
Accelerating the Solution of Linear Systems Appearing
in Two-Phase Reservoir Simulation by the use of

Pod-Based Deflation Methods

Gabriela B. Diaz Cortes 1, Kees Vuik 2, Jan Dirk Jansen 3.

1Mexican Petroleum Institute
2Department of Applied Mathematics, TU Delft.

3Department of Geoscience & Engineering, TU Delft.

SIAM Conference on Mathematical & Computational Issues in the
Geosciences (GS21)

Vuik, Diaz, Jansen POD-Def SIAMGS21 1 / 24



Table of Contents

1 Motivation

2 Theory

3 Methodology

4 Experiments

5 Conclusions

6 Bibliography

Vuik, Diaz, Jansen POD-Def SIAMGS21 1 / 24



1 Motivation

2 Theory

3 Methodology

4 Experiments

5 Conclusions

6 Bibliography



Motivation

* Solutions of systems of linear equations are required when simulating
flow through subsurface porous media.

* The complex geometry and strongly heterogeneous rock properties of
the porous medium makes the linear system ill-conditioned.

* Converge is hampered by large and ill-conditioned systems.

* For time-varying problems, it is required to compute a large number
of simulations, which makes the solution of these problems expensive.
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Solution Methods

Reduced Order Models (ROM) methods capture relevant information of a
high-dimensional system and to project it into a lower-dimension space
[1, 2, 3, 4, 5], easier to solve.

Krylov subspace iterative methods For these methods, the speed of convergence
depends on the condition number and the right-hand side (rhs) of the
system[6, 7]. If the condition number is large, preconditioning techniques can be
used to transform the original system into a better conditioned one. Recycling
strategies like augmentation and deflation [8] can also be implemented to
accelerate the convergence rate.

Multigrid methods Employs grids of different mesh sizes, allowing to solve all
wave-length components and provides rapid convergence rates.
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Solution methods

Proper Orthogonal Decomposition (POD) is a ROM method that has recently
been used to accelerate the solution of the linear pressure equation resulting from
reservoir simulation [9, 10, 11, 12, 13], among other applications.
For the computation of the POD basis, two main approaches are used:

Training phase approach: a training simulation is run, and the solutions are
stored as snapshots to obtain a POD basis. Especially suitable for solving
problems with small changes in the input variables, e.g. the same well
configurations but different flow rates or bottom hole pressures (bhp)
[12, 9, 11].

Moving window approach: The basis is computed on-the-fly, using, e.g., the
solution of the latest time steps [10, 9, 14]. With this approach, the basis
has to be adapted during the simulation.
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Solution methods

Convergence of the Krylov subspace methods takes place in three phases with
different rates of convergence[15, 16, 17].

Convergence phases How to address it

The method lacks information about the
spectrum, and acts mainly on the informa-
tion of the initial iteration error, leading to a
short but rapid initial convergence rate, also
known as the sublinear phase

Improve the initial guess so that
the error is minimized

The influence of the spectral condition num-
ber becomes larger and the method enters
the linear phase

Change the condition number of
the system

A sufficient number of extreme eigenvalue
components have been damped out, the
method enters the so called superlinear con-
vergence phase

Remove the influence of the small-
est eigenvalues of the system ma-
trix (e.g. with augmentation or de-
flation techniques)
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State of the art

Article Methodology
Markovinovic et al. [10] Proposed the use of POD techniques to compute

a good initial guess that accelerates the iterative
method for simulation of two-phase flow through
large-scale heterogeneous porous media.

Astrid et al. [9] For the same type of problems, solving the prob-
lem in the small-scale domain, and projecting it
back to the large-scale system.

Carlberg et al. [5] Proposed a POD-augmented CG algorithm
for Krylov-subspace recycling applied to solid-
mechanics problems.

Pasetto et al. [2] Suggested a preconditioner for the CG method,
based on a POD basis for the solution of ground-
water flow models.
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Deflation techniques

Definition

Let A ∈ Rn×n be an SPD matrix, and Z ∈ Rn×p be a full rank matrix. The invertible
Galerkin matrix, E ∈ Rp×p, the correction matrix, Q ∈ Rn×n and the deflation matrix
P ∈ Rn×n are defined as [18, 19, 20]:

P = I− AQ, Q = ZE−1ZT , E = ZTAZ. (1)

where Z ∈ Rn×p is called the deflation − subspace matrix, and its columns are the
deflation vectors or projection vectors[18, 21, 22, 23, 14, 24, 19, 25].

Techniques used to select deflation vectors are based on:

Eigenvectors or approximated eigenvectors of the system matriz [19, 25]

Recycling vectors [23, 14]

Subdomain deflation vectors [24]

Multigrid and multilevel based deflation vectors [18, 21, 22]
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Deflation vectors

Solving a linear system
Ax = b

Eigenvectors of the system matrix as deflation vectors
Lemma 1. Given

σ(A) = {λ1, λ2...λp, λp+1, ..., λn},
where

Aλi = λ1vi .

If Z = [v1, ..., vp], then PA has the same eigenvectors as A and the spectrum is given by
(ee the proof in [19, 25]):

σ(PA) = {0, ..., 0, λp+1, ..., λn}.

Recycled vectors as deflation vectors
Lemma 2. Given

x =

p∑
i=1

cixi ,

where the x′i s are linearly independent (l.i.) solutions such that Axi = bi . If

Z =
[
x1, ..., xp

]
,

the solution of the linear system is obtained within one iteration of DCG (see the proof
in [14, 25]).
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POD-based deflation method

We combine a POD basis with the Deflated Preconditioned Conjugate
Gradient method preconditioned with Incomplete Cholesky (DICCG).

i) Snapshots collection. A set X of snapshots, vectors bi with different
configurations or at various time steps, is obtained for the computation of
the POD basis.

Moving window approach: the window consists of a set of s
snapshots updated for each time step.

X = [xt−s−1, ..., xt−1].

Training phase approach: a full pre-simulation is run.

X = [x1, ..., xn].

ii) POD basis computation.The previously obtained snapshots are used to
construct a POD basis (Ψ).

iii) Solution of the linear system. The POD basis is used as
subspace-deflation matrix (Z) in a deflation procedure for the solution of
the linear system.
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POD-based deflation method

Lemma 3. Let Ax = b, be a linear system with A ∈ Rn×n symmetric with spectrum
σ(A) = {λ1, ..., λn}, and eigenvectors σ(A) = {v1, ..., vn}, such that vT

i vj = δij .

We assume that the solution to this system can be written as x =
∑p

i=1 aixi , where the
x′i s are linearly independent (l.i.) solutions to Axi = bi . Rewriting the x′i s as:

xi =
n∑

k=1

ckvk , xj =
n∑

m=1

c̃mvm,

and taking cα 6= c̃β , and |cα| >> |ck |, with k ∈ [1, ..., α− 1, α + 1, ..., n], and
|c̃β | >> |c̃m|, m ∈ [1, ..., β − 1, β + 1, ..., n], the spectrum of the deflated system PA is
given by:

σ(PA) = {λ1, ..., λα−1, 0, λα+1, ..., λβ−1, 0, λβ+1, ..., , λn}.
See the proof in [14, 25].

Hence, if the unfavorable eigenvalues are captured in the l.i. solutions xi and xj , the
behavior of the deflated method is the same as if these eigenvectors are used as
deflation vectors.
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Problem Definition

Reservoir Simulation
Single-phase flow through porous media [26]

Darcy’s law + mass balance equation

−∇ ·
[
αρ

µ
~K(∇p− ρg∇d)

]
+ αρφct

∂p

∂t
− αρq = 0.

ct = (cl + cr),

α a geometric factor

ρ fluid density

µ fluid viscosity

p pressure

~K rock permeability

g gravity

d depth

φ rock porosity

q sources

cr rock compressibility

cl liquid compressibility
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Experiments: Heterogeneous permeability layers

Water flooding with injection through the boundary and wells.

TC1. cσ = 10−1, no capillary pressure terms included.

TC2. cσ = 10−6, no capillary pressure terms included.

TC3. cσ = 10−1, capillary pressure terms included.

TC4. cσ = 10−6, capillary pressure terms included.

Rock permeability.

Water Oil Units

µ 1 10 cp
ρ 1000 700 kg/m3

kr (Sw )2 (1− Sw )2

Cp 10 ∗ (1− S) bars
2D: 35 x 35 cells

3D: 25 x 25 x 25 cells.
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Results: Heterogeneous permeability layers

a) b)

c) d)

Figure: Eigenvalues of a)A , b)M−1A, c)P10M−1A, d)PPOD5 M−1A
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Results: Heterogeneous permeability layers

p Total DICCG Total % of ICCG % of ICCG

ICCG ICCG DICCG DICCG Iterations Work

2D Case

TC1 10 23245 406 2830 3236 14 33.2

5POD 3929 4335 19 61.7

TC2 10 33834 194 3789 3983 12 28

5POD 5256 5450 16 47.6

TC3 10 23123 427 5792 6219 27 64

5POD 6296 6723 29 78.9

TC4 10 35507 220 6959 7179 20 48.1

5POD 7291 7511 21 55.2

3D Case

TC1 10 24231 498 3887 4385 18 37.7

5POD 4929 5427 22 56.5

TC2 10 20260 309 3342 3651 18 37.6

5POD 3117 3426 17 52.4

TC3 10 24557 513 8103 8616 35 73.1

5POD 8472 8985 37 78.1

TC4 10 19130 267 4180 4447 23 48.5

5POD 5084 5351 28 70.9
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Results: Heterogeneous permeability layers

Figure: Total work for various methods, ε = 5 · 10−7, Left: 2D cases, Right: 3D
cases. The initial work is negligible in all cases.
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Results: Heterogeneous permeability layers

Figure: Number of iterations TC2 .
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Experiments: SPE 10

Temporal parameters Wells

2D 3D Producers Injector
Tsteps 480 240 MW 275 1100 bars
dT 15 1 day TP training phase random (137.5, 275) 1100 bars

TP experiments 200, 275, 400 1100 bars

TC1MW . MW approach, 2D, no capillary pressure terms included, P: 275 [bars].

TC2MW . MW approach, 2D, capillary pressure terms included, P: 275 [bars].

TC3TP . TP approach, 2D, no capillary pressure terms included, P: 200 [bars].

TC4TP . TP approach, 2D, capillary pressure terms included, P: 200 [bars].

TC5TP . TP approach, 2D, no capillary pressure terms included, P: 275 [bars].

TC6TP . TP approach, 2D, capillary pressure terms included, P: 275 [bars].

TC7TP . TP approach, 2D, no capillary pressure terms included, P: 400 [bars].

TC8TP . TP approach, 2D, capillary pressure terms included, P: 400 [bars].

TC9MW . MW approach, 3D, no capillary pressure terms included, P: 275 [bars].

TC10MW . MW approach, 3D, capillary pressure terms included, P: 275 [bars].

TC11TP . TP approach, 3D, no capillary pressure terms included, P: 275 [bars].

TC12TP . TP approach, 3D, capillary pressure terms included, P: 275 [bars].
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Results: SPE 10

p Total DICCG Total % of ICCG % of ICCG
ICCG ICCG DICCG DICCG Iterations Work

2D case

TC1MW 10 80764 2241 5691 7932 10 23.4
5POD 6667 8908 11 27.1

TC2MW 10 78950 2256 5334 7590 10 22.9
5POD 6018 8274 10 26.3

TC3TP , P: 200[bars] 10POD 80764 12044 15 35.5
5POD 20281 25 42.5

TC4TP , P: 200[bars] 10POD 78950 11746 15 35.4
5POD 17659 22 37.8

TC5TP , P: 275[bars] 10POD 83972 12935 15 37
5POD 21439 26 38.3

TC6TP , P: 275[bars] 10POD 83279 13078 16 37
5POD 19045 23 38.3

TC7TP , P: 400[bars] 10POD 72158 10279 14 33.9
5POD 17858 25 41.8

TC8TP , P: 400[bars] 10POD 70819 9824 14 33
5POD 15353 22 36.7

3D case

TC9MW 10 87789 5280 14798 20078 23 35.2
5POD 17084 22364 25 42.3

TC10MW 10 76878 5323 14285 19608 26 39.3
5POD 15945 21268 28 46.1

TC11TP 10POD 87789 25410 29 44.6
5POD 40959 47 71.9

TC12TP 10POD 76878 22740 30 45.6
5POD 35617 46 71.4
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Conclusions

- The use of a POD basis as deflation vectors requires some extra work,
however, it makes the deflation method more robust.

- The total work is reduced up to 23% the ICCG work when using the
DICCG method, for the 2D case, and up to 35% for the 3D case.

- The MW approach showed a better performance than the TP
approach for the studied cases.

- A slightly better performance is observed if no capillary pressure terms
are included.

- For the TP approach, a single basis can be used for alike problems,
resulting in similar performance of the DICCG method.
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