Accelerating the Solution of Linear Systems Appearing in Two-Phase Reservoir Simulation by the use of Pod-Based Deflation Methods

Gabriela B. Diaz Cortes ¹, Kees Vuik ², Jan Dirk Jansen ³.

¹Mexican Petroleum Institute ²Department of Applied Mathematics, TU Delft. ³Department of Geoscience & Engineering, TU Delft.

SIAM Conference on Mathematical & Computational Issues in the Geosciences (GS21)

Table of Contents

Motivation

2 Theory

2 Theory

- 3 Methodology
- 4 Experiments
- Conclusions
- 6 Bibliography

- * Solutions of systems of linear equations are required when simulating flow through subsurface porous media.
- * The complex geometry and strongly heterogeneous rock properties of the porous medium makes the linear system ill-conditioned.
- * Converge is hampered by large and ill-conditioned systems.
- * For time-varying problems, it is required to compute a large number of simulations, which makes the solution of these problems expensive.

Reduced Order Models (ROM) methods capture relevant information of a high-dimensional system and to project it into a lower-dimension space [1, 2, 3, 4, 5], easier to solve.

Krylov subspace iterative methods For these methods, the speed of convergence depends on the condition number and the right-hand side (*rhs*) of the system[6, 7]. If the condition number is large, preconditioning techniques can be used to transform the original system into a better conditioned one. Recycling strategies like augmentation and deflation [8] can also be implemented to accelerate the convergence rate.

Multigrid methods Employs grids of different mesh sizes, allowing to solve all wave-length components and provides rapid convergence rates.

Solution methods

Proper Orthogonal Decomposition (POD) is a ROM method that has recently been used to accelerate the solution of the linear pressure equation resulting from reservoir simulation [9, 10, 11, 12, 13], among other applications. For the computation of the POD basis, two main approaches are used:

Training phase approach: a training simulation is run, and the solutions are stored as snapshots to obtain a POD basis. Especially suitable for solving problems with small changes in the input variables, e.g. the same well configurations but different flow rates or bottom hole pressures (*bhp*) [12, 9, 11].

Moving window approach: The basis is computed on-the-fly, using, e.g., the solution of the latest time steps [10, 9, 14]. With this approach, the basis has to be adapted during the simulation.

Solution methods

Convergence of the Krylov subspace methods takes place in three phases with different rates of convergence[15, 16, 17].

Convergence phases	How to address it
The method lacks information about the spectrum, and acts mainly on the informa-	Improve the initial guess so that
tion of the initial iteration error, leading to a short but rapid initial convergence rate, also known as the sublinear phase	the error is minimized
The influence of the spectral condition num- ber becomes larger and the method enters the linear phase	Change the condition number of the system
A sufficient number of extreme eigenvalue	Remove the influence of the small-
components have been damped out, the	est eigenvalues of the system ma-
method enters the so called superlinear con-	trix (e.g. with augmentation or de-
vergence phase	flation techniques)

Article	Methodology
Markovinovic et al. [10]	Proposed the use of POD techniques to compute a good initial guess that accelerates the iterative method for simulation of two-phase flow through large-scale heterogeneous porous media.
Astrid et al. [9]	For the same type of problems, solving the prob- lem in the small-scale domain, and projecting it back to the large-scale system.
Carlberg et al. [5]	Proposed a POD-augmented CG algorithm for Krylov-subspace recycling applied to solid- mechanics problems.
Pasetto et al. [2]	Suggested a preconditioner for the CG method, based on a POD basis for the solution of ground- water flow models.

Definition

Let $A \in \mathbb{R}^{n \times n}$ be an *SPD* matrix, and $Z \in \mathbb{R}^{n \times p}$ be a full rank matrix. The invertible Galerkin matrix, $E \in \mathbb{R}^{p \times p}$, the correction matrix, $Q \in \mathbb{R}^{n \times n}$ and the deflation matrix $P \in \mathbb{R}^{n \times n}$ are defined as [18, 19, 20]:

$$\mathsf{P} = \mathsf{I} - \mathsf{A}\mathsf{Q}, \qquad \mathsf{Q} = \mathsf{Z}\mathsf{E}^{-1}\mathsf{Z}^{\mathsf{T}}, \qquad \mathsf{E} = \mathsf{Z}^{\mathsf{T}}\mathsf{A}\mathsf{Z}. \tag{1}$$

where $Z \in \mathbb{R}^{n \times p}$ is called the *deflation* – *subspace* matrix, and its columns are the *deflation* vectors or *projection* vectors[18, 21, 22, 23, 14, 24, 19, 25].

Techniques used to select deflation vectors are based on:

Eigenvectors or approximated eigenvectors of the system matriz [19, 25]

Recycling vectors [23, 14]

Subdomain deflation vectors [24]

Multigrid and multilevel based deflation vectors [18, 21, 22]

Deflation vectors

Solving a linear system

Ax = b

Eigenvectors of the system matrix as deflation vectors Lemma 1. Given

$$\sigma(\mathsf{A}) = \{\lambda_1, \lambda_2 ... \lambda_p, \lambda_{p+1}, ..., \lambda_n\},\$$

where

$$\mathsf{A}\lambda_i = \lambda_1 \mathsf{v}_i.$$

If $Z = [v_1, ..., v_p]$, then PA has the same eigenvectors as A and the spectrum is given by (ee the proof in [19, 25]):

$$\sigma(\mathsf{PA}) = \{0, ..., 0, \lambda_{p+1}, ..., \lambda_n\}.$$

Recycled vectors as deflation vectors **Lemma 2.** Given

$$\mathsf{x} = \sum_{i=1}^{p} c_i \mathsf{x}_i,$$

where the x'_i s are linearly independent (l.i.) solutions such that $Ax_i = b_i$. If

$$\mathsf{Z} = \begin{bmatrix} \mathsf{x}_1, ..., \mathsf{x}_p \end{bmatrix},$$

the solution of the linear system is obtained within one iteration of DCG (see the proof in [14, 25]).

Theory

4 Experiments

6 Bibliography

1

POD-based deflation method

We combine a POD basis with the Deflated Preconditioned Conjugate Gradient method preconditioned with Incomplete Cholesky (DICCG).

i) **Snapshots collection**. A set X of snapshots, vectors b_i with different configurations or at various time steps, is obtained for the computation of the POD basis.

Moving window approach: the window consists of a set of s snapshots updated for each time step.

$$X = [x^{t-s-1}, ..., x^{t-1}].$$

Training phase approach: a full pre-simulation is run.

$$\mathsf{X} = [\mathsf{x}^1, ..., \mathsf{x}^n].$$

- *ii*) **POD basis computation**. The previously obtained snapshots are used to construct a POD basis (Ψ).
- iii) Solution of the linear system. The POD basis is used as subspace-deflation matrix (Z) in a deflation procedure for the solution of the linear system.

Vuik, Diaz, Jansen

POD-based deflation method

Lemma 3. Let Ax = b, be a linear system with $A \in \mathbb{R}^{n \times n}$ symmetric with spectrum $\sigma(A) = \{\lambda_1, ..., \lambda_n\}$, and eigenvectors $\sigma(A) = \{v_1, ..., v_n\}$, such that $v_i^T v_j = \delta_{ij}$.

We assume that the solution to this system can be written as $x = \sum_{i=1}^{p} a_i x_i$, where the x'_i s are linearly independent (I.i.) solutions to $Ax_i = b_i$. Rewriting the x'_i s as:

$$\mathbf{x}_i = \sum_{k=1}^n c_k \mathbf{v}_k, \qquad \mathbf{x}_j = \sum_{m=1}^n \tilde{c}_m \mathbf{v}_m,$$

and taking $c_{\alpha} \neq \tilde{c}_{\beta}$, and $|c_{\alpha}| >> |c_k|$, with $k \in [1, ..., \alpha - 1, \alpha + 1, ..., n]$, and $|\tilde{c}_{\beta}| >> |\tilde{c}_m|$, $m \in [1, ..., \beta - 1, \beta + 1, ..., n]$, the spectrum of the deflated system PA is given by:

$$\sigma(\mathsf{PA}) = \{\lambda_1, ..., \lambda_{\alpha-1}, 0, \lambda_{\alpha+1}, ..., \lambda_{\beta-1}, 0, \lambda_{\beta+1}, ..., \lambda_n\}.$$

See the proof in [14, 25].

Hence, if the unfavorable eigenvalues are captured in the l.i. solutions x_i and x_j , the behavior of the deflated method is the same as if these eigenvectors are used as deflation vectors.

Reservoir Simulation

Single-phase flow through porous media [26]

Darcy's law + mass balance equation

$$-\nabla \cdot \left[\frac{\alpha \rho}{\mu} \vec{\mathsf{K}} (\nabla \mathsf{p} - \rho g \nabla d)\right] + \alpha \rho \phi c_t \frac{\partial \mathsf{p}}{\partial t} - \alpha \rho \mathsf{q} = 0.$$
$$c_t = (c_l + cr),$$

g gravity d depth ϕ rock porosity q sources c_r rock compressibility c_l liquid compressibility

 α a geometric factor ρ fluid density μ fluid viscosity p pressure \vec{K} rock permeability Water flooding with injection through the boundary and wells.

TC1. $c_{\sigma} = 10^{-1}$, no capillary pressure terms included. TC2. $c_{\sigma} = 10^{-6}$, no capillary pressure terms included. TC3. $c_{\sigma} = 10^{-1}$, capillary pressure terms included.

TC4. $c_{\sigma} = 10^{-6}$, capillary pressure terms included.

Rock permeability.

	Water	Oil	Units				
μ	1	10	ср				
ρ	1000	700	kg/m^3				
k _r	$(S_w)^2$	$(1 - S_w)^2$					
Cp	10 *	(1 - S)	bars				
2D: 35 x 35 cells							
3D: 25 x 25 x 25 cells.							

Results: Heterogeneous permeability layers

Vuik, Diaz, Jansen

POD-Def

SIAMGS21 13 / 24

	р	Total	DI	CCG	Total	% of ICCG	% of ICCG		
		ICCG	ICCG	DICCG	DICCG	Iterations	Work		
2D Case									
TC1	10	23245	406	2830	3236	14	33.2		
	5 _{POD}			3929	4335	19	61.7		
TC2	10	33834	194	3789	3983	12	28		
	5 _{POD}			5256	5450	16	47.6		
TC3	10	23123	427	5792	6219	27	64		
	5 _{POD}			6296	6723	29	78.9		
TC4	10	35507	220	6959	7179	20	48.1		
	5 _{POD}			7291	7511	21	55.2		
				3D Case					
TC1	10	24231	498	3887	4385	18	37.7		
	5 _{POD}			4929	5427	22	56.5		
TC2	10	20260	309	3342	3651	18	37.6		
	5 _{POD}			3117	3426	17	52.4		
TC3	10	24557	513	8103	8616	35	73.1		
	5 _{POD}			8472	8985	37	78.1		
TC4	10	19130	267	4180	4447	23	48.5		
	5 _{POD}			5084	5351	28	70.9		

▲口▶▲御▶▲臣▶▲臣▶ 臣 のへで

	р	Total	DI	DICCG		% of ICCG	% of ICCG		
		ICCG	ICCG	DICCG	DICCG	Iterations	Work		
2D Case									
TC1	10	23245	406	2830	3236	14	33.2		
	5 _{POD}			3929	4335	19	61.7		
TC2	10	33834	194	3789	3983	12	28		
	5 _{POD}			5256	5450	16	47.6		
TC3	10	23123	427	5792	6219	27	64		
	5 _{POD}			6296	6723	29	78.9		
TC4	10	35507	220	6959	7179	20	48.1		
	5 _{POD}			7291	7511	21	55.2		
				3D Case					
TC1	10	24231	498	3887	4385	18	37.7		
	5 _{POD}			4929	5427	22	56.5		
TC2	10	20260	309	3342	3651	18	37.6		
	5 _{POD}			3117	3426	17	52.4		
TC3	10	24557	513	8103	8616	35	73.1		
	5 _{POD}			8472	8985	37	78.1		
TC4	10	19130	267	4180	4447	23	48.5		
	5 _{POD}			5084	5351	28	70.9		

▲□▶▲@▶▲≧▶▲≧▶ ≧ のへで

Results: Heterogeneous permeability layers

Figure: Total work for various methods, $\epsilon = 5 \cdot 10^{-7}$, Left: 2D cases, Right: 3D cases. The initial work is negligible in all cases.

Results: Heterogeneous permeability layers

Figure: Number of iterations TC2 .

Experiments: SPE 10

Temporal parameters			rs	Wells			
	2D	3D			Producers	Injector	
Tsteps	480	240		MW	275	1100	bars
dT	15	1	day	TP training phase	random (137.5, 275)	1100	bars
			-	TP	experiments 200, 275, 400	1100	bars

TC1_{*MW*}. MW approach, 2D, no capillary pressure terms included, P: 275 [bars]. TC2_{*MW*}. MW approach, 2D, capillary pressure terms included, P: 275 [bars]. TC3_{*TP*}. TP approach, 2D, no capillary pressure terms included, P: 200 [bars]. TC4_{*TP*}. TP approach, 2D, capillary pressure terms included, P: 200 [bars]. TC5_{*TP*}. TP approach, 2D, no capillary pressure terms included, P: 275 [bars]. TC6_{*TP*}. TP approach, 2D, capillary pressure terms included, P: 275 [bars]. TC7_{*TP*}. TP approach, 2D, capillary pressure terms included, P: 275 [bars]. TC7_{*TP*}. TP approach, 2D, no capillary pressure terms included, P: 400 [bars]. TC8_{*TP*}. TP approach, 2D, capillary pressure terms included, P: 400 [bars]. TC9_{*MW*}. MW approach, 3D, no capillary pressure terms included, P: 275 [bars]. TC10_{*MW*}. MW approach, 3D, no capillary pressure terms included, P: 275 [bars]. TC11_{*TP*}. TP approach, 3D, no capillary pressure terms included, P: 275 [bars].

Results: SPE 10

	р	Total	DI	CCG	Total	% of ICCG	% of ICCG	
		ICCG	ICCG	DICCG	DICCG	Iterations	Work	
2D case								
	10	00764	22.41	E601	7022	10	22.4	
ICIMW	10	80764	2241	5091	7932	10	23.4	
	5POD			6667	8908	11	27.1	
I C2 _{MW}	10	78950	2256	5334	7590	10	22.9	
	5 _{POD}			6018	8274	10	26.3	
TC3 _{TP} , P: 200[bars]	10 _{POD}	80764			12044	15	35.5	
	5 _{POD}				20281	25	42.5	
TC4 _{TP} , P: 200[bars]	10 _{POD}	78950			11746	15	35.4	
	5 _{POD}				17659	22	37.8	
TC5 _{TP} , P: 275[bars]	10 _{POD}	83972			12935	15	37	
	5POD				21439	26	38.3	
TC6 _{TP} , P: 275[bars]	10 _{POD}	83279			13078	16	37	
	5 _{POD}				19045	23	38.3	
TC7 _{TP} , P: 400[bars]	10 _{POD}	72158			10279	14	33.9	
	5 _{POD}				17858	25	41.8	
TC8 _{TP} , P: 400[bars]	10 _{POD}	70819			9824	14	33	
	5 _{POD}				15353	22	36.7	
			3D ca	ise				
TC94444	10	87789	5280	14798	20078	23	35.2	
	5000	01105	0200	17084	22364	25	42.3	
TC10.00	10	76878	5323	1/285	10608	25	30.3	
I CIOMW	5	10010	5525	150/5	21268	20	46.1	
TC11	<u>- 3POD</u>	07700		15945	21200	20	44.6	
I I CIITP	IUPOD	01189			25410	29	44.0	
TCIO	POD	76070			40959	47	11.9	
IC12TP	10 _{POD}	10818			22740	30	45.6	
	5POD				35617	46	/1.4	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のぐ

Results: SPE 10

	р	Total	DI	CCG	Total	% of ICCG	% of ICCG	
		ICCG	ICCG	DICCG	DICCG	Iterations	Work	
2D case								
	10	00764	00.41	EC01	7000	10	00.4	
ICI _{MW}	10	80764	2241	5691	7932	10	23.4	
	5 _{POD}			6667	8908	11	27.1	
TC2 _{MW}	10	78950	2256	5334	7590	10	22.9	
	5 _{POD}			6018	8274	10	26.3	
TC3 _{TP} , P: 200[bars]	10 _{POD}	80764			12044	15	35.5	
	5 _{POD}				20281	25	42.5	
TC4 _{TP} , P: 200[bars]	10 _{POD}	78950			11746	15	35.4	
	5 _{POD}				17659	22	37.8	
TC5 _{TP} , P: 275[bars]	10 _{POD}	83972			12935	15	37	
	5POD				21439	26	38.3	
TC6 _{TP} , P: 275[bars]	10 _{POD}	83279			13078	16	37	
	5 _{POD}				19045	23	38.3	
TC7 _{TP} , P: 400[bars]	10 _{POD}	72158			10279	14	33.9	
	5 _{POD}				17858	25	41.8	
TC8 _{TP} , P: 400[bars]	10 _{POD}	70819			9824	14	33	
	5 _{POD}				15353	22	36.7	
			3D ca	ise				
TCO	10	07700	E000	14709	20079	22	25.0	
I C9 _{MW}	- 10	01109	5260	14790	20078	25	35.2	
TC10	POD	76070	5000	17084	22304	25	42.3	
I CIUMW	_ 10	16818	5323	14285	19608	26	39.3	
	5 _{POD}			15945	21268	28	46.1	
TC11 _{TP}	10 _{POD}	87789			25410	29	44.6	
	5 _{POD}				40959	47	71.9	
TC12 _{TP}	10 _{POD}	76878			22740	30	45.6	
	5 _{POD}				35617	46	71.4	

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト → 臣 → のの()

- The use of a POD basis as deflation vectors requires some extra work, however, it makes the deflation method more robust.
- The total work is reduced up to 23% the ICCG work when using the DICCG method, for the 2D case, and up to 35% for the 3D case.
- The MW approach showed a better performance than the TP approach for the studied cases.
- A slightly better performance is observed if no capillary pressure terms are included.
- For the TP approach, a single basis can be used for alike problems, resulting in similar performance of the DICCG method.

References I

P.T.M. Vermeulen, A.W. Heemink and C.B.M. Te Stroet.

Reduced models for linear groundwater flow models using empirical orthogonal functions. *Advances in Water Resources*, 27(1):57–69, 2004.

D. Pasetto, M. Ferronato and M. Putti

A reduced order model-based preconditioner for the efficient solution of transient diffusion equations. International Journal for Numerical Methods in Engineering, 109(8):1159–1179, 2017.

W. Schilders, H. Van der Vorst and J. Rommes.

Model order reduction: theory, research aspects and applications, volume 13. Springer, 2008.

A. Quarteroni and G. Rozza.

Reduced order methods for modeling and computational reduction, volume 9. Springer, 2014.

K. Carlberg, V. Forstall and R. Tuminaro.

Krylov-subspace recycling via the POD-augmented conjugate-gradient method. *SIAM Journal on Matrix Analysis and Applications*, 37(3):1304–1336, 2016.

Y. Saad.

Iterative Methods for Sparse Linear Systems.

Society for Industrial and Applied Mathematics Philadelphia, PA, USA. SIAM, 2nd edition, 2003

H.A. Van der Vorst.

Iterative Krylov methods for large linear systems, volume 13. Cambridge University Press, 2003.

References II

C. Vuik, A. Segal and J.A. Meijerink.

An Efficient Preconditioned CG Method for the Solution of a Class of Layered Problems with Extreme Contrasts in the Coefficients.

Journal of Computational Physics, 152:385, 1999.

P. Astrid, G. Papaioannou, J.C. Vink and J.D. Jansen.

Pressure Preconditioning Using Proper Orthogonal Decomposition.

In 2011 SPE Reservoir Simulation Symposium, The Woodlands, Texas, USA, pages 21-23, 2011

Accelerating iterative solution methods using reduced-order models as solution predictors. International journal for numerical methods in engineering, 68(5):525–541, 2006.

M.A. Cardoso, L.J. Durlofsky and P. Sarma.

Development and application of reduced-order modeling procedures for subsurface flow simulation. International journal for numerical methods in engineering, 77(9):1322–1350, 2009.

T. Heijn, R. Markovinovic, J.D. Jansen et al.

Generation of low-order reservoir models using system-theoretical concepts. SPE Journal, 9(02):202–218, 2004.

J. van Doren, R. Markovinović and J.D. Jansen.

Reduced-order optimal control of water flooding using proper orthogonal decomposition. *Computational Geosciences*, 10(1):137–158, 2006.

G.B. Diaz Cortes, C. Vuik and J.D. Jansen.

On POD-based Deflation Vectors for DPCG applied to porous media problems. Journal of Computational and Applied Mathematics, 330(Supplement C):193 – 213, 2018

References III

O. Axelsson and I. Kaporin.

On the sublinear and superlinear rate of convergence of conjugate gradient methods. *Numerical Algorithms*, 25(1-4):1–22, 2000.

B. Beckermann and A. Kuijlaars.

Superlinear Convergence of Conjugate Gradients. SIAM Journal on Numerical Analysis, 39(1):300–329, 2001

A. Van der Sluis and H.A. van der Vorst.

The rate of convergence of conjugate gradients. *Numerische Mathematik*, 48(5):543–560, 1986.

J.M. Tang, R. Nabben, C. Vuik and Y. Erlangga.

Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods. Journal of scientific computing, 39(3):340–370, 2009.

J. Tang.

Two-Level Preconditioned Conjugate Gradient Methods with Applications to Bubbly Flow Problems. PhD thesis, Delft University of Technology, 2008.

K. Kahl and H. Rittich.

The deflated conjugate gradient method: Convergence, perturbation and accuracy. *Linear Algebra and its Applications*, 515:111–129, 2017.

B. Smith, P. Bjorstad and W. Gropp.

Domain decomposition: parallel multilevel methods for elliptic partial differential equations. Cambridge University Press New York, 1996.

H. Klie, M.F. Wheeler, K. Stueben, T. Clees et al.

Deflation AMG solvers for highly ill-conditioned reservoir simulation problems. In SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 2007.

M. Clemens, M. Wilke, R. Schuhmann and T. Weiland.

Subspace projection extrapolation scheme for transient field simulations. *IEEE Transactions on Magnetics*, 40(2):934–937, 2004.

C. Vuik, A. Segal, L. Yaakoubi and E. Dufour.

A comparison of various deflation vectors applied to elliptic problems with discontinuous coefficients. Applied Numerical Mathematics, 41(1):219–233, 2002.

G.B. Diaz Cortes.

POD-Based Deflation Method For Reservoir Simulation. PhD thesis, Delft University of Technology, 2019.

.D. Jansen.

A systems description of flow through porous media. Springer, 2013.

Thank you!!

Computational Geosciences https://doi.org/10.1007/s10596-021-10041-6

ORIGINAL PAPER

Accelerating the solution of linear systems appearing in two-phase reservoir simulation by the use of POD-based deflation methods

Gabriela Berenice Díaz Cortés¹ · Cornelis Vuik² · Jan-Dirk Jansen³

Received: 14 July 2020 / Accepted: 26 January 2021 © The Author(s) 2021

Abstract

We explore and develop a Proper Orthogonal Decomposition (POD)-based deflation method for the solution of illconditioned linear systems, appearing in simulations of two-phase flow through highly heterogeneous porous media. We accelerate the convergence of a Preconditioned Conjugate Gradient (PCG) method achieving speed-ups of factors up to five. The up-front extra computational cost of the proposed method depends on the number of deflation vectors. The POD-based deflation method is tested for a particular problem and linear solver; nevertheless, it can be applied to various transient problems, and combined with multiple solvers, e.g., Krylov subspace and multigrid methods.

More info: Keywords Deflation · Krylov Methods · Porous media · Two-phase reservoir simulation

SIAMGS21 24 / 24