) to simulate the problem over
the first five time-steps, use ∆t = 1, 10−2, 10−4, 10−6, 10−8. What do you observe? Is this
what you expect?

h Adjust the files in Program 1 to incorporate the stabilisation with β = ∆x2+∆y2

4(λ+2µ) . The adjustments
can be made in the files GenerateRightStiffnessMatrix.m, GenerateLeftStiffnessMatrix.m, Gen-
erateLeftBoundaryElementMassMatrix.m and GenerateRightBoundaryElementMassMatrix.m.
Do the same as parts f–g.

i Write a report of about two pages of your findings of in this assignment.


